Therapeutic and Prophylactic Use of Oral, Low-Dose IFNs in Species of Veterinary Interest: Back to the Future
Abstract
:1. Introduction
2. Parenteral and Oromucosal Administration of Cytokines
3. High vs. Low-Dose Cytokine Treatments
4. Regional vs. Systemic Effects of Type I IFNs
5. The Foundation of Oral, Low-Dose Cytokine Treatments
6. Low-Dose IFN Treatments in Veterinary Species
6.1. Livestock Animal Treatment
6.1.1. Ruminants
6.1.2. Pig
6.1.3. Poultry
6.2. Pet Animals
6.2.1. Dog
6.2.2. Cat
6.2.3. Horse
6.3. Laboratory Animals
7. Other Approaches
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tayal, V.; Kalra, B.S. Cytokines and anti-cytokines as therapeutics—An update. Eur. J. Pharmacol. 2008, 579, 1–12. [Google Scholar] [CrossRef]
- Tizzard, I.R. Veterinary Immunology: An Introduction; Elsevier: St. Louis, MI, USA, 2018; ISBN 9780323523493. [Google Scholar]
- Dinarello, C.A. Historical insights into cytokines. Eur. J. Immunol. 2007, 37, S34–S45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramani, T.; Auletta, C.S.; Weinstock, D.; Mounho-Zamora, B.; Ryan, P.C.; Salcedo, T.W.; Bannish, G. Cytokines. Int. J. Toxicol. 2015, 34, 355–365. [Google Scholar] [CrossRef]
- Jungo, F.; Dayer, J.-M.; Modoux, C.; Hyka, N.; Burger, D. IFN-β inhibits the ability of t lymphocytes to induce TNF-α and IL-1β production in monocytes upon direct cell–cell contact. Cytokine 2001, 14, 272–282. [Google Scholar] [CrossRef]
- Dhama, K.; Chakraborty, S.; Wani, M.Y.; Tiwari, R.; Barathidasan, R. Cytokine therapy for combating animal and human diseases—A review. Res. Opin. Anim. Vet. Sci. 2013, 3, 195–208. [Google Scholar]
- Nelson, R.P.; Ballow, M. 26. Immunomodulation and immunotherapy: Drugs, cytokines, cytokine receptors, and antibodies. J. Allergy Clin. Immunol. 2003, 111, S720–S732. [Google Scholar] [CrossRef]
- Sauer, I. Interferons limit inflammatory responses by induction of tristetraprolin. Blood 2006, 107, 4790–4797. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.; Margolin, K. Cytokines in Cancer Immunotherapy. Cancers 2011, 3, 3856–3893. [Google Scholar] [CrossRef] [PubMed]
- Alpatova, N.A.; Avdeeva, Z.I.; Nikitina, T.N.; Medunitsyn, N.V. Adjuvant Properties of Cytokines in Vaccination (Review). Pharm. Chem. J. 2020, 53, 991–996. [Google Scholar] [CrossRef]
- Tovey, M.G.; Lallemand, C.; Thyphronitis, G. Adjuvant activity of type I interferons. Biol. Chem. 2008, 389. [Google Scholar] [CrossRef]
- Lowenthal, J.W.; O’Neil, T.E.; David, A.; Strom, G.; Andrew, M.E. Cytokine therapy: A natural alternative for disease control. Vet. Immunol. Immunopathol. 1999, 72, 183–188. [Google Scholar] [CrossRef]
- Amadori, M. The Role of IFN-α as Homeostatic Agent in The Inflammatory Response: A Balance between Danger and Response? J. Interf. Cytokine Res. 2007, 27, 181–190. [Google Scholar] [CrossRef]
