Assessment of Seroprevalence and Associated Risk Factors for Anaplasmosis in Camelus dromedarius
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethics Statement
2.2. Study Area
2.3. Sample Collection and Preparation
2.4. Serological Analysis
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mullaicharam, A. A review on medicinal properties of camel milk. World J. Pharm. Sci. 2014, 2, 237–242. [Google Scholar]
- Gahlot, T.; Chhabra, M. Selected Research on Camelid Parasitology; Camel Pub. House: Bikaner, India, 2009. [Google Scholar]
- El-Naga, T.R.A.; Barghash, S. Blood parasites in camels (Camelus dromedarius) in Northern West Coast of Egypt. J. Bacteriol. Parasitol. 2016, 7, 258. [Google Scholar]
- Parvizi, O.; El-Adawy, H.; Roesler, U.; Neubauer, H.; Mertens-Scholz, K. Performance analysis of Anaplasma antibody competitive ELISA using the ROC curve for screening of anaplasmosis in camel populations in Egypt. Pathogens 2020, 9, 165. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Selim, A.; Abdelhady, A. The first detection of anti-West Nile virus antibody in domestic ruminants in Egypt. Trop. Anim. Health Prod. 2020, 52, 3147–3151. [Google Scholar] [CrossRef] [PubMed]
- Selim, A.; Attia, K.A.; Alsubki, R.A.; Kimiko, I.; Sayed-Ahmed, M.Z. Cross-sectional survey on Mycobacterium avium Subsp. paratuberculosis in Dromedary Camels: Seroprevalence and risk factors. Acta Trop. 2022, 226, 106261. [Google Scholar] [CrossRef] [PubMed]
- Selim, A.; Ali, A.-F. Seroprevalence and risk factors for C. burentii infection in camels in Egypt. Comp. Immunol. Microbiol. Infect. Dis. 2020, 68, 101402. [Google Scholar] [CrossRef]
- Sazmand, A.; Eigner, B.; Mirzaei, M.; Hekmatimoghaddam, S.H.; Harl, J.; Duscher, G.G.; Fuehrer, H.-P.; Joachim, A. Molecular identification of hemoprotozoan parasites in camels (Camelus dromedarius) of Iran. Iran. J. Parasitol. 2016, 11, 568. [Google Scholar]
- Ranjbar Bahadori, S.; Afshari Moghadam, A. Study on the prevalence of blood parasites in camels of Zabol in 2008. Vet. Clin. Pathol. Q. Sci. J. 2009, 3, 503–507. [Google Scholar]
- Alanazi, A.D.; Nguyen, V.L.; Alyousif, M.S.; Manoj, R.R.; Alouffi, A.S.; Donato, R.; Sazmand, A.; Mendoza-Roldan, J.A.; Dantas-Torres, F.; Otranto, D. Ticks and associated pathogens in camels (Camelus dromedarius) from Riyadh Province, Saudi Arabia. Parasites Vectors 2020, 13, 110. [Google Scholar] [CrossRef] [Green Version]
- Hairgrove, T.; Schroeder, M.E.; Budke, C.M.; Rodgers, S.; Chung, C.; Ueti, M.W.; Bounpheng, M.A. Molecular and serological in-herd prevalence of Anaplasma marginale infection in Texas cattle. Prev. Vet. Med. 2015, 119, 1–9. [Google Scholar] [CrossRef]
- Silveira, J.; Rabelo, E.; Ribeiro, M. Molecular detection of tick-borne pathogens of the family Anaplasmataceae in Brazilian brown brocket deer (Mazama gouazoubira, Fischer, 1814) and marsh deer (Blastocerus dichotomus, Illiger, 1815). Transbound. Emerg. Dis. 2012, 59, 353–360. [Google Scholar] [CrossRef] [PubMed]
- Wernery, U.; Kaaden, O.R. Infectious Diseases in Camelids; Georg Thieme Verlag: Stuttgart, Germany, 2002. [Google Scholar]
- Lorusso, V.; Wijnveld, M.; Latrofa, M.S.; Fajinmi, A.; Majekodunmi, A.O.; Dogo, A.G.; Igweh, A.C.; Otranto, D.; Jongejan, F.; Welburn, S.C. Canine and ovine tick-borne pathogens in camels, Nigeria. Vet. Parasitol. 2016, 228, 90–92. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kocan, K.M.; De La Fuente, J.; Blouin, E.; Garcia-Garcia, J. Anaplasma marginale (Rickettsiales: Anaplasmataceae): Recent advances in defining host–pathogen adaptations of a tick-borne rickettsia. Parasitology 2004, 129, S285–S300. [Google Scholar] [CrossRef] [PubMed]
