Effects of Anesthesia on Cerebral Blood Flow and Functional Connectivity of Nonhuman Primates
Abstract
:Simple Summary
Abstract
1. Introduction
2. Methodology
2.1. MRI Techniques to Examine Physiology and Functional Connectivity of Anesthetized NHP Brains
2.2. Resting-State Functional MRI
2.3. Perfusion MRI
3. Effects of Anesthesia on CBF and Functional Connectivity of NHPs
3.1. Isoflurane
3.2. Ketamine
3.3. Propofol
3.4. Alfaxalone
4. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nicholson, A.; Klaunberg, B. Chapter 30—Anesthetic Considerations for In Vivo Imaging Studies. In Anesthesia and Analgesia in Laboratory Animals, 2nd ed.; Fish, R.E., Brown, M.J., Danneman, P.J., Karas, A.Z., Eds.; Academic Press: San Diego, CA, USA, 2008; pp. 629–639. [Google Scholar]
- Flecknell, P.A. Anaesthesia of animals for biomedical research. Br. J. Anaesth. 1993, 71, 885–894. [Google Scholar] [CrossRef] [PubMed]
- Gaertner, D.J.; Hallman, T.M.; Hankenson, F.C.; Batchelder, M.A. Chapter 10—Anesthesia and Analgesia for Laboratory Rodents. In Anesthesia and Analgesia in Laboratory Animals, 2nd ed.; Fish, R.E., Brown, M.J., Danneman, P.J., Karas, A.Z., Eds.; Academic Press: San Diego, CA, USA, 2008; pp. 239–297. [Google Scholar]
- Armitage-Chan, E. Chapter 13—Anesthesia and Analgesia in Dogs and Cats. In Anesthesia and Analgesia in Laboratory Animals, 2nd ed.; Fish, R.E., Brown, M.J., Danneman, P.J., Karas, A.Z., Eds.; Academic Press: San Diego, CA, USA, 2008; pp. 365–384. [Google Scholar]
- Popilskis, S.J.; Lee, D.R.; Elmore, D.B. Chapter 12—Anesthesia and Analgesia in Nonhuman Primates. In Anesthesia and Analgesia in Laboratory Animals, 2nd ed.; Fish, R.E., Brown, M.J., Danneman, P.J., Karas, A.Z., Eds.; Academic Press: San Diego, CA, USA, 2008; pp. 335–363. [Google Scholar]
- Nakao, Y.; Itoh, Y.; Kuang, T.Y.; Cook, M.; Jehle, J.; Sokoloff, L. Effects of anesthesia on functional activation of cerebral blood flow and metabolism. Proc. Natl. Acad. Sci. USA 2001, 98, 7593–7598. [Google Scholar] [CrossRef] [PubMed]
- Slupe, A.M.; Kirsch, J.R. Effects of anesthesia on cerebral blood flow, metabolism, and neuroprotection. J. Cereb. Blood Flow Metab. Off. J. Int. Soc. Cereb. Blood Flow Metab. 2018, 38, 2192–2208. [Google Scholar] [CrossRef] [PubMed]
- Hudetz, A.G. General anesthesia and human brain connectivity. Brain Connect. 2012, 2, 291–302. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Zhu, X.H.; Zhang, Y.; Chen, W. Neural origin of spontaneous hemodynamic fluctuations in rats under burst-suppression anesthesia condition. Cereb. Cortex 2011, 21, 374–384. [Google Scholar] [CrossRef]
- Peltier, S.J.; Kerssens, C.; Hamann, S.B.; Sebel, P.S.; Byas-Smith, M.; Hu, X. Functional connectivity changes with concentration of sevoflurane anesthesia. Neuroreport 2005, 16, 285–288. [Google Scholar] [CrossRef]
- Vincent, J.L.; Patel, G.H.; Fox, M.D.; Snyder, A.Z.; Baker, J.T.; Van Essen, D.C.; Zempel, J.M.; Snyder, L.H.; Corbetta, M.; Raichle, M.E. Intrinsic functional architecture in the anaesthetized monkey brain. Nature 2007, 447, 83–86. [Google Scholar] [CrossRef]
- Tsurugizawa, T.; Yoshimaru, D. Impact of anesthesia on static and dynamic functional connectivity in mice. NeuroImage 2021, 241, 118413. [Google Scholar] [CrossRef]
- Hamilton, C.; Ma, Y.; Zhang, N. Global reduction of information exchange during anesthetic-induced unconsciousness. Brain Struct. Funct. 2017, 222, 3205–3216. [Google Scholar] [CrossRef]
- Keshavaprasad, B.; Liu, C.; Au, J.D.; Kindler, C.H.; Cotten, J.F.; Yost, C.S. Species-Specific Differences in Response to Anesthetics and Other Modulators by the K2P Channel TRESK. Anesth. Analg. 2005, 101, 1042–1049. [Google Scholar] [CrossRef] [Green Version]
- Williams, K.A.; Magnuson, M.; Majeed, W.; LaConte, S.M.; Peltier, S.J.; Hu, X.; Keilholz, S.D. Comparison of alpha-chloralose, medetomidine and isoflurane anesthesia for functional connectivity mapping in the rat. Magn. Reson. Imaging 2010, 28, 995–1003. [Google Scholar] [CrossRef] [PubMed]
- Rogers, J.; Gibbs, R.A. Comparative primate genomics: Emerging patterns of genome content and dynamics. Nat. Rev. Genet. 2014, 15, 347–359. [Google Scholar] [CrossRef] [PubMed]
- Capitanio, J.P.; Emborg, M.E. Contributions of non-human primates to neuroscience research. Lancet 2008, 371, 1126–1135. [Google Scholar] [CrossRef]
- Messaoudi, I.; Estep, R.; Robinson, B.; Wong, S.W. Nonhuman primate models of human immunology. Antioxid. Redox Signal. 2011, 14, 261–273. [Google Scholar] [CrossRef] [PubMed]
- Stouffer, R.L.; Woodruff, T.K. Nonhuman Primates: A Vital Model for Basic and Applied Research on Female Reproduction, Prenatal Development, and Women’s Health. ILAR J. 2017, 58, 281–294. [Google Scholar] [CrossRef] [PubMed]
- Armstrong, E. Relative brain size and metabolism in mammals. Science 1983, 220, 1302–1304. [Google Scholar] [CrossRef]
- Mylvaganam, G.H.; Silvestri, G.; Amara, R.R. HIV therapeutic vaccines: Moving towards a functional cure. Curr. Opin. Immunol. 2015, 35, 1–8. [Google Scholar] [CrossRef]
- Li, C.X.; Zhang, X.; Komery, A.; Li, Y.; Mao, H.; Herndon, J.G.; Novembre, F.J. Longitudinal cerebral metabolic changes in pig-tailed macaques infected with the neurovirulent virus SIVsmmFGb. J. Neurovirol. 2014, 20, 612–619. [Google Scholar] [CrossRef]
- Zhang, X.; Li, C. Quantitative MRI Measures in SIV-Infected Macaque Brains. J. Clin. Cell. Immunol. 2013, 4 (Suppl. S7), 005. [Google Scholar] [CrossRef]
