Antimicrobial Susceptibility of Bacterial Isolates from Donkey Uterine Infections, 2018–2021
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Collection
2.2. Bacterial Culturing and Identification
2.3. Antimicrobial Susceptibility Test
2.4. Statistical Analysis
3. Results
3.1. Bacteriologic Description
3.2. Antimicrobial Susceptibility Testing
3.3. Multidrug Resistance
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Beja-Pereira, A.; England, P.R.; Ferrand, N.; Jordan, S.; Bakhiet, A.O.; Abdalla, M.A.; Mashkour, M.; Jordana, J.; Taberlet, P.; Luikart, G. African origins of the domestic donkey. Science 2004, 304, 1781. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Canisso, I.F.; Panzani, D.; Miró, J.; Ellerbrock, R.E. Key aspects of donkey and mule reproduction. Vet. Clin. N. Am. Equine Pract. 2019, 35, 607–642. [Google Scholar] [CrossRef]
- Troedsson, M.H. Uterine clearance and resistance to persistent endometritis in the mare. Theriogenology 1999, 52, 461–471. [Google Scholar] [CrossRef]
- Troedsson, M.H.; Woodward, E.M. Our current understanding of the pathophysiology of equine endometritis with an emphasis on breeding-induced endometritis. Reprod. Biol. 2016, 16, 8–12. [Google Scholar] [CrossRef]
- Rasmusse, C.D.; Petersen, M.R.; Bojesen, A.M.; Pedersen, H.G.; Lehn-Jensen, H.; Christoffersen, M. Equine infectious endometritis—Cinical and subclinical cases. J. Equine Vet. Sci. 2015, 35, 95–104. [Google Scholar] [CrossRef]
- Casagrande Proietti, P.; Bietta, A.; Coppola, G.; Felicetti, M.; Cook, R.F.; Coletti, M.; Marenzoni, M.L.; Passamonti, F. Isolation and characterization of β-haemolytic-Streptococci from endometritis in mares. Vet. Microbiol. 2011, 152, 126–130. [Google Scholar] [CrossRef] [Green Version]
- Causey, R.C. Making sense of equine uterine infections: The many faces of physical clearance. Vet. J. 2006, 172, 405–421. [Google Scholar] [CrossRef] [PubMed]
- Benko, T.; Boldizar, M.; Novotny, F.; Hura, V.; Valocky, I.; Dudrikova, K.; Karamanova, M.; Petrovic, V. Incidence of bacterial pathogens in equine uterine swabs, their antibiotic resistance patterns, and selected reproductive indices in English thoroughbred mares during the foal heat cycle. Vet. Med. 2016, 60, 613–620. [Google Scholar] [CrossRef]
- Frontoso, R.; De Carlo, E.; Pasolini, M.P.; van der Meulen, K.; Pagnini, U.; Iovane, G.; De Martino, L. Retrospective study of bacterial isolates and their antimicrobial susceptibilities in equine uteri during fertility problems. Res. Vet. Sci. 2008, 84, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Riddle, W.T.; Leblanc, M.M.; Stromberg, A.J. Relationships between uterine culture, cytology and pregnancy rates in a Thoroughbred practice. Theriogenology 2007, 68, 395–402. [Google Scholar] [CrossRef] [PubMed]
- Holyoak, G.R.; Lyman, C.C. The equine endometrial microbiome: A brief review. Am. J. Biomed. Sci. Res. 2021, 11, 532–534. [Google Scholar] [CrossRef]
- Rock, K.S.; Love, B.C.; DeSilva, U.; Rezabek, G.B.; Meijer, W.G.; Carrington, S.D.; Holyoak, G.R. Detectable differences in the endometrial microbiome between normal and susceptible mares using metagenomic profiling and conventional bacterial culture. Clin. Theriogenol. 2011, 3, 376. [Google Scholar]
- Holyoak, G.R.; Lyman, C.C.; Wieneke, X.; DeSilva, U. The equine endometrial microbiome. Clin. Theriogenol. 2018, 10, 273–278. [Google Scholar]