- Cummins, J.M.; Krakowka, G.S.; Thompson, C.G. Systemic effects of interferons after oral administration in animals and humans. Am. J. Vet. Res. 2005, 66, 164–176. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cummins, J.M.; Tompkins, M.B.; Olsen, R.G.; Tompkins, W.A.; Lewis, M.G. Oral use of human alpha interferon in cats. J. Biol. Response Mod. 1988, 7, 513–523. [Google Scholar]
- Pedretti, E.; Passeri, B.; Amadori, M.; Isola, P.; Di Pede, P.; Telera, A.; Vescovini, R.; Quintavalla, F.; Pistello, M. Low-dose interferon-α treatment for feline immunodeficiency virus infection. Vet. Immunol. Immunopathol. 2006, 109, 245–254. [Google Scholar] [CrossRef]
- Scheerlinck, J.-P.Y.; Yen, H.-H. Veterinary applications of cytokines. Vet. Immunol. Immunopathol. 2005, 108, 17–22. [Google Scholar] [CrossRef]
- Clementi, F.; Fumagalli, G. Farmacologia Generale E Molecolare; EDRA: Milano, Italy, 2018; ISBN 9788821444364. [Google Scholar]
- Gibaldi, M.; Lee, M.; Desai, A. Gibaldi’s Drug Delivery Systems in Pharmaceutical Care; American Society of Health-System Pharmacists: Bethesda, MD, USA, 2007; ISBN 978-1-58528-136-7. [Google Scholar]
- Bocci, V. Pharmacology and side-effects of interferons. Antivir. Res. 1994, 24, 111–119. [Google Scholar] [CrossRef]
- Sheridan, W.; Hunt, P.; Simonet, S.; Ulrich, T. Hematological effects of cytokines. In Cytokines in Health and Disease; Marcel Dekker: New York, NY, USA, 1997; pp. 487–505. [Google Scholar]
- Baldo, B.A. Side Effects of Cytokines Approved for Therapy. Drug Saf. 2014, 37, 921–943. [Google Scholar] [CrossRef] [PubMed]
- Tovey, M.G. Oromucosal cytokine therapy: Mechanism(s) of action. Taehan Kan Hakhoe Chi 2002, 8, 125–131. [Google Scholar]
- Rollwagen, F.M.; Baqar, S. Oral cytokine administration. Immunol. Today 1996, 17, 548–550. [Google Scholar] [CrossRef]
- Isaacs, A.; Lindenmann, J. Virus interference. I. The interferon. Proc. R. Soc. Lond. Ser. B-Biol. Sci. 1957, 147, 258–267. [Google Scholar] [CrossRef]
- Bernasconi, S. Low Dose Medicine: Theoretical background and scientific evidence. Ital. J. Pediatr. 2018, 44, 23. [Google Scholar] [CrossRef] [Green Version]
- Zídek, Z.; Anzenbacher, P.; Kmoníčková, E. Current status and challenges of cytokine pharmacology. Br. J. Pharmacol. 2009, 157, 342–361. [Google Scholar] [CrossRef] [Green Version]
- Gulati, K.; Guhathakurta, S.; Joshi, J.; Rai, N.; Ray, A. Gulati Cytokines and their Role in Health and Disease: A Brief Overview. MOJ Immunol. 2016, 4, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Gariboldi, S.; Palazzo, M.; Zanobbio, L.; Dusio, G.F.; Mauro, V.; Solimene, U.; Cardani, D.; Mantovani, M.; Rumio, C. Low dose oral administration of cytokines for treatment of allergic asthma. Pulm. Pharmacol. Ther. 2009, 22, 497–510. [Google Scholar] [CrossRef] [Green Version]