- Li, C.X.; Herndon, J.G.; Novembre, F.J.; Zhang, X. A longitudinal magnetization transfer imaging evaluation of brain injury in a macaque model of neuroAIDS. AIDS Res. Hum. Retrovir. 2015, 31, 335–341. [Google Scholar] [CrossRef]
- Moretti, S.; Virtuoso, S.; Sernicola, L.; Farcomeni, S.; Maggiorella, M.T.; Borsetti, A. Advances in SIV/SHIV Non-Human Primate Models of NeuroAIDS. Pathogens 2021, 10, 1018. [Google Scholar] [CrossRef] [PubMed]
- Li, C.X.; Kempf, D.J.; Tong, F.C.; Yan, Y.; Xu, Z.; Connor-Stroud, F.R.; Ford, B.D.; Howell, L.L.; Zhang, X. Longitudinal MRI Evaluation of Ischemic Stroke in the Basal Ganglia of a Rhesus Macaque (Macaca mulatta) with Seizures. Comp. Med. 2018, 68, 496–502. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Yan, Y.; Tong, F.; Li, C.X.; Jones, B.; Wang, S.; Meng, Y.; Muly, E.C.; Kempf, D.; Howell, L. Progressive Assessment of Ischemic Injury to White Matter Using Diffusion Tensor Imaging: A Preliminary Study of a Macaque Model of Stroke. Open Neuroimaging J. 2018, 12, 30–41. [Google Scholar] [CrossRef]
- Cook, D.J.; Teves, L.; Tymianski, M. Treatment of stroke with a PSD-95 inhibitor in the gyrencephalic primate brain. Nature 2012, 483, 213–217. [Google Scholar] [CrossRef]
- Gunter, C.; Harris, R.A.; Kovacs-Balint, Z.; Raveendran, M.; Michopoulos, V.; Bachevalier, J.; Raper, J.; Sanchez, M.M.; Rogers, J. Heritability of social behavioral phenotypes and preliminary associations with autism spectrum disorder risk genes in rhesus macaques: A whole exome sequencing study. Autism Res. Off. J. Int. Soc. Autism Res. 2022, 15, 447–463. [Google Scholar] [CrossRef] [PubMed]
- Balint, Z.K.; Raper, J.; Michopoulos, V.; Howell, L.H.; Gunter, C.; Bachevalier, J.; Sanchez, M.M. Validation of the Social Responsiveness Scale (SRS) to screen for atypical social behaviors in juvenile macaques. PLoS ONE 2021, 16, e0235946. [Google Scholar]
- Meng, Y.; Jiang, J.; Bachevalier, J.; Zhang, X.; Chan, A.W. Developmental Whole Brain White Matter Alterations in Transgenic Huntington’s Disease Monkey. Sci. Rep. 2017, 7, 379. [Google Scholar] [CrossRef]
- Yang, S.H.; Cheng, P.H.; Banta, H.; Piotrowska-Nitsche, K.; Yang, J.J.; Cheng, E.C.; Snyder, B.; Larkin, K.; Liu, J.; Orkin, J.; et al. Towards a transgenic model of Huntington’s disease in a non-human primate. Nature 2008, 453, 921–924. [Google Scholar] [CrossRef]
- Heuer, E.; Jacobs, J.; Du, R.; Wang, S.; Keifer, O.P.; Cintron, A.F.; Dooyema, J.; Meng, Y.; Zhang, X.; Walker, L.C. Amyloid-Related Imaging Abnormalities in an Aged Squirrel Monkey with Cerebral Amyloid Angiopathy. J. Alzheimers Dis. 2017, 57, 519–530. [Google Scholar] [CrossRef]
- Heuer, E.; Rosen, R.F.; Cintron, A.; Walker, L.C. Nonhuman primate models of Alzheimer-like cerebral proteopathy. Curr. Pharm. Des. 2012, 18, 1159–1169. [Google Scholar] [CrossRef]
- Chan, A.W.S.; Cho, I.K.; Li, C.-X.; Zhang, X.; Patel, S.; Rusnak, R.; Raper, J.; Bachevalier, J.; Moran, S.P.; Chi, T.; et al. Cerebral Aβ deposition in an Aβ-precursor protein-transgenic rhesus monkey. Aging Brain 2022, 2, 100044. [Google Scholar] [CrossRef]
- Smith, Y.; Raju, D.; Nanda, B.; Pare, J.; Galvan, A.; Wichmann, T. The thalamostriatal system: Anatomical and functional organization in normal and parkinsonian states. Brain Res. Bull. 2009, 78, 60–68. [Google Scholar] [CrossRef] [PubMed]
- Swain, A.J.; Galvan, A.; Wichmann, T.; Smith, Y. Structural plasticity of GABAergic and glutamatergic networks in the motor thalamus of parkinsonian monkeys. J. Comp. Neurol. 2020, 528, 1436–1456. [Google Scholar] [CrossRef] [PubMed]
- Nair, A.; Jolliffe, M.; Lograsso, Y.S.S.; Bearden, C.E. A Review of Default Mode Network Connectivity and Its Association with Social Cognition in Adolescents with Autism Spectrum Disorder and Early-Onset Psychosis. Front. Psychiatry 2020, 11, 614. [Google Scholar] [CrossRef] [PubMed]
- Sacco, R.; Bonavita, S.; Esposito, F.; Tedeschi, G.; Gallo, A. The Contribution of Resting State Networks to the Study of Cortical Reorganization in MS. Mult. Scler. Int. 2013, 2013, 857807. [Google Scholar] [CrossRef]
- Dutta, A.; McKie, S.; Downey, D.; Thomas, E.; Juhasz, G.; Arnone, D.; Elliott, R.; Williams, S.; Deakin, J.F.W.; Anderson, I.M. Regional default mode network connectivity in major depressive disorder: Modulation by acute intravenous citalopram. Transl. Psychiatry 2019, 9, 116. [Google Scholar] [CrossRef]
- Mantini, D.; Gerits, A.; Nelissen, K.; Durand, J.B.; Joly, O.; Simone, L.; Sawamura, H.; Wardak, C.; Orban, G.A.; Buckner, R.L.; et al. Default mode of brain function in monkeys. J. Neurosci. Off. J. Soc. Neurosci. 2011, 31, 12954–12962. [Google Scholar] [CrossRef]
- Meng, Y.; Hu, X.; Bachevalier, J.; Zhang, X. Decreased functional connectivity in dorsolateral prefrontal cortical networks in adult macaques with neonatal hippocampal lesions: Relations to visual working memory deficits. Neurobiol. Learn. Mem. 2016, 134, 31–37. [Google Scholar] [CrossRef]
- Li, C.X.; Li, Z.; Hu, X.; Zhang, X.; Bachevalier, J. Altered hippocampal-prefrontal functional network integrity in adult macaque monkeys with neonatal hippocampal lesions. Neuroimage 2021, 227, 117645. [Google Scholar] [CrossRef]
- Mavigner, M.; Raper, J.; Kovacs-Balint, Z.; Gumber, S.; O’Neal, J.T.; Bhaumik, S.K.; Zhang, X.; Habib, J.; Mattingly, C.; McDonald, C.E.; et al. Postnatal Zika virus infection is associated with persistent abnormalities in brain structure, function, and behavior in infant macaques. Sci. Transl. Med. 2018, 10, eaao6975. [Google Scholar] [CrossRef]