- Kocan, K.M.; de la Fuente, J.; Blouin, E.F.; Coetzee, J.F.; Ewing, S. The natural history of Anaplasma marginale. Vet. Parasitol. 2010, 167, 95–107. [Google Scholar] [CrossRef]
- Abd El-Baky, S.M.M.; Allam, N.A. Anaplasmosis in ruminants and infesting ticks vectors settling Egyptian desert: Epidemiological updates regarding genetic profiles. Biosci. Res. 2018, 15, 2651–2667. [Google Scholar]
- Abdel-Shafy, S.; Allam, N.A.; Mediannikov, O.; Parola, P.; Raoult, D. Molecular detection of spotted fever group rickettsiae associated with ixodid ticks in Egypt. Vector-Borne Zoonotic Dis. 2012, 12, 346–359. [Google Scholar] [CrossRef]
- Sudan, V.; Sharma, R.; Borah, M. Subclinical anaplasmosis in camel (Camelus dromedarius) and its successful therapeutic management. J. Parasit. Dis. 2014, 38, 163–165. [Google Scholar] [CrossRef] [Green Version]
- Dumler, J.S.; Barbet, A.F.; Bekker, C.; Dasch, G.A.; Palmer, G.H.; Ray, S.C.; Rikihisa, Y.; Rurangirwa, F.R. Reorganization of genera in the families Rickettsiaceae and Anaplasmataceae in the order Rickettsiales: Unification of some species of Ehrlichia with Anaplasma, Cowdria with Ehrlichia and Ehrlichia with Neorickettsia, descriptions of six new species combinations and designation of Ehrlichia equi and’HGE agent’as subjective synonyms of Ehrlichia phagocytophila. Int. J. Syst. Evol. Microbiol. 2001, 51, 2145–2165. [Google Scholar]
- Silaghi, C.; Santos, A.S.; Gomes, J.; Christova, I.; Matei, I.A.; Walder, G.; Domingos, A.; Bell-Sakyi, L.; Sprong, H.; Von Loewenich, F.D. Guidelines for the direct detection of Anaplasma spp. in diagnosis and epidemiological studies. Vector-Borne Zoonotic Dis. 2017, 17, 12–22. [Google Scholar] [CrossRef]
- Chi, Q.; Liu, Z.; Li, Y.; Yang, J.; Chen, Z.; Yue, C.; Luo, J.; Yin, H. Development of a Real-Time PCR Assay for Detection and Quantification of A naplasma ovis Infection. Transbound. Emerg. Dis. 2013, 60, 119–124. [Google Scholar] [CrossRef] [Green Version]
- Shompole, S.; Waghela, S.D.; Rurangirwa, F.R.; McGuire, T. Cloned DNA probes identify Anaplasma ovis in goats and reveal a high prevalence of infection. J. Clin. Microbiol. 1989, 27, 2730–2735. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McGuire, T.C.; Davis, W.; Brassfield, A.; McElwain, T.; Palmer, G. Identification of Anaplasma marginale long-term carrier cattle by detection of serum antibody to isolated MSP-3. J. Clin. Microbiol. 1991, 29, 788–793. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parvizi, O. Overview of Anaplasmosis in Arab Countries in North Africa and the Middle East, and Optimizing a commercial c-ELISA for Camels. Ph.D. Thesis, Free University, Berlin, Germany, 2021. [Google Scholar]
- von Fricken, M.E.; Lkhagvatseren, S.; Boldbaatar, B.; Nymadawa, P.; Weppelmann, T.A.; Baigalmaa, B.-O.; Anderson, B.D.; Reller, M.E.; Lantos, P.M.; Gray, G.C. Estimated seroprevalence of Anaplasma spp. and spotted fever group Rickettsia exposure among herders and livestock in Mongolia. Acta Trop. 2018, 177, 179–185. [Google Scholar] [CrossRef] [PubMed]
- Yoo, J.; Chung, J.-H.; Kim, C.-M.; Yun, N.R.; Kim, D.-M. Asymptomatic-anaplasmosis confirmation using genetic and serological tests and possible coinfection with spotted fever group Rickettsia: A case report. BMC Infect. Dis. 2020, 20, 445. [Google Scholar] [CrossRef]
- Nasreldin, N.; Ewida, R.M.; Hamdon, H.; Elnaker, Y.F. Molecular diagnosis and biochemical studies of tick-borne diseases (anaplasmosis and babesiosis) in Aberdeen Angus Cattle in New Valley, Egypt. Vet. World 2020, 13, 1884. [Google Scholar] [CrossRef]