- Cardani, D.; Dusio, G.F.; Luchini, P.; Sciarabba, M.; Solimene, U.; Rumio, C. Oral Administration of Interleukin-10 and Anti-IL-1 Antibody Ameliorates Experimental Intestinal Inflammation. Gastroenterol. Res. 2013. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roberti, M.L.; Ricottini, L.; Capponi, A.; Sclauzero, E.; Vicenti, P.; Fiorentini, E.; Savoia, C.; Scornavacca, G.; Brazioli, D.; Gaio, L.; et al. Immunomodulating treatment with low dose interleukin-4, interleukin-10 and interleukin-11 in psoriasis vulgaris. J. Biol. Regul. Homeost. Agents 2014, 28, 133–139. [Google Scholar]
- D’Amico, L.; Ruffini, E.; Ferracini, R.; Roato, I. Low Dose of IL-12 Stimulates T Cell Response in Cultures of PBMCs Derived from Non Small Cell Lung Cancer Patients. J. Cancer Ther. 2012, 3, 337–342. [Google Scholar] [CrossRef] [Green Version]
- Radice, E.; Miranda, V.; Bellone, G. Low-doses of sequential-kinetic-activated interferon-γ enhance the ex vivo cytotoxicity of peripheral blood natural killer cells from patients with early-stage colorectal cancer. A preliminary study. Int. Immunopharmacol. 2014, 19, 66–73. [Google Scholar] [CrossRef] [PubMed]
- Fioranelli, M.; Roccia, M.G. The History of Low Dose Medicine Research Review of Preclinical and Clinical Studies with Low Dose SKA Cytokines Since 2009. Interdiscip. J. Microinflammation 2014, 1. [Google Scholar] [CrossRef]
- Cooksley, W.G.E.; Piratvisuth, T.; Lee, S.-D.; Mahachai, V.; Chao, Y.-C.; Tanwandee, T.; Chutaputti, A.; Chang, W.Y.; Zahm, F.E.; Pluck, N. Peginterferon alpha-2a (40 kDa): An advance in the treatment of hepatitis B e antigen-positive chronic hepatitis B. J. Viral Hepat. 2003, 10, 298–305. [Google Scholar] [CrossRef]
- Clark, R. Drug review—Pegasys® (peginterferon alfa-2a [40 kDa]). Drugs Context 2007, 3. [Google Scholar] [CrossRef]
- Bermel, R.A.; Rudick, R.A. Interferon-β treatment for multiple sclerosis. Neurotherapeutics 2007, 4, 633–646. [Google Scholar] [CrossRef]
- Marciano, B.E.; Wesley, R.; De Carlo, E.S.; Anderson, V.L.; Barnhart, L.A.; Darnell, D.; Malech, H.L.; Gallin, J.I.; Holland, S.M. Long-Term Interferon-γ Therapy for Patients with Chronic Granulomatous Disease. Clin. Infect. Dis. 2004, 39, 692–699. [Google Scholar] [CrossRef]
- Hommes, D.W. Fontolizumab, a humanised anti-interferon antibody, demonstrates safety and clinical activity in patients with moderate to severe Crohn’s disease. Gut 2005, 55, 1131–1137. [Google Scholar] [CrossRef] [PubMed]
- Vincent, J.L. Afelimomab. Int. J. Clin. Pract. 2000, 54, 190–193. [Google Scholar] [PubMed]
- Danese, S.; Semeraro, S.; Armuzzi, A.; Papa, A.; Gasbarrini, A. Biological Therapies for Inflammatory Bowel Disease: Research DrivesClinics. Mini-Rev. Med. Chem. 2006, 6, 771–784. [Google Scholar] [CrossRef] [PubMed]
- Fan, P.T.; Leong, K.H. The use of biological agents in the treatment of rheumatoid arthritis. Ann. Acad. Med. Singap. 2007, 36, 128–134. [Google Scholar]
- Zhou, H.; Jang, H.; Fleischmann, R.M.; Bouman-Thio, E.; Xu, Z.; Marini, J.C.; Pendley, C.; Jiao, Q.; Shankar, G.; Marciniak, S.J.; et al. Pharmacokinetics and Safety of Golimumab, a Fully Human Anti-TNF-α Monoclonal Antibody, in Subjects with Rheumatoid Arthritis. J. Clin. Pharmacol. 2007, 47, 383–396. [Google Scholar] [CrossRef]