- Raimondo, L.; Oliveira, ĺ.A.F.; Heij, J.; Priovoulos, N.; Kundu, P.; Leoni, R.F.; van der Zwaag, W. Advances in resting state fMRI acquisitions for functional connectomics. NeuroImage 2021, 243, 118503. [Google Scholar] [CrossRef] [PubMed]
- Moeller, S.; Yacoub, E.; Olman, C.A.; Auerbach, E.; Strupp, J.; Harel, N.; Uğurbil, K. Multiband multislice GE-EPI at 7 tesla, with 16-fold acceleration using partial parallel imaging with application to high spatial and temporal whole-brain fMRI. Magn. Reson. Med. 2010, 63, 1144–1153. [Google Scholar] [CrossRef] [PubMed]
- Kundu, P.; Benson, B.E.; Baldwin, K.L.; Rosen, D.; Luh, W.M.; Bandettini, P.A.; Pine, D.S.; Ernst, M. Robust resting state fMRI processing for studies on typical brain development based on multi-echo EPI acquisition. Brain Imaging Behav. 2015, 9, 56–73. [Google Scholar] [CrossRef]
- Bulte, D.P.; Kelly, M.; Germuska, M.; Xie, J.; Chappell, M.A.; Okell, T.W.; Bright, M.G.; Jezzard, P. Quantitative measurement of cerebral physiology using respiratory-calibrated MRI. Neuroimage 2012, 60, 582–591. [Google Scholar] [CrossRef]
- Jiang, D.; Lu, H. Cerebral oxygen extraction fraction MRI: Techniques and applications. Magn. Reson. Med. 2022, 88, 575–600. [Google Scholar] [CrossRef] [PubMed]
- Fox, M.D.; Halko, M.A.; Eldaief, M.C.; Pascual-Leone, A. Measuring and manipulating brain connectivity with resting state functional connectivity magnetic resonance imaging (fcMRI) and transcranial magnetic stimulation (TMS). Neuroimage 2012, 62, 2232–2243. [Google Scholar] [CrossRef] [PubMed]
- Mandino, F.; Cerri, D.H.; Garin, C.M.; Straathof, M.; van Tilborg, G.A.F.; Chakravarty, M.M.; Dhenain, M.; Dijkhuizen, R.M.; Gozzi, A.; Hess, A.; et al. Animal Functional Magnetic Resonance Imaging: Trends and Path Toward Standardization. Front. Neuroinformatics 2019, 13, 78. [Google Scholar] [CrossRef] [PubMed]
- Shahhosseini, Y.; Miranda, M.F. Functional Connectivity Methods and Their Applications in fMRI Data. Entropy 2022, 24, 390. [Google Scholar] [CrossRef]
- Chen, K.; Azeez, A.; Chen, D.Y.; Biswal, B.B. Resting-State Functional Connectivity: Signal Origins and Analytic Methods. Neuroimaging Clin. N. Am. 2020, 30, 15–23. [Google Scholar] [CrossRef]
- Biswal, B.B.; Kannurpatti, S.S. Resting-state functional connectivity in animal models: Modulations by exsanguination. Methods Mol. Biol. 2009, 489, 255–274. [Google Scholar]
- Xu, N.; LaGrow, T.J.; Anumba, N.; Lee, A.; Zhang, X.; Yousefi, B.; Bassil, Y.; Clavijo, G.P.; Sharghi, V.K.; Maltbie, E.; et al. Functional Connectivity of the Brain across Rodents and Humans. Front. Neurosci. 2022, 16, 816331. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Prudente, C.N.; Stilla, R.; Sathian, K.; Jinnah, H.A.; Hu, X. Alterations of resting-state fMRI measurements in individuals with cervical dystonia. Hum. Brain Mapp. 2017, 38, 4098–4108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, F.; Zhao, T.; Zhou, L.; Wu, Q.; Hu, X. BOLD study of stimulation-induced neural activity and resting-state connectivity in medetomidine-sedated rat. Neuroimage 2008, 39, 248–260. [Google Scholar] [CrossRef] [PubMed]
- Vincent, J.L.; Kahn, I.; Van Essen, D.C.; Buckner, R.L. Functional connectivity of the macaque posterior parahippocampal cortex. J. Neurophysiol. 2010, 103, 793–800. [Google Scholar] [CrossRef]
- Wang, Z.; Chen, L.M.; Negyessy, L.; Friedman, R.M.; Mishra, A.; Gore, J.C.; Roe, A.W. The relationship of anatomical and functional connectivity to resting-state connectivity in primate somatosensory cortex. Neuron 2013, 78, 1116–1126. [Google Scholar] [CrossRef]
- Bortel, A.; Pilgram, R.; Yao, Z.S.; Shmuel, A. Dexmedetomidine—Commonly Used in Functional Imaging Studies—Increases Susceptibility to Seizures in Rats But Not in Wild Type Mice. Front. Neurosci. 2020, 14, 832. [Google Scholar] [CrossRef]
- van der Zwaag, W.; Francis, S.; Head, K.; Peters, A.; Gowland, P.; Morris, P.; Bowtell, R. fMRI at 1.5, 3 and 7 T: Characterising BOLD signal changes. Neuroimage 2009, 47, 1425–1434. [Google Scholar] [CrossRef]
- Li, C.-X.; Kempf, D.; Howell, L.; Zhang, X. Improving the resting state fMRI detection in anesthetized monkeys using multiband MRI technique. In Proceedings of the 26th Annual Meeting of the International Society for Magnetic Resonance in Medicine (ISMRM), Paris, France, 16–21 June 2018; p. 1802. [Google Scholar]
- Silva, A.C.; Paiva, F.F. Dynamic magnetic resonance imaging of cerebral blood flow using arterial spin labeling. Methods Mol. Biol. 2009, 489, 277–295. [Google Scholar]
- Uludağ, K.; Dubowitz, D.J.; Yoder, E.J.; Restom, K.; Liu, T.T.; Buxton, R.B. Coupling of cerebral blood flow and oxygen consumption during physiological activation and deactivation measured with fMRI. Neuroimage 2004, 23, 148–155. [Google Scholar] [CrossRef]
- Zhang, X.; Li, C.X. Arterial spin labeling perfusion magnetic resonance imaging of non-human primates. Quant. Imaging Med. Surg. 2016, 6, 573–581. [Google Scholar] [CrossRef]
- Detre, J.A.; Zhang, W.; Roberts, D.A.; Silva, A.C.; Williams, D.S.; Grandis, D.J.; Koretsky, A.P.; Leigh, J.S. Tissue specific perfusion imaging using arterial spin labeling. NMR Biomed. 1994, 7, 75–82. [Google Scholar] [CrossRef] [PubMed]