- Amira, A.-H.; Răileanu, C.; Tauchmann, O.; Fischer, S.; Nijhof, A.M.; Silaghi, C. Epidemiology and genotyping of Anaplasma marginale and co-infection with piroplasms and other Anaplasmataceae in cattle and buffaloes from Egypt. Parasites Vectors 2020, 13, 495. [Google Scholar]
- Tumwebaze, M.A.; Lee, S.-H.; Moumouni, P.F.A.; Mohammed-Geba, K.; Sheir, S.K.; Galal-Khallaf, A.; Abd El Latif, H.M.; Morsi, D.S.; Bishr, N.M.; Galon, E.M. First detection of Anaplasma ovis in sheep and Anaplasma platys-like variants from cattle in Menoufia governorate, Egypt. Parasitol. Int. 2020, 78, 102150. [Google Scholar] [CrossRef]
- Ghafar, M.W.; Amer, S.A. Prevalence and first molecular characterization of Anaplasma phagocytophilum, the agent of human granulocytic anaplasmosis, in Rhipicephalus sanguineus ticks attached to dogs from Egypt. J. Adv. Res. 2012, 3, 189–194. [Google Scholar] [CrossRef] [Green Version]
- Selim, A.; Alanazi, A.D.; Sazmand, A.; Otranto, D. Seroprevalence and associated risk factors for vector-borne pathogens in dogs from Egypt. Parasites Vectors 2021, 14, 175. [Google Scholar] [CrossRef]
- Selim, A.; Almohammed, H.; Abdelhady, A.; Alouffi, A.; Alshammari, F.A. Molecular detection and risk factors for Anaplasma platys infection in dogs from Egypt. Parasites Vectors 2021, 14, 429. [Google Scholar] [CrossRef]
- Sazmand, A.; Joachim, A.; Otranto, D. Zoonotic parasites of dromedary camels: So important, so ignored. Parasites Vectors 2019, 12, 610. [Google Scholar] [CrossRef] [PubMed]
- Barghash, S.; Hafez, A.; Darwish, A.; El-Naga, T. Molecular detection of pathogens in ticks infesting camels in Matrouh Governorate, Egypt. J. Bacteriol. Parasitol. 2016, 7, 2. [Google Scholar] [CrossRef]
- Thrusfield, M. Veterinary Epidemiology; John Wiley & Sons: Hoboken, NJ, USA, 2018. [Google Scholar]
- Dreher, U.; De La Fuente, J.; Hofmann-Lehmann, R.; Meli, M.L.; Pusterla, N.; Kocan, K.; Woldehiwet, Z.; Braun, U.; Regula, G.; Staerk, K. Serologic cross-reactivity between Anaplasma marginale and Anaplasma phagocytophilum. Clin. Vaccine Immunol. 2005, 12, 1177–1183. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mentaberre, G.; Gutiérrez, C.; Rodríguez, N.F.; Joseph, S.; González-Barrio, D.; Cabezón, O.; de la Fuente, J.; Gortazar, C.; Boadella, M. A transversal study on antibodies against selected pathogens in dromedary camels in the Canary Islands, Spain. Vet. Microbiol. 2013, 167, 468–473. [Google Scholar] [CrossRef] [PubMed]
- Belkahia, H.; Said, M.B.; El Hamdi, S.; Yahiaoui, M.; Gharbi, M.; Daaloul-Jedidi, M.; Mhadhbi, M.; Jedidi, M.; Darghouth, M.A.; Klabi, I. First molecular identification and genetic characterization of Anaplasma ovis in sheep from Tunisia. Small Rumin. Res. 2014, 121, 404–410. [Google Scholar] [CrossRef]
- Chepkwony, R.; Castagna, C.; Heitkönig, I.; Van Bommel, S.; Van Langevelde, F. Associations between monthly rainfall and mortality in cattle due to East Coast fever, anaplasmosis and babesiosis. Parasitology 2020, 147, 1743–1751. [Google Scholar] [CrossRef] [PubMed]
- Ghafar, M.W.; Shobrak, M.Y. Molecular detection and characterization of Anaplasma phagocytophilum, the causative agent of human granulocytic anaplasmosis, in some animals suspected to be competent reservoirs in Taif district, Kingdom of Saudi Arabia. Life Sci. J. 2014, 11, 63–69. [Google Scholar]
- Bahrami, S.; Hamidinejat, H.; Tafreshi, A.R.G. First molecular detection of Anaplasma phagocytophilum in dromedaries (Camelus dromedarius). J. Zoo Wildl. Med. 2018, 49, 844–848. [Google Scholar]