- Cheng, A.C.; Stephens, D.P.; Currie, B.J. Granulocyte-Colony Stimulating Factor (G-CSF) as an adjunct to antibiotics in the treatment of pneumonia in adults. Cochrane Database Syst. Rev. 2007. [Google Scholar] [CrossRef]
- Waller, E.K. The Role of Sargramostim (rhGM-CSF) as Immunotherapy. Oncologist 2007, 12, 22–26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dinarello, C.A. Blocking IL-1 in systemic inflammation. J. Exp. Med. 2005, 201, 1355–1359. [Google Scholar] [CrossRef]
- Schmidinger, M.; Hejna, M.; Zielinski, C.C. Aldesleukin in advanced renal cell carcinoma. Expert Rev. Anticancer Ther. 2004, 4, 957–980. [Google Scholar] [CrossRef] [PubMed]
- Akaza, H.; Tsukamoto, T.; Onishi, T.; Miki, T.; Kinouchi, T.; Naito, S. A low-dose combination therapy of interleukin-2 and interferon-α is effective for lung metastasis of renal cell carcinoma: A multicenter open study. Int. J. Clin. Oncol. 2006, 11, 434–440. [Google Scholar] [CrossRef] [PubMed]
- Swiatecka-Urban, A. Anti-Interleukin-2 Receptor Antibodies for the Prevention of Rejection in Pediatric Renal Transplant Patients. Pediatr. Drugs 2003, 5, 699–716. [Google Scholar] [CrossRef] [PubMed]
- Hendeles, L.; Asmus, M.; Chesrown, S. Evaluation of cytokine modulators for asthma. Paediatr. Respir. Rev. 2004, 5, S107–S112. [Google Scholar] [CrossRef]
- Leckie, M.J.; Ten Brinke, A.; Khan, J.; Diamant, Z.; O’Connor, B.J.; Walls, C.M.; Mathur, A.K.; Cowley, H.C.; Chung, K.F.; Djukanovic, R.; et al. Effects of an interleukin-5 blocking monoclonal antibody on eosinophils, airway hyper-responsìveness, and the late asthmatic response. Lancet 2000, 356, 2144–2148. [Google Scholar] [CrossRef]
- Genovese, M.C. Biologic Therapies in Clinical Development for the Treatment of Rheumatoid Arthritis. JCR J. Clin. Rheumatol. 2005, 11, S45–S54. [Google Scholar] [CrossRef] [Green Version]
- Lipsky, P.E. Interleukin-6 and rheumatic diseases. Arthritis Res. Ther. 2006, 8, S4. [Google Scholar] [CrossRef] [Green Version]
- Huang, S.; Mills, L.; Mian, B.; Tellez, C.; McCarty, M.; Yang, X.-D.; Gudas, J.M.; Bar-Eli, M. Fully Humanized Neutralizing Antibodies to Interleukin-8 (ABX-IL8) Inhibit Angiogenesis, Tumor Growth, and Metastasis of Human Melanoma. Am. J. Pathol. 2002, 161, 125–134. [Google Scholar] [CrossRef] [Green Version]
- Marshall, J.K. Ilodecakin. Schering-Plough Corp. IDrugs 1999, 2, 1045–1058. [Google Scholar]
- Sitaraman, S.V.; Gewirtz, A.T. Oprelvekin. Genetics Institute. Curr. Opin. Investig. Drugs 2001, 2, 1395–1400. [Google Scholar] [PubMed]
- Voravud, N.; Sriuranpong, V. Clinical benefits of epoetin alfa (Eprex) 10,000 units subcutaneously thrice weekly in Thai cancer patients with anemia receiving chemotherapy. J. Med. Assoc. Thail. 2005, 88, 607–612. [Google Scholar]
- Straub, O. Studies on the suitability of alpha-hybrid interferon application in cattle. Comp. Immunol. Microbiol. Infect. Dis. 1995, 18, 239–243. [Google Scholar] [CrossRef]