- Alsop, D.C.; Detre, J.A. Reduced transit-time sensitivity in noninvasive magnetic resonance imaging of human cerebral blood flow. J. Cereb. Blood Flow Metab. Off. J. Int. Soc. Cereb. Blood Flow Metab. 1996, 16, 1236–1249. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Nagaoka, T.; Auerbach, E.J.; Champion, R.; Zhou, L.; Hu, X.; Duong, T.Q. Quantitative basal CBF and CBF fMRI of rhesus monkeys using three-coil continuous arterial spin labeling. Neuroimage 2007, 34, 1074–1083. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, C.X.; Patel, S.; Auerbach, E.J.; Zhang, X. Dose-dependent effect of isoflurane on regional cerebral blood flow in anesthetized macaque monkeys. Neurosci. Lett. 2013, 541, 58–62. [Google Scholar] [CrossRef] [PubMed]
- Li, C.X.; Patel, S.; Wang, D.J.; Zhang, X. Effect of high dose isoflurane on cerebral blood flow in macaque monkeys. Magn. Reson. Imaging 2014, 32, 956–960. [Google Scholar] [CrossRef] [PubMed]
- Cicero, L.; Fazzotta, S.; Palumbo, V.D.; Cassata, G.; Lo Monte, A.I. Anesthesia protocols in laboratory animals used for scientific purposes. Acta Bio-Med. Atenei Parm. 2018, 89, 337–342. [Google Scholar]
- Martin, L.D.; Dissen, G.A.; McPike, M.J.; Brambrink, A.M. Effects of anesthesia with isoflurane, ketamine, or propofol on physiologic parameters in neonatal rhesus macaques (Macaca mulatta). J. Am. Assoc. Lab. Anim. Sci. 2014, 53, 290–300. [Google Scholar]
- Fowler, K.A.; Huerkamp, M.J.; Pullium, J.K.; Subramanian, T. Anesthetic protocol: Propofol use in Rhesus macaques (Macaca mulatta) during magnetic resonance imaging with stereotactic head frame application. Brain Res. Protoc. 2001, 7, 87–93. [Google Scholar] [CrossRef]
- Moody, O.A.; Zhang, E.R.; Vincent, K.F.; Kato, R.; Melonakos, E.D.; Nehs, C.J.; Solt, K. The Neural Circuits Underlying General Anesthesia and Sleep. Anesth. Analg. 2021, 132, 1254–1264. [Google Scholar] [CrossRef]
- Ash, H.; Chang, A.; Ortiz, R.J.; Kulkarni, P.; Rauch, B.; Colman, R.; Ferris, C.F.; Ziegler, T.E. Structural and functional variations in the prefrontal cortex are associated with learning in pre-adolescent common marmosets (Callithrix jacchus). Behav. Brain Res. 2022, 430, 113920. [Google Scholar] [CrossRef]
- Hori, Y.; Schaeffer, D.J.; Yoshida, A.; Clery, J.C.; Hayrynen, L.K.; Gati, J.S.; Menon, R.S.; Everling, S. Cortico-Subcortical Functional Connectivity Profiles of Resting-State Networks in Marmosets and Humans. J. Neurosci. Off. J. Soc. Neurosci. 2020, 40, 9236–9249. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Persem, A.; Roumazeilles, L.; Folloni, D.; Marche, K.; Fouragnan, E.F.; Khalighinejad, N.; Rushworth, M.F.S.; Sallet, J. Differential functional connectivity underlying asymmetric reward-related activity in human and nonhuman primates. Proc. Natl. Acad. Sci. USA 2020, 117, 28452–28462. [Google Scholar] [CrossRef] [PubMed]
- Birn, R.M.; Converse, A.K.; Rajala, A.Z.; Alexander, A.L.; Block, W.F.; McMillan, A.B.; Christian, B.T.; Filla, C.N.; Murali, D.; Hurley, S.A.; et al. Changes in Endogenous Dopamine Induced by Methylphenidate Predict Functional Connectivity in Nonhuman Primates. J. Neurosci. Off. J. Soc. Neurosci. 2019, 39, 1436–1444. [Google Scholar] [CrossRef] [PubMed]
- Wu, T.L.; Wang, F.; Li, M.; Schilling, K.G.; Gao, Y.; Anderson, A.W.; Chen, L.M.; Ding, Z.; Gore, J.C. Resting-state white matter-cortical connectivity in non-human primate brain. Neuroimage 2019, 184, 45–55. [Google Scholar] [CrossRef] [PubMed]
- Schaeffer, D.J.; Gilbert, K.M.; Ghahremani, M.; Gati, J.S.; Menon, R.S.; Everling, S. Intrinsic functional clustering of anterior cingulate cortex in the common marmoset. Neuroimage 2019, 186, 301–307. [Google Scholar] [CrossRef]
- Telesford, Q.K.; Laurienti, P.J.; Davenport, A.T.; Friedman, D.P.; Kraft, R.A.; Daunais, J.B. The effects of chronic alcohol self-administration in nonhuman primate brain networks. Alcohol. Clin. Exp. Res. 2015, 39, 659–671. [Google Scholar] [CrossRef]
- Oler, J.A.; Tromp, D.P.; Fox, A.S.; Kovner, R.; Davidson, R.J.; Alexander, A.L.; McFarlin, D.R.; Birn, R.M.; Berg, B.E.; deCampo, D.M.; et al. Connectivity between the central nucleus of the amygdala and the bed nucleus of the stria terminalis in the non-human primate: Neuronal tract tracing and developmental neuroimaging studies. Brain Struct. Funct. 2017, 222, 21–39. [Google Scholar] [CrossRef]
- Wey, H.Y.; Phillips, K.A.; McKay, D.R.; Laird, A.R.; Kochunov, P.; Davis, M.D.; Glahn, D.C.; Blangero, J.; Duong, T.Q.; Fox, P.T. Multi-region hemispheric specialization differentiates human from nonhuman primate brain function. Brain Struct. Funct. 2014, 219, 2187–2194. [Google Scholar] [CrossRef]
- Rao, J.S.; Liu, Z.; Zhao, C.; Wei, R.H.; Zhao, W.; Yang, Z.Y.; Li, X.G. Longitudinal evaluation of functional connectivity variation in the monkey sensorimotor network induced by spinal cord injury. Acta Physiol. 2016, 217, 164–173. [Google Scholar] [CrossRef]
- Liu, J.V.; Hirano, Y.; Nascimento, G.C.; Stefanovic, B.; Leopold, D.A.; Silva, A.C. fMRI in the awake marmoset: Somatosensory-evoked responses, functional connectivity, and comparison with propofol anesthesia. Neuroimage 2013, 78, 186–195. [Google Scholar] [CrossRef]
- De Castro, V.; Smith, A.T.; Beer, A.L.; Leguen, C.; Vayssière, N.; Héjja-Brichard, Y.; Audurier, P.; Cottereau, B.R.; Durand, J.B. Connectivity of the Cingulate Sulcus Visual Area (CSv) in Macaque Monkeys. Cereb. Cortex 2021, 31, 1347–1364. [Google Scholar] [CrossRef] [PubMed]