- Causey, R.C. Uterine therapy for mares with bacterial infections. In Current Therapy in Equine Reproduction; Elsevier: Amsterdam, The Netherlands, 2007; pp. 105–115. [Google Scholar]
- Troedsson, M.H. Breeding-induced endometritis in mares. Vet. Clin. N. Am. Equine Pract. 2006, 22, 705–712. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Zhao, Y.; Gao, Y.; Zhu, Y.; Holyoak, G.R.; Zeng, S. Treatments for endometritis in mares caused by streptococcus equi subspecies zooepidemicus: A structured literature review. J. Equine Vet. Sci. 2021, 102, 103430. [Google Scholar] [CrossRef]
- Rogan, D.; Fumuso, E.; Rodríguez, E.; Wade, J.; Sánchez Bruni, S.F. Use of a mycobacterial cell wall extract (MCWE) in susceptible mares to clear experimentally induced endometritis with streptococcus zooepidemicus. J. Equine Vet. Sci. 2007, 27, 112–117. [Google Scholar] [CrossRef]
- Morley, P.S.; Apley, M.D.; Besser, T.E.; Burney, D.P.; Fedorka Cray, P.J.; Papich, M.G.; Traub Dargatz, J.L.; Weese, J. Antimicrobial drug use in veterinary medicine. J. Vet. Intern. Med. 2005, 19, 617–629. [Google Scholar] [CrossRef]
- Albihn, A.; Båverud, V.; Magnusson, U. Uterine microbiology and antimicrobial susceptibility in isolated bacteria from mares with fertility problems. Acta. Vet. Scand. 2003, 44, 121–129. [Google Scholar] [CrossRef]
- Ricketts, S. The barren mare: Diagnosis, prognosis, prophylaxis and treatment for genital abnormality. Practice 1989, 11, 156–164. [Google Scholar] [CrossRef]
- Davis, H.A.; Stanton, M.B.; Thungrat, K.; Boothe, D.M. Uterine bacterial isolates from mares and their resistance to antimicrobials: 8,296 cases (2003–2008). J. Am. Vet. Med. Assoc. 2013, 242, 977–983. [Google Scholar] [CrossRef]
- Ferrer, M.S.; Palomares, R. Aerobic uterine isolates and antimicrobial susceptibility in mares with post-partum metritis. Equine Vet. J. 2017, 50, 202–207. [Google Scholar] [CrossRef]
- Pisello, L.; Rampacci, E.; Stefanetti, V.; Beccati, F.; Hyatt, D.R.; Coletti, M.; Passamonti, F. Temporal efficacy of antimicrobials against aerobic bacteria isolated from equine endometritis: An Italian retrospective analysis (2010–2017). Vet. Rec. 2019, 185, 598. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Díaz-Bertrana, M.L.; Deleuze, S.; Pitti Rios, L.; Yeste, M.; Morales Fariña, I.; Rivera Del Alamo, M.M. Microbial prevalence and antimicrobial sensitivity in equine endometritis in field conditions. Animals 2021, 11, 1476. [Google Scholar] [CrossRef] [PubMed]
- Canisso, I.F.; Segabinazzi, L.G.; Fedorka, C.E. Persistent breeding-induced endometritis in mares-a multifaceted challenge: From clinical aspects to immunopathogenesis and pathobiology. Int. J. Mol. Sci. 2020, 21, 1432. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Katila, T. Evaluation of diagnostic methods in equine endometritis. Reprod. Biol. 2016, 16, 189–196. [Google Scholar] [CrossRef] [PubMed]
- CLSI. Performance Standards for Antimicrobial Disk and Dilution Susceptibility Tests for Bacteria Isolated from Animals, 4th ed.; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2013. [Google Scholar]
- CLSI. Performance Standards for Antimicrobial Susceptibility Testing, 30th ed.; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2020. [Google Scholar]
- Patel, R. MALDI-TOF MS for the diagnosis of infectious diseases. Clin. Chem. 2015, 61, 100–111. [Google Scholar] [CrossRef] [Green Version]