- Ruther, U.; Nunnensiek, C.; Muller, H.A.; Bader, H.; May, U.; Jipp, P. Interferon alpha (IFN alpha 2a) therapy for herpes virus-associated inflammatory bowel disease (ulcerative colitis and Crohn’s disease). Hepatogastroenterology 1998, 45, 691–699. [Google Scholar]
- O’Duffy, J.D.; Calamia, K.; Cohen, S.; Goronzy, J.J.; Herman, D.; Jorizzo, J.; Weyand, C.; Matteson, E. Interferon-alpha treatment of Behçet’s disease. J. Rheumatol. 1998, 25, 1938–1944. [Google Scholar]
- Babiuk, L.A.; Ohmann, H.B.; Gifford, G.; Czarniecki, C.W.; Scialli, V.T.; Hamilton, E.B. Effect of Bovine 1 Interferon on Bovine Herpesvirus Type 1-induced Respiratory Disease. J. Gen. Virol. 1985, 66, 2383–2394. [Google Scholar] [CrossRef] [PubMed]
- Gillespie, J.; Scott, F.; Geissinger, C.; Schiff, E. The Prophylactic Effects of E. coli-Derived Bovine Interferon AlphaI1 on Bovine Virus Diarrhoea Virus Disease in Calves after Intramuscular Administration. J. Vet. Med. Ser. B 1986, 33, 771–776. [Google Scholar] [CrossRef]
- Schwers, A.; Severin, J.; Bublot, M.; Maenhoudt, M.; Pastoret, P.; Vanden Broecke, C.; Zilimwabagabo, P.; Velan, B.; Cohen, S.; Shafferman, A.; et al. Protection of cattle from infection with vaccinia virus by bovine interferon alpha C. Vet. Rec. 1989, 125, 15–16. [Google Scholar] [CrossRef]
- Hofmann, W.; Danner, K.; Seeger, K. Initial experiences in the treatment of virus-induced diarrheas in calves with interferon produced by genetic engineering. Dtsch. Tierarztl. Wochenschr. 1985, 92, 278–280. [Google Scholar]
- Amadori, M.; Archetti, I.L.; Berneri, C.; Lodetti, E.; Salvalai, M.; Cordioli, P.; Callegari, S. Human lymphoblastoid interferon as vaccine adjuvant in cattle. J. Biol. Regul. Homeost. Agents 1994, 8, 9–14. [Google Scholar]
- Amadori, M.; Archetti, I.L.; Berneri, C.; Salvalai, M.; Cordioli, P.; Lodetti, E. Disease Resistance and Thriftiness of Calves given Human Lymphoblastoid Interferon. J. Vet. Med. Ser. B 1994, 41, 381–390. [Google Scholar] [CrossRef]
- Fenimore, A.; Carter, K.; Fankhauser, J.; Hawley, J.R.; Lappin, M.R. Evaluation of intranasal vaccine administration and high-dose interferon- α2b therapy for treatment of chronic upper respiratory tract infections in shelter cats. J. Feline Med. Surg. 2016, 18, 603–611. [Google Scholar] [CrossRef]
- Ishiwata, K.; Minagawa, T.; Kajimoto, T. Clinical Effects of the Recombinant Feline Interferon-OMEGA. on Experimental Parvovirus Infection in Beagle Dogs. J. Vet. Med. Sci. 1998, 60, 911–917. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Mari, K.; Maynard, L.; Eun, H.M.; Lebreux, B. Treatment of canine parvoviral enteritis with interferon-omega in a placebo-controlled field trial. Vet. Rec. 2003, 152, 105–108. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Zhao, F.; Shao, J.; Xie, Y.; Chang, H.; Zhang, Y. Interferon-omega: Current status in clinical applications. Int. Immunopharmacol. 2017, 52, 253–260. [Google Scholar] [CrossRef]