- Platas-Neri, D.; Hidalgo-Tobón, S.; de León, F.C.-P.; Muñoz-Delgado, J.; Phillips, K.A.; Téllez-Alanís, B.; Villanueva-Valle, J.; de Celis Alonso, B. Brain Connectivity in Ateles geoffroyi: Resting-State Functional Magnetic Resonance Imaging of Working Memory and Executive Control. Brain Behav. Evol. 2019, 93, 19–33. [Google Scholar] [CrossRef] [PubMed]
- Schlünzen, L.; Juul, N.; Hansen, K.V.; Cold, G.E. Regional cerebral blood flow and glucose metabolism during propofol anaesthesia in healthy subjects studied with positron emission tomography. Acta Anaesthesiol. Scand. 2012, 56, 248–255. [Google Scholar] [CrossRef] [PubMed]
- Alkire, M.T.; Haier, R.J.; Shah, N.K.; Anderson, C.T. Positron emission tomography study of regional cerebral metabolism in humans during isoflurane anesthesia. Anesthesiology 1997, 86, 549–557. [Google Scholar] [CrossRef]
- Harreld, J.H.; Helton, K.J.; Kaddoum, R.N.; Reddick, W.E.; Li, Y.; Glass, J.O.; Sansgiri, R.; Ji, Q.; Feng, T.; Parish, M.E.; et al. The effects of propofol on cerebral perfusion MRI in children. Neuroradiology 2013, 55, 1049–1056. [Google Scholar] [CrossRef] [Green Version]
- Saxena, N.; Gili, T.; Diukova, A.; Huckle, D.; Hall, J.E.; Wise, R.G. Mild Propofol Sedation Reduces Frontal Lobe and Thalamic Cerebral Blood Flow: An Arterial Spin Labeling Study. Front. Physiol. 2019, 10, 1541. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, W.; Gao, W.; Ge, Y.; Zhang, J.; Wu, S.; Xu, L. Effect of propofol on the levels of neurotransmitters in normal human brain: A magnetic resonance spectroscopy study. Neurosci. Lett. 2009, 467, 247–251. [Google Scholar] [CrossRef]
- Xu, T.; Falchier, A.; Sullivan, E.L.; Linn, G.; Ramirez, J.S.B.; Ross, D.; Feczko, E.; Opitz, A.; Bagley, J.; Sturgeon, D.; et al. Delineating the Macroscale Areal Organization of the Macaque Cortex in Vivo. Cell Rep. 2018, 23, 429–441. [Google Scholar] [CrossRef]
- Sengupta, A.; Mishra, A.; Wang, F.; Li, M.; Yang, P.F.; Chen, L.M.; Gore, J.C. Functional networks in non-human primate spinal cord and the effects of injury. Neuroimage 2021, 240, 118391. [Google Scholar] [CrossRef]
- Huss, M.K.; Chum, H.H.; Chang, A.G.; Jampachairsi, K.; Pacharinsak, C. The Physiologic Effects of Isoflurane, Sevoflurane, and Hypothermia Used for Anesthesia in Neonatal Rats (Rattus norvegicus). J. Am. Assoc. Lab. Anim. Sci. 2016, 55, 83–88. [Google Scholar]
- Oshima, T.; Karasawa, F.; Okazaki, Y.; Wada, H.; Satoh, T. Effects of sevoflurane on cerebral blood flow and cerebral metabolic rate of oxygen in human beings: A comparison with isoflurane. Eur. J. Anaesthesiol. 2003, 20, 543–547. [Google Scholar] [CrossRef] [PubMed]
- Matta, B.F.; Heath, K.J.; Tipping, K.; Summors, A.C. Direct cerebral vasodilatory effects of sevoflurane and isoflurane. Anesthesiology 1999, 91, 677–680. [Google Scholar] [CrossRef] [PubMed]
- Schlunzen, L.; Cold, G.E.; Rasmussen, M.; Vafaee, M.S. Effects of dose-dependent levels of isoflurane on cerebral blood flow in healthy subjects studied using positron emission tomography. Acta Anaesthesiol. Scand. 2006, 50, 306–312. [Google Scholar] [CrossRef] [PubMed]
- Kimme, P.; Ledin, T.; Sjoberg, F. Dose effect of sevoflurane and isoflurane anesthetics on cortical blood flow during controlled hypotension in the pig. Acta Anaesthesiol. Scand. 2007, 51, 607–613. [Google Scholar] [CrossRef]
- Cucchiara, R.F.; Theye, R.A.; Michenfelder, J.D. The effects of isoflurane on canine cerebral metabolism and blood flow. Anesthesiology 1974, 40, 571–574. [Google Scholar] [CrossRef]
- Masamoto, K.; Fukuda, M.; Vazquez, A.; Kim, S.G. Dose-dependent effect of isoflurane on neurovascular coupling in rat cerebral cortex. Eur. J. Neurosci. 2009, 30, 242–250. [Google Scholar] [CrossRef] [Green Version]
- Olsen, K.S.; Henriksen, L.; Owen-Falkenberg, A.; Dige-Petersen, H.; Rosenorn, J.; Chraemmer-Jorgensen, B. Effect of 1 or 2 MAC isoflurane with or without ketanserin on cerebral blood flow autoregulation in man. Br. J. Anaesth. 1994, 72, 66–71. [Google Scholar] [CrossRef]
- McPherson, R.W.; Traystman, R.J. Effects of isoflurane on cerebral autoregulation in dogs. Anesthesiology 1988, 69, 493–499. [Google Scholar] [CrossRef]
- Van Aken, H.; Fitch, W.; Graham, D.I.; Brussel, T.; Themann, H. Cardiovascular and cerebrovascular effects of isoflurane-induced hypotension in the baboon. Anesth. Analg. 1986, 65, 565–574. [Google Scholar] [CrossRef]
- Raz, A.; Grady, S.M.; Krause, B.M.; Uhlrich, D.J.; Manning, K.A.; Banks, M.I. Preferential effect of isoflurane on top-down vs. bottom-up pathways in sensory cortex. Front. Syst. Neurosci. 2014, 8, 191. [Google Scholar] [CrossRef]
- Reinstrup, P.; Ryding, E.; Algotsson, L.; Messeter, K.; Asgeirsson, B.; Uski, T. Distribution of cerebral blood flow during anesthesia with isoflurane or halothane in humans. Anesthesiology 1995, 82, 359–366. [Google Scholar] [CrossRef] [PubMed]
- Reinstrup, P.; Ryding, E.; Algotsson, L.; Berntman, L.; Uski, T. Regional cerebral blood flow (SPECT) during anaesthesia with isoflurane and nitrous oxide in humans. Br. J. Anaesth. 1997, 78, 407–411. [Google Scholar] [CrossRef] [PubMed]
- Wu, T.L.; Mishra, A.; Wang, F.; Yang, P.F.; Gore, J.C.; Chen, L.M. Effects of isoflurane anesthesia on resting-state fMRI signals and functional connectivity within primary somatosensory cortex of monkeys. Brain Behav. 2016, 6, e00591. [Google Scholar] [CrossRef] [PubMed]