- Bastos, A.D.; Mohammed, O.B.; Bennett, N.C.; Petevinos, C.; Alagaili, A.N. Molecular detection of novel Anaplasmataceae closely related to Anaplasma platys and Ehrlichia canis in the dromedary camel (Camelus dromedarius). Vet. Microbiol. 2015, 179, 310–314. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Yang, J.; Chen, Z.; Qin, G.; Li, Y.; Li, Q.; Liu, J.; Liu, Z.; Guan, G.; Yin, H. Anaplasma infection of Bactrian camels (Camelus bactrianus) and ticks in Xinjiang, China. Parasites Vectors 2015, 8, 313. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharifiyazdi, H.; Jafari, S.; Ghane, M.; Nazifi, S.; Sanati, A. Molecular investigation of Anaplasma and Ehrlichia natural infections in the dromedary camel (Camelus dromedarius) in Iran. Comp. Clin. Pathol. 2017, 26, 99–103. [Google Scholar] [CrossRef]
- Azmat, M.; Ijaz, M.; Farooqi, S.; Ghaffar, A.; Ali, A.; Masud, A.; Saleem, S.; Rehman, A.; Ali, M.; Mehmood, K. Molecular epidemiology, associated risk factors, and phylogenetic analysis of anaplasmosis in camel. Microb. Pathog. 2018, 123, 377–384. [Google Scholar] [CrossRef] [PubMed]
- Islam, A.; Islam, S.; Ferdous, J.; Rahman, M.K.; Uddin, M.H.; Akter, S.; Rahman, M.H.; Hassan, M.M. Diversity and prevalence of parasitic infestation with zoonotic potential in dromedary camel (Camelus dromedarius) and fat-tailed sheep (dhumba) in Bangladesh. J. Adv. Vet. Anim. Res. 2019, 6, 142. [Google Scholar] [CrossRef] [PubMed]
- Torina, A.; Alongi, A.; Naranjo, V.; Estrada-Peña, A.; Vicente, J.; Scimeca, S.; Marino, A.M.; Salina, F.; Caracappa, S.; de la Fuente, J. Prevalence and genotypes of Anaplasma species and habitat suitability for ticks in a Mediterranean ecosystem. Appl. Environ. Microbiol. 2008, 74, 7578–7584. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.; Ma, M.; Wang, Z.; Wang, J.; Peng, Y.; Li, Y.; Guan, G.; Luo, J.; Yin, H. Molecular survey and genetic identification of Anaplasma species in goats from central and southern China. Appl. Environ. Microbiol. 2012, 78, 464–470. [Google Scholar] [CrossRef] [Green Version]
- Farooqi, S.H.; Ijaz, M.; Rashid, M.I.; Nabi, H.; Islam, S.; Aqib, A.I.; Hussain, K.; Khan, A.; Rizvi, S.N.B.; Mahmood, S. Molecular epidemiology of bovine anaplasmosis in Khyber Pakhtunkhwa, Pakistan. Trop. Anim. Health Prod. 2018, 50, 1591–1598. [Google Scholar] [CrossRef]
- Kocan, K.M.; De la Fuente, J.; Guglielmone, A.A.; Meléndez, R.D. Antigens and alternatives for control of Anaplasma marginale infection in cattle. Clin. Microbiol. Rev. 2003, 16, 698–712. [Google Scholar] [CrossRef] [Green Version]
- Maurizi, L.; Marié, J.-L.; Courtin, C.; Gorsane, S.; Chal, D.; Davoust, B. Seroprevalence survey of equine anaplasmosis in France and in sub-Saharan Africa. Clin. Microbiol. Infect. 2009, 15, 68–69. [Google Scholar] [CrossRef] [Green Version]
- Belkahia, H.; Said, M.B.; Sayahi, L.; Alberti, A.; Messadi, L. Detection of novel strains genetically related to Anaplasma platys in Tunisian one-humped camels (Camelus dromedarius). J. Infect. Dev. Ctries. 2015, 9, 1117–1125. [Google Scholar] [CrossRef] [Green Version]
- ElWishy, A. A study of the genital organs of the female dromedary (Camelus dromedarius). Reproduction 1988, 82, 587–593. [Google Scholar] [CrossRef] [Green Version]
- Atif, F.A. Anaplasma marginale and Anaplasma phagocytophilum: Rickettsiales pathogens of veterinary and public health significance. Parasitol. Res. 2015, 114, 3941–3957. [Google Scholar] [CrossRef] [PubMed]
- Okely, M.; Anan, R.; Gad-Allah, S.; Samy, A. Hard ticks (Acari: Ixodidae) infesting domestic animals in Egypt: Diagnostic characters and a taxonomic key to the collected species. Med. Vet. Entomol. 2021, 35, 333–351. [Google Scholar] [CrossRef] [PubMed]
- Maidala, A. A survey of cattle, sheep, and goat tick infestation in Katagum local government area of Bauchi State, Nigeria. Available online: https://iiardpub.org/get/IJAES/VOL%201/1-5.pdf (accessed on 10 December 2021).