- Gil, S.; Leal, R.O.; McGahie, D.; Sepúlveda, N.; Duarte, A.; Niza, M.M.R.E.; Tavares, L. Oral Recombinant Feline Interferon-Omega as an alternative immune modulation therapy in FIV positive cats: Clinical and laboratory evaluation. Res. Vet. Sci. 2014, 96, 79–85. [Google Scholar] [CrossRef] [PubMed]
- Besedovsky, H.O.; Rey, A. Del Physiology of psychoneuroimmunology: A personal view. Brain Behav. Immun. 2007, 21, 34–44. [Google Scholar] [CrossRef]
- Attilio, C.; Lorenzo, A.; Valentina, Q.; Roberto, C.; Enza, C. Psychoneuroendocrine immunology (PNEI) and longevity. Healthy Aging Res. 2018, 7. [Google Scholar] [CrossRef]
- Lotti, T.; Hercogova, J.; Wollina, U.; Chokoeva, A.A.; Zarrab, Z.; Gianfaldoni, S.; Roccia, M.G.; Fioranelli, M.; Tchernev, G. Psycho-neuro-endocrine-immunology and low dose cytokines therapy: Principles and evidences for an innovative medical approach in acute and chronic inflammatory diseases. J. Biol. Regul. Homeost. Agents 2015, 29, 37–45. [Google Scholar]
- Burnett, A.F.; Biju, P.G.; Lui, H.; Hauer-Jensen, M. Oral Interleukin 11 as a Countermeasure to Lethal Total-Body Irradiation in a Murine Model. Radiat. Res. 2013, 180, 595–602. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Forster, K.; Goethel, A.; Chan, C.W.; Zanello, G.; Streutker, C.; Croitoru, K. An Oral CD3-Specific Antibody Suppresses T-Cell–Induced Colitis and Alters Cytokine Responses to T-Cell Activation in Mice. Gastroenterology 2012, 143, 1298–1307. [Google Scholar] [CrossRef] [PubMed]
- Hanson, M.L.; Hixon, J.A.; Li, W.; Felber, B.K.; Anver, M.R.; Stewart, C.A.; Janelsins, B.M.; Datta, S.K.; Shen, W.; McLean, M.H.; et al. Oral Delivery of IL-27 Recombinant Bacteria Attenuates Immune Colitis in Mice. Gastroenterology 2014, 146, 210–221. [Google Scholar] [CrossRef] [Green Version]
- Resch, G.; Gutmann, V. Scientific Foundations of Homoeopathy; Barthel & Barthel Publishing: Munich, Germany, 1987. [Google Scholar]
- Davenas, E.; Beauvais, F.; Amara, J.; Oberbaum, M.; Robinzon, B.; Miadonnai, A.; Tedeschi, A.; Pomeranz, B.; Fortner, P.; Belon, P.; et al. Human basophil degranulation triggered by very dilute antiserum against IgE. Nature 1988, 333, 816–818. [Google Scholar] [CrossRef] [PubMed]
- Hirst, S.J.; Hayes, N.A.; Burridge, J.; Pearce, F.L.; Foreman, J.C. Human basophil degranulation is not triggered by very dilute antiserum against human IgE. Nature 1993, 366, 525–527. [Google Scholar] [CrossRef] [PubMed]
- Montagnier, L.; Aissa, J.; Del Giudice, E.; Lavallee, C.; Tedeschi, A.; Vitiello, G. DNA waves and water. J. Phys. Conf. Ser. 2011, 306, 012007. [Google Scholar] [CrossRef]
- Epstein, O.I. Release-Activity: A Long Way from Phenomenon to New Drugs. Bull. Exp. Biol. Med. 2012, 154, 54–58. [Google Scholar] [CrossRef]
- Hilton, L.S.; Bean, A.G.D.; Lowenthal, J.W. The emerging role of avian cytokines as immunotherapeutics and vaccine adjuvants. Vet. Immunol. Immunopathol. 2002, 85, 119–128. [Google Scholar] [CrossRef]
- Lowenthal, J. Avian cytokines—the natural approach to therapeutics