- Li, C.X.; Zhang, X. Evaluation of prolonged administration of isoflurane on cerebral blood flow and default mode network in macaque monkeys anesthetized with different maintenance doses. Neurosci. Lett. 2018, 662, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Wang, Z.; Zhou, H.; Liu, T.; Lu, F.; Wang, S.; Li, J.; Peng, S.; Zuo, Z. Neonatal exposure to sevoflurane may not cause learning and memory deficits and behavioral abnormality in the childhood of Cynomolgus monkeys. Sci. Rep. 2015, 5, 11145. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Tong, F.; Li, C.X.; Yan, Y.; Kempf, D.; Nair, G.; Wang, S.; Muly, E.C.; Zola, S.; Howell, L. Temporal evolution of ischemic lesions in nonhuman primates: A diffusion and perfusion MRI study. PLoS ONE 2015, 10, e0117290. [Google Scholar] [CrossRef] [Green Version]
- Li, C.X.; Zhang, X. Effects of Long-Duration Administration of 1% Isoflurane on Resting Cerebral Blood Flow and Default Mode Network in Macaque Monkeys. Brain Connect. 2017, 7, 98–105. [Google Scholar] [CrossRef]
- Young, C.J.; Apfelbaum, J.L. Inhalational anesthetics: Desflurane and sevoflurane. J. Clin. Anesth. 1995, 7, 564–577. [Google Scholar] [CrossRef]
- Sandner-Kiesling, A.; Schwarz, G.; Vicenzi, M.; Fall, A.; James, R.L.; Ebner, F.; List, W.F. Side-effects after inhalational anaesthesia for paediatric cerebral magnetic resonance imaging. Paediatr. Anaesth. 2002, 12, 429–437. [Google Scholar] [CrossRef]
- Lozano, A.J.; Brodbelt, D.C.; Borer, K.E.; Armitage-Chan, E.; Clarke, K.W.; Alibhai, H.I. A comparison of the duration and quality of recovery from isoflurane, sevoflurane and desflurane anaesthesia in dogs undergoing magnetic resonance imaging. Vet. Anaesth. Analg. 2009, 36, 220–229. [Google Scholar] [CrossRef]
- Shirozu, K.; Nobukuni, K.; Umehara, K.; Nagamatsu, M.; Higashi, M.; Yamaura, K. Comparison of the Occurrence of Postoperative Shivering between Sevoflurane and Desflurane Anesthesia. Ther. Hypothermia Temp. Manag. 2022, 12, 177–181. [Google Scholar] [CrossRef] [PubMed]
- Holmström, A.; Akeson, J. Cerebral blood flow at 0.5 and 1.0 minimal alveolar concentrations of desflurane or sevoflurane compared with isoflurane in normoventilated pigs. J. Neurosurg. Anesthesiol. 2003, 15, 90–97. [Google Scholar] [CrossRef] [PubMed]
- Schaeffer, D.J.; Liu, C.; Silva, A.C.; Everling, S. Magnetic Resonance Imaging of Marmoset Monkeys. ILAR J. 2020, 61, 274–285. [Google Scholar] [CrossRef] [PubMed]
- Walters, J.L.; Zhang, X.; Talpos, J.C.; Fogle, C.M.; Li, M.; Chelonis, J.J.; Paule, M.G. Sevoflurane exposure has minimal effect on cognitive function and does not alter microglial activation in adult monkeys. Neurotoxicology 2019, 71, 159–167. [Google Scholar] [CrossRef] [PubMed]
- Palanca, B.J.; Mitra, A.; Larson-Prior, L.; Snyder, A.Z.; Avidan, M.S.; Raichle, M.E. Resting-state Functional Magnetic Resonance Imaging Correlates of Sevoflurane-induced Unconsciousness. Anesthesiology 2015, 123, 346–356. [Google Scholar] [CrossRef] [PubMed]
- Sutton, T.S.; Koblin, D.D.; Gruenke, L.D.; Weiskopf, R.B.; Rampil, I.J.; Waskell, L.; Eger, E.I., 2nd. Fluoride metabolites after prolonged exposure of volunteers and patients to desflurane. Anesth. Analg. 1991, 73, 180–185. [Google Scholar] [CrossRef]
- Tao, G.; Xue, Q.; Luo, Y.; Li, G.; Xia, Y.; Yu, B. Isoflurane Is More Deleterious to Developing Brain than Desflurane: The Role of the Akt/GSK3beta Signaling Pathway. BioMed Res. Int. 2016, 2016, 7919640. [Google Scholar] [CrossRef]
- Bertrand, H.G.M.J.; Sandersen, C.; Flecknell, P.A. The use of desflurane for neurosurgical procedures in rhesus macaque (Macaca mulatta). Lab. Anim. 2017, 52, 292–299. [Google Scholar] [CrossRef]
- Cohen, I.T.; Deutsch, N.; Motoyama, E.K. CHAPTER 13—Induction, Maintenance, and Recovery. In Smith’s Anesthesia for Infants and Children, 8th ed.; Davis, P.J., Cladis, F.P., Motoyama, E.K., Eds.; Mosby: Philadelphia, PA, USA, 2011; pp. 365–394. [Google Scholar]
- Choudhury, D.; Autry, A.E.; Tolias, K.F.; Krishnan, V. Ketamine: Neuroprotective or Neurotoxic? Front. Neurosci. 2021, 15, 672526. [Google Scholar] [CrossRef]
- Grant, I.S.; Nimmo, W.S.; Clements, J.A. Pharmacokinetics and analgesic effects of i.m. and oral ketamine. Br. J. Anaesth. 1981, 53, 805–810. [Google Scholar] [CrossRef]
- Levin-Arama, M.; Abraham, L.; Waner, T.; Harmelin, A.; Steinberg, D.M.; Lahav, T.; Harlev, M. Subcutaneous Compared with Intraperitoneal KetamineXylazine for Anesthesia of Mice. J. Am. Assoc. Lab. Anim. Sci. 2016, 55, 794–800. [Google Scholar] [PubMed]
- Zeiler, F.A.; Sader, N.; Gillman, L.M.; Teitelbaum, J.; West, M.; Kazina, C.J. The Cerebrovascular Response to Ketamine: A Systematic Review of the Animal and Human Literature. J. Neurosurg. Anesthesiol. 2016, 28, 123–140. [Google Scholar] [CrossRef] [PubMed]
- Langsjo, J.W.; Maksimow, A.; Salmi, E.; Kaisti, K.; Aalto, S.; Oikonen, V.; Hinkka, S.; Aantaa, R.; Sipila, H.; Viljanen, T.; et al. S-ketamine anesthesia increases cerebral blood flow in excess of the metabolic needs in humans. Anesthesiology 2005, 103, 258–268. [Google Scholar] [CrossRef]
- Zacharias, N.; Musso, F.; Müller, F.; Lammers, F.; Saleh, A.; London, M.; de Boer, P.; Winterer, G. Ketamine effects on default mode network activity and vigilance: A randomized, placebo-controlled crossover simultaneous fMRI/EEG study. Hum. Brain Mapp. 2020, 41, 107–119. [Google Scholar] [CrossRef] [PubMed]
- Crisanti, C.; Enrico, P.; Fiorentini, A.; Delvecchio, G.; Brambilla, P. Neurocognitive impact of ketamine treatment in major depressive disorder: A review on human and animal studies. J. Affect. Disord. 2020, 276, 1109–1118. [Google Scholar] [CrossRef] [PubMed]