- Johnston, G.; Lumsden, J.M. Antimicrobial susceptibility of bacterial isolates from 33 thoroughbred horses with arytenoid chondropathy (2005–2019). Vet. Surg. 2020, 49, 1283–1291. [Google Scholar] [CrossRef]
- Leclercq, R.; Cantón, R.; Brown, D.F.J.; Giske, C.G.; Heisig, P.; Macgowan, A.P.; Mouton, J.W.; Nordmann, P.; Rodloff, A.C.; Rossolini, G.M.; et al. EUCAST expert rules in antimicrobial susceptibility testing. Clin. Microbiol. Infect. 2013, 19, 141–160. [Google Scholar] [CrossRef] [Green Version]
- Magiorakos, A.P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.E.; Giske, C.G.; Harbarth, S.; Hindler, J.F.; Kahlmeter, G.; Olsson-Liljequist, B.; et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. 2012, 18, 268–281. [Google Scholar] [CrossRef] [Green Version]
- Høiby, N.; Bjarnsholt, T.; Moser, C.; Bassi, G.L.; Coenye, T.; Donelli, G.; Hall-Stoodley, L.; Holá, V.; Imbert, C.; Kirketerp-Møller, K. ESCMID guideline for the diagnosis and treatment of biofilm infections 2014. Clin. Microbiol. Infect. 2015, 21, S1–S25. [Google Scholar] [CrossRef] [Green Version]
- Ferris, R.A.; Mccue, P.M.; Borlee, G.I.; Loncar, K.D.; Hennet, M.L.; Borlee, B.R. In vitro efficacy of nonantibiotic treatments on biofilm disruption of gram-negative pathogens and an in vivo model of infectious endometritis utilizing isolates from the equine uterus. J. Clin. Microbiol. 2016, 54, 631–639. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferris, R.A.; Mccue, P.M.; Borlee, G.I.; Glapa, K.E.; Martin, K.H.; Mangalea, M.R.; Hennet, M.L.; Wolfe, L.M.; Broeckling, C.D.; Borlee, B.R. Model of chronic equine endometritis involving a Pseudomonas aeruginosa biofilm. Infect. Immun. 2017, 85, e317–e332. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maboni, G.; Seguel, M.; Lorton, A.; Sanchez, S. Antimicrobial resistance patterns of Acinetobacter spp. of animal origin reveal high rate of multidrug resistance. Vet. Microbiol. 2020, 245, 108702. [Google Scholar] [CrossRef]
- Smet, A.; Cools, P.; Krizova, L.; Maixnerova, M.; Sedo, O.; Haesebrouck, F.; Kempf, M.; Nemec, A.; Vaneechoutte, M. Acinetobacter gandensis sp. nov. isolated from horse and cattle. Int. J. Syst. Evol. Microbiol. 2014, 64, 4007–4015. [Google Scholar] [CrossRef] [Green Version]
- Weese, J.S. Antimicrobial therapy for multidrug resistant pathogens. Equine Vet. Educ. 2009, 21, 328–334. [Google Scholar] [CrossRef]
- Ebert, M.A.; Riese, R.L. Infertility in the mare. Iowa State Univ. Vet. 1986, 48, 4. [Google Scholar]
- Gao, N.; Du, Y.; Zheng, X.; Shu, S.; Suo, J.; Han, M.; Ma, X.; Huang, R.; Peng, W.; Fu, C. Endometritis in donkeys associated with Streptococcus equi subspecies zooepidemicus infection. Pak. Vet. J. 2020, 40, 537–539. [Google Scholar] [CrossRef]
- Carvalho, S.; Marinho, C.; Gonçalves, A.; Sousa, M.; Nóvoa, M.; Quaresma, M.; Igrejas, G.; Poeta, P. Vaginal bacterial microbiota of an endangered donkey breed: A comparison between Miranda donkey breed (Equus asinus) jennies with and without reproductive problems. J. Integr. OMICS 2016, 6, 193. [Google Scholar]
- Christoffersen, M.; Söderlind, M.; Rudefalk, S.R.; Pedersen, H.G.; Allen, J.; Krekeler, N. Risk factors associated with uterine fluid after breeding caused by Streptococcus zooepidemicus. Theriogenology 2015, 84, 1283–1290. [Google Scholar] [CrossRef]
- Bourély, C.; Cazeau, G.; Jarrige, N.; Haenni, M.; Gay, E.; Leblond, A. Antimicrobial resistance in bacteria isolated from diseased horses in France. Equine Vet. J. 2019, 52, 112–119. [Google Scholar] [CrossRef]