Factors | No of Examined Camels | No of Positive | % | 95% CI | Statistic |
---|---|---|---|---|---|
Locality | |||||
Qalyubia | 115 | 23 | 20 | 13.7–28.2 | χ2 = 2.956 p = 0.228 |
Kafr ElSheikh | 100 | 13 | 13 | 7.7–20.9 | |
Red Sea | 150 | 32 | 21.3 | 15.5–28.5 | |
Age | |||||
≤2 | 43 | 8 | 18.6 | 9.7–32.6 | χ2 = 0.744 p = 0.689 |
>2–5 | 210 | 42 | 20 | 15.2–25.9 | |
>5 | 112 | 18 | 16.1 | 10.4–23.9 | |
Sex | |||||
Male | 95 | 10 | 10.5 | 5.8–18.3 | χ2 = 5.564 p = 0.018 |
Female | 270 | 58 | 21.5 | 17–26.7 | |
Tick infestation | |||||
Infested | 115 | 38 | 33 | 25.1–42.1 | χ2 = 23.009 p < 0.0001 |
Non-infested | 250 | 30 | 12 | 8.5–16.6 | |
Application of acaricides | |||||
Yes | 140 | 15 | 10.7 | 6.6–16.9 | χ2 = 9.388 p = 0.003 |
No | 225 | 53 | 23.5 | 18.5–29.5 | |
Grooming Practice | |||||
Applicable | 180 | 20 | 11.1 | 7.3–16.5 | χ2 = 13.245 p < 0.0001 |
Non-applicable | 185 | 48 | 25.9 | 20.2–32.7 | |
Body condition | |||||
Emaciated | 120 | 51 | 42.5 | 34–51.4 | χ2 = 67.194 p < 0.0001 |
Healthy | 245 | 17 | 6.9 | 4.4–10.8 |
Variable | B a | SE b | OR c | 95% CI d | p-Value | |
---|---|---|---|---|---|---|
Sex | Female | 0.691 | 0.398 | 2.00 | 0.91–4.35 | 0.083 |
Tick infestation | Infested | 0.116 | 0.371 | 1.12 | 0.54–2.32 | 0.755 |
Application of Acaricides | No | 0.017 | 0.495 | 1.02 | 0.39–2.68 | 0.973 |
Grooming practice | non-applicable | 0.260 | 0.457 | 1.30 | 0.53–3.18 | 0.570 |
Body condition | Emaciated | 2.236 | 0.390 | 9.36 | 4.36–20.10 | >0.0001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alsubki, R.A.; Albohairy, F.M.; Attia, K.A.; Kimiko, I.; Selim, A.; Sayed-Ahmed, M.Z. Assessment of Seroprevalence and Associated Risk Factors for Anaplasmosis in Camelus dromedarius. Vet. Sci. 2022, 9, 57. https://doi.org/10.3390/vetsci9020057
Alsubki RA, Albohairy FM, Attia KA, Kimiko I, Selim A, Sayed-Ahmed MZ. Assessment of Seroprevalence and Associated Risk Factors for Anaplasmosis in Camelus dromedarius. Veterinary Sciences. 2022; 9(2):57. https://doi.org/10.3390/vetsci9020057
Chicago/Turabian StyleAlsubki, Roua A., Fatima M. Albohairy, Kotb A. Attia, Itoh Kimiko, Abdelfattah Selim, and Mohamed Z. Sayed-Ahmed. 2022. "Assessment of Seroprevalence and Associated Risk Factors for Anaplasmosis in Camelus dromedarius" Veterinary Sciences 9, no. 2: 57. https://doi.org/10.3390/vetsci9020057
APA StyleAlsubki, R. A., Albohairy, F. M., Attia, K. A., Kimiko, I., Selim, A., & Sayed-Ahmed, M. Z. (2022). Assessment of Seroprevalence and Associated Risk Factors for Anaplasmosis in Camelus dromedarius. Veterinary Sciences, 9(2), 57. https://doi.org/10.3390/vetsci9020057