- Schwedler, M.; Miletich, D.J.; Albrecht, R.F. Cerebral blood flow and metabolism following ketamine administration. Can. Anaesth. Soc. J. 1982, 29, 222–226. [Google Scholar] [CrossRef] [Green Version]
- Oren, R.E.; Rasool, N.A.; Rubinstein, E.H. Effect of ketamine on cerebral cortical blood flow and metabolism in rabbits. Stroke 1987, 18, 441–444. [Google Scholar] [CrossRef]
- Li, C.; Kempt, D.; Howell, L.; Zhang, X. Effect of alfaxalone on cerebral blood flow and intrinsic neural activity of rhesus monkeys. Magn. Reson. Imaging. 2021, 75, 134–140. [Google Scholar] [CrossRef]
- Scheidegger, M.; Walter, M.; Lehmann, M.; Metzger, C.; Grimm, S.; Boeker, H.; Boesiger, P.; Henning, A.; Seifritz, E. Ketamine decreases resting state functional network connectivity in healthy subjects: Implications for antidepressant drug action. PLoS ONE 2012, 7, e44799. [Google Scholar] [CrossRef]
- Rogers, R.; Wise, R.G.; Painter, D.J.; Longe, S.E.; Tracey, I. An Investigation to Dissociate the Analgesic and Anesthetic Properties of Ketamine Using Functional Magnetic Resonance Imaging. Anesthesiology 2004, 100, 292–301. [Google Scholar] [CrossRef]
- Gopinath, K.; Maltbie, E.; Urushino, N.; Kempf, D.; Howell, L. Ketamine-induced changes in connectivity of functional brain networks in awake female nonhuman primates: A translational functional imaging model. Psychopharmacology 2016, 233, 3673–3684. [Google Scholar] [CrossRef] [PubMed]
- Grimm, O.; Gass, N.; Weber-Fahr, W.; Sartorius, A.; Schenker, E.; Spedding, M.; Risterucci, C.; Schweiger, J.I.; Böhringer, A.; Zang, Z.; et al. Acute ketamine challenge increases resting state prefrontal-hippocampal connectivity in both humans and rats. Psychopharmacology 2015, 232, 4231–4241. [Google Scholar] [CrossRef] [PubMed]
- Lee, V.K.; Flynt, K.S.; Haag, L.M.; Taylor, D.K. Comparison of the effects of ketamine, ketamine-medetomidine, and ketamine-midazolam on physiologic parameters and anesthesia-induced stress in rhesus (Macaca mulatta) and cynomolgus (Macaca fascicularis) macaques. J. Am. Assoc. Lab. Anim. Sci. 2010, 49, 57–63. [Google Scholar]
- Zhao, F.; Meng, X.; Lu, S.; Hyde, L.A.; Kennedy, M.E.; Houghton, A.K.; Evelhoch, J.L.; Hines, C.D.G. fMRI study of olfactory processing in mice under three anesthesia protocols: Insight into the effect of ketamine on olfactory processing. NeuroImage 2020, 213, 116725. [Google Scholar] [CrossRef]
- Zhao, F.; Holahan, M.A.; Wang, X.; Uslaner, J.M.; Houghton, A.K.; Evelhoch, J.L.; Winkelmann, C.T.; Hines, C.D.G. fMRI study of the role of glutamate NMDA receptor in the olfactory processing in monkeys. PLoS ONE 2018, 13, e0198395. [Google Scholar] [CrossRef]
- Munoz, F.; Meaney, A.; Gross, A.; Liu, K.; Pouliopoulos, A.N.; Liu, D.; Konofagou, E.E.; Ferrera, V.P. Long term study of motivational and cognitive effects of low-intensity focused ultrasound neuromodulation in the dorsal striatum of nonhuman primates. Brain Stimul. 2022, 15, 360–372. [Google Scholar] [CrossRef]
- Gonzelez, S.; Vasavada, M.; Njau, S.; Sahib, A.K.; Espinoza, R.; Narr, K.L.; Leaver, A.K. Acute changes in cerebral blood flow after single-infusion ketamine in major depression: A pilot study. Neurol. Psychiatry Brain Res. 2020, 38, 5–11. [Google Scholar] [CrossRef]
- Werner, C.; Reeker, W.; Engelhard, K.; Lu, H.; Kochs, E. Ketamine racemate and S-(+)-ketamine. Cerebrovascular effects and neuroprotection following focal ischemia. Anaesthesist 1997, 46 (Suppl. S1), S55–S60. [Google Scholar] [CrossRef]
- Masaki, Y.; Kashiwagi, Y.; Watabe, H.; Abe, K. (R)- and (S)-ketamine induce differential fMRI responses in conscious rats. Synapse 2019, 73, e22126. [Google Scholar] [CrossRef]
- Fleming, L.M.; Javitt, D.C.; Carter, C.S.; Kantrowitz, J.T.; Girgis, R.R.; Kegeles, L.S.; Ragland, J.D.; Maddock, R.J.; Lesh, T.A.; Tanase, C.; et al. A multicenter study of ketamine effects on functional connectivity: Large scale network relationships, hubs and symptom mechanisms. NeuroImage Clin. 2019, 22, 101739. [Google Scholar] [CrossRef]
- Liu, Y.; D’Arceuil, H.E.; Westmoreland, S.; He, J.; Duggan, M.; Gonzalez, R.G.; Pryor, J.; de Crespigny, A.J. Serial diffusion tensor MRI after transient and permanent cerebral ischemia in nonhuman primates. Stroke 2007, 38, 138–145. [Google Scholar] [CrossRef] [PubMed]
- Rilling, J.K.; Barks, S.K.; Parr, L.A.; Preuss, T.M.; Faber, T.L.; Pagnoni, G.; Bremner, J.D.; Votaw, J.R. A comparison of resting-state brain activity in humans and chimpanzees. Proc. Natl. Acad. Sci. USA 2007, 104, 17146–17151. [Google Scholar] [CrossRef]
- Qiu, M.; Scheinost, D.; Ramani, R.; Constable, R.T. Multi-modal analysis of functional connectivity and cerebral blood flow reveals shared and unique effects of propofol in large-scale brain networks. Neuroimage 2017, 148, 130–140. [Google Scholar] [CrossRef]
- Liu, X.; Pillay, S.; Li, R.; Vizuete, J.A.; Pechman, K.R.; Schmainda, K.M.; Hudetz, A.G. Multiphasic modification of intrinsic functional connectivity of the rat brain during increasing levels of propofol. Neuroimage 2013, 83, 581–592. [Google Scholar] [CrossRef]
- FDA. New Animal Drugs. Approvals; Changes of Sponsor; Change of Sponsor’s Name; Change of Sponsor’s Address; Alfaxalone; Ivermectin and Clorsulon; Narasin; Triptorelin. From the Federal Register Online via the Government Printing Office [FR Doc No: 2012-N-0002] 77, 2012. pp. 64715–64718. Available online: http://www.gpo.gov/fdsys/pkg/FR-2012-10-23/html/2012-25989.htm (accessed on 15 April 2014).