- Schmiedel, J.; Falgenhauer, L.; Domann, E.; Bauerfeind, R.; Prenger-Berninghoff, E.; Imirzalioglu, C.; Chakraborty, T. Multiresistant extended-spectrum beta-lactamase-producing Enterobacteriaceae from humans, companion animals and horses in central Hesse, Germany. BMC Microbiol. 2014, 14, 187. [Google Scholar] [CrossRef] [Green Version]
- Robinson, T.P.; Bu, D.P.; Carrique-Mas, J.; Fèvre, E.M.; Gilbert, M.; Grace, D.; Hay, S.I.; Jiwakanon, J.; Kakkar, M.; Kariuki, S.; et al. Antibiotic resistance: Mitigation opportunities in livestock sector development. Animal 2017, 11, 1–3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patel, H.B.; Lusk, K.A.; Cota, J.M. The role of cefepime in the treatment of extended-spectrum beta-lactamase infections. J. Pharm. Pract. 2019, 32, 458–463. [Google Scholar] [CrossRef] [PubMed]
- Salmon-Rousseau, A.; Martins, C.; Blot, M.; Buisson, M.; Mahy, S.; Chavanet, P.; Piroth, L. Comparative review of imipenem/cilastatin versus meropenem. Med. Mal. Infect. 2020, 50, 316–322. [Google Scholar] [CrossRef] [PubMed]
- Guglick, M.A.; Macallister, C.G.; Clarke, C.R.; Pollet, R.; Hague, C.; Clarke, J.M. Pharmacokinetics of cefepime and comparison with those of ceftiofur in horses. Am. J. Vet. Res. 1998, 59, 458–463. [Google Scholar]
- Langston, V.C.; Fontenot, R.L.; Byers, J.A.; Andrews, C.M.; Mochal King, C.A. Plasma and synovial fluid pharmacokinetics of a single intravenous dose of meropenem in adult horses. J. Ve.t Pharmacol. Ther. 2019, 42, 525–529. [Google Scholar] [CrossRef]
- Petry, S.; Sévin, C.; Kozak, S.; Foucher, N.; Laugier, C.; Linster, M.; Breuil, M.; Dupuis, M.; Hans, A.; Duquesne, F.; et al. Relationship between rifampicin resistance and RpoB substitutions of Rhodococcus equi strains isolated in France. J. Glob. Antimicrob. Resist. 2020, 23, 137–144. [Google Scholar] [CrossRef]
- Goldstein, B.P. Resistance to rifampicin: A review. J. Antibiot. 2014, 67, 625–630. [Google Scholar] [CrossRef] [Green Version]
- Lin, Y.; Han, M.; Zhao, J.; Zhu, Y.; Rao, G.; Forrest, A.; Song, J.; Kaye, K.S.; Hertzog, P.; Purcell, A.; et al. Synergistic combination of polymyxin B and enrofloxacin induced metabolic perturbations in extensive drug-resistant Pseudomonas aeruginosa. Front Pharmacol. 2019, 10, 1146. [Google Scholar] [CrossRef] [Green Version]
- Johns, I.C.; Adams, E.L. Trends in antimicrobial resistance in equine bacterial isolates: 1999–2012. Vet. Rec. 2015, 176, 334. [Google Scholar] [CrossRef]
Micro-Organisms | Number of Isolates | Frequency of Isolates (%) |
---|---|---|
Acinetobacter baumannii | 3 | 4.1 |
Acinetobacter lwoffii | 10 | 13.7 |
Acinetobacter schindleri | 3 | 4.1 |
Other Acinetobacter spp. | 1 | 1.7 |
Aeromonas spp. | 1 | 1.7 |
Arthrobacter gandavensis | 1 | 1.7 |
Arthrobacter koreensis | 1 | 1.7 |
Bacillus cereus | 2 | 2.7 |
Burkholderia cepacia | 2 | 2.7 |
Corynebacterium spp. | 1 | 1.7 |
Enterobacter spp. | 3 | 4.1 |
Escherichia coli | 23 | 31.5 |
Klebsiella pneumoniae | 2 | 2.7 |
Klebsiella oxytoca | 2 | 2.7 |
Pantoea agglomerans | 1 | 1.7 |
Proteus mirabilis | 2 | 2.7 |
Pseudomonas aeruginosa | 8 | 10.9 |
Other Pseudomonas spp. | 4 | 5.4 |
Streptococcus equi subsp. zooepidemicus | 3 | 4.1 |
Total | 73 | 100 |
Gram-Negative Bacteria | E. coli (23 Isolates) | Acinetobacter spp. (13 Isolates) | P. aeruginosa (7 Isolates) | Klebsiella spp. (4 Isolates) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Antimicrobials a | S (%) | I (%) | R (%) | S (%) | I (%) | R (%) | S (%) | I (%) | R (%) | S (%) | I (%) | R (%) |