- Bayldon, W.; Carter, J.E.; Beths, T.; Warne, L.N.; Whittem, T.; Martinez, L.; Bauquier, S.H. Accidental alfaxalone overdose in a mature cat undergoing anaesthesia for magnetic resonance imaging. JFMS Open Rep. 2016, 2, 2055116916647740. [Google Scholar] [CrossRef] [PubMed]
- Goodwin, W.A.; Pasloske, K.; Keates, H.L.; Ranasinghe, M.G.; Woldeyohannes, S.; Perkins, N. Alfaxalone for total intravenous anaesthesia in horses. Vet. Anaesth. Analg. 2019, 46, 188–199. [Google Scholar] [CrossRef]
- Tamura, J.; Ishizuka, T.; Fukui, S.; Oyama, N.; Kawase, K.; Miyoshi, K.; Sano, T.; Pasloske, K.; Yamashita, K. The pharmacological effects of the anesthetic alfaxalone after intramuscular administration to dogs. J. Vet. Med. Sci. 2015, 77, 289–296. [Google Scholar] [CrossRef] [Green Version]
- Bigby, S.E.; Carter, J.E.; Bauquier, S.; Beths, T. The use of alfaxalone for premedication, induction and maintenance of anaesthesia in pigs: A pilot study. Vet. Anaesth. Analg. 2017, 44, 905–909. [Google Scholar] [CrossRef]
- Pypendop, B.H.; Ranasinghe, M.G.; Pasloske, K. Comparison of two intravenous anesthetic infusion regimens for alfaxalone in cats. Vet. Anaesth. Analg. 2018, 45, 459–466. [Google Scholar] [CrossRef]
- Bertrand, H.; Sandersen, C.; Murray, J.; Flecknell, P.A. A combination of alfaxalone, medetomidine and midazolam for the chemical immobilization of Rhesus macaque (Macaca mulatta): Preliminary results. J. Med. Primatol. 2017, 46, 332–336. [Google Scholar] [CrossRef]
- Konoike, N.; Miwa, M.; Ishigami, A.; Nakamura, K. Hypoxemia after single-shot anesthesia in common marmosets. J. Med. Primatol. 2017, 46, 70–74. [Google Scholar] [CrossRef] [PubMed]
- Bakker, J.; Uilenreef, J.J.; Pelt, E.R.; Brok, H.P.; Remarque, E.J.; Langermans, J.A. Comparison of three different sedative-anaesthetic protocols (ketamine, ketamine-medetomidine and alphaxalone) in common marmosets (Callithrix jacchus). BMC Vet. Res. 2013, 9, 113. [Google Scholar] [CrossRef] [PubMed]
- Bellido, V.M.; Vettorato, E. Clinical review of the pharmacological and anaesthetic effects of alfaxalone in dogs. J. Small Anim. Pract. 2022, 63, 341–361. [Google Scholar] [CrossRef]
- Pfeiffer, N.; Ebner, J.; von Thaden, A.-K.; Schuster, T.; Erhardt, W.; Baumgartner, C. Cardiovascular effects of alfaxalone on hemodynamic function in pigs. Open Access Anim. Physiol. 2013, 5, 15–26. [Google Scholar] [CrossRef]
- Baldy-Moulinier, M.; Besset-Lehmann, J.; Passouant, P. Effects of combination alfaxalone and alfadolone, anesthetic derivatives of pregnanedione, on cerebral hemodynamics in cats. Comptes Rendus Seances Soc. Biol. Ses Fil. 1975, 169, 126–131. [Google Scholar]
- Bini, G.; Bailey, K.; Voyvodic, J.; Chiavaccini, L.; Munana, K.; Keenihan, E. Effects of propofol, alfaxalone and isoflurane on cerebral blood flow and cerebrovascular reactivity to CO2 in dogs. Vet. Anaesth. Analg. 2020, 47, 855.e852. [Google Scholar] [CrossRef]
- Drew, P.J. Vascular and neural basis of the BOLD signal. Curr. Opin. Neurobiol. 2019, 58, 61–69. [Google Scholar] [CrossRef]
- Silva, A.C. Anatomical and functional neuroimaging in awake, behaving marmosets. Dev. Neurobiol. 2017, 77, 373–389. [Google Scholar] [CrossRef] [Green Version]
- Flick, R.P.; Katusic, S.K.; Colligan, R.C.; Wilder, R.T.; Voigt, R.G.; Olson, M.D.; Sprung, J.; Weaver, A.L.; Schroeder, D.R.; Warner, D.O. Cognitive and behavioral outcomes after early exposure to anesthesia and surgery. Pediatrics 2011, 128, e1053–e1061. [Google Scholar] [CrossRef]
- Sprung, J.; Flick, R.P.; Katusic, S.K.; Colligan, R.C.; Barbaresi, W.J.; Bojanic, K.; Welch, T.L.; Olson, M.D.; Hanson, A.C.; Schroeder, D.R.; et al. Attention-deficit/hyperactivity disorder after early exposure to procedures requiring general anesthesia. In Mayo Clinic Proceedings; Elsevier: Amsterdam, The Netherlands, 2012; Volume 87, pp. 120–129. [Google Scholar]
- Coleman, K.; Robertson, N.D.; Dissen, G.A.; Neuringer, M.D.; Martin, L.D.; Carlson, V.C.C.; Kroenke, C.; Fair, D.; Brambrink, A.M. Isoflurane Anesthesia Has Long-term Consequences on Motor and Behavioral Development in Infant Rhesus Macaques. Anesthesiology 2017, 126, 74–84. [Google Scholar] [CrossRef]
- Raper, J.; Alvarado, M.C.; Murphy, K.L.; Baxter, M.G. Multiple Anesthetic Exposure in Infant Monkeys Alters Emotional Reactivity to an Acute Stressor. Anesthesiology 2015, 123, 1084–1092. [Google Scholar] [CrossRef] [PubMed]
- Sirmpilatze, N.; Baudewig, J.; Boretius, S. Temporal stability of fMRI in medetomidine-anesthetized rats. Sci. Rep. 2019, 9, 16673. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X. Effects of Anesthesia on Cerebral Blood Flow and Functional Connectivity of Nonhuman Primates. Vet. Sci. 2022, 9, 516. https://doi.org/10.3390/vetsci9100516
Zhang X. Effects of Anesthesia on Cerebral Blood Flow and Functional Connectivity of Nonhuman Primates. Veterinary Sciences. 2022; 9(10):516. https://doi.org/10.3390/vetsci9100516
Chicago/Turabian StyleZhang, Xiaodong. 2022. "Effects of Anesthesia on Cerebral Blood Flow and Functional Connectivity of Nonhuman Primates" Veterinary Sciences 9, no. 10: 516. https://doi.org/10.3390/vetsci9100516
APA StyleZhang, X. (2022). Effects of Anesthesia on Cerebral Blood Flow and Functional Connectivity of Nonhuman Primates. Veterinary Sciences, 9(10), 516. https://doi.org/10.3390/vetsci9100516