Amoxicillin/clavulanic-acid | 91.3 | - | 8.7 | 92.3 | 7.7 | - | - | - | 100 | 50 | 25 | 25 |
Cefazolin | 65.3 | 21.7 | 13 | 7.7 | 7.7 | 84.6 | - | - | 100 | 25 | - | 75 |
Cefoxitin | 100 | - | - | 92.3 | - | 7.7 | M b | - | - | 100 | - | - |
Ceftiofur | 95.7 | - | 4.3 | 92.3 | - | 7.7 | M b | - | - | 100 | - | - |
Cefepime | 100 | - | - | 100 | - | - | 100 | - | - | 100 | - | - |
Gentamicin | 87 | 4.3 | 8.7 | 100 | - | - | - | - | 100 | 100 | - | - |
Amikacin | 100 | - | - | 100 | - | - | 100 | - | - | 100 | - | - |
Kanamycin | 100 | - | - | 100 | - | - | M b | - | - | 75 | 25 | - |
Tetracycline | 87 | - | 13 | 92.3 | - | 7.7 | NA c | NA c | NA c | 75 | 25 | - |
Tigecycline | 95.7 | 4.3 | - | 92.3 | - | 7.7 | NA c | NA c | NA c | 100 | - | - |
Enrofloxacin | M b | - | - | M b | - | - | M b | - | - | M b | - | - |
Trimethoprim-Sulfamethoxazole | 95.7 | 4.3 | - | 92.3 | - | 7.7 | 85.7 | - | 14.3 | 100 | - | - |
Meropenem | 100 | - | - | 100 | - | - | 100 | - | - | 100 | - | - |
Rifampicin | M b | - | - | M b | - | - | M b | - | - | M b | - | - |
Gram-Positive Bacteria | SEZ (3 Isolates) | ||
---|---|---|---|
Antimicrobials a | S (%) | I (%) | R (%) |
Amoxicillin/clavulanic-acid | 100 | - | - |
Cefoxitin | M b | - | - |
Ceftiofur | 100 | - | - |
Cefepime | 100 | - | - |
Gentamicin | - | 33.3 | 66.7 |
Amikacin | 66.7 | 33.3 | - |
Kanamycin | M b | - | - |
Tigecycline | 100 | - | - |
Erythromycin | 100 | - | - |
Enrofloxacin | Mb | - | - |
Trimethoprim-Sulfamethoxazole | 100 | - | - |
Meropenem | 100 | - | - |
Vancomycin | 100 | - | - |
Rifampicin | 100 | - | - |
Bacteria | E. coli | Acinetobacter spp. | P. aeruginosa | Klebsiella spp. | SEZ | |||||
---|---|---|---|---|---|---|---|---|---|---|
MIC Values (μg/mL) | MIC50 | MIC90 | MIC50 | MIC90 | MIC50 | MIC90 | MIC50 | MIC90 | MIC50 | MIC90 |
Cefoxitin | - | - | - | - | >128 | >128 | - | - | <0.25 | <0.25 |
Ceftiofur | - | - | - | - | 32 | 32 | - | - | - | - |
Kanamycin | - | - | - | - | >128 | >128 | - | - | 32 | 32 |
Enrofloxacin | <0.25 | 1 | <0.25 | 1 | 8 | 8 | <0.25 | <0.25 | 1 | 1 |
Rifampicin | 4 | 8 | <0.25 | 0.5 | >128 | >128 | 16 | 64 | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Y.; Zhu, Y.; Liu, B.; Mi, J.; Li, N.; Zhao, W.; Wu, R.; Holyoak, G.R.; Li, J.; Liu, D.; et al. Antimicrobial Susceptibility of Bacterial Isolates from Donkey Uterine Infections, 2018–2021. Vet. Sci. 2022, 9, 67. https://doi.org/10.3390/vetsci9020067
Zhao Y, Zhu Y, Liu B, Mi J, Li N, Zhao W, Wu R, Holyoak GR, Li J, Liu D, et al. Antimicrobial Susceptibility of Bacterial Isolates from Donkey Uterine Infections, 2018–2021. Veterinary Sciences. 2022; 9(2):67. https://doi.org/10.3390/vetsci9020067
Chicago/Turabian StyleZhao, Yufei, Yiping Zhu, Bo Liu, Junpeng Mi, Nan Li, Weisen Zhao, Rongzheng Wu, Gilbert Reed Holyoak, Jing Li, Dejun Liu, and et al. 2022. "Antimicrobial Susceptibility of Bacterial Isolates from Donkey Uterine Infections, 2018–2021" Veterinary Sciences 9, no. 2: 67. https://doi.org/10.3390/vetsci9020067
APA StyleZhao, Y., Zhu, Y., Liu, B., Mi, J., Li, N., Zhao, W., Wu, R., Holyoak, G. R., Li, J., Liu, D., Zeng, S., & Wang, Y. (2022). Antimicrobial Susceptibility of Bacterial Isolates from Donkey Uterine Infections, 2018–2021. Veterinary Sciences, 9(2), 67. https://doi.org/10.3390/vetsci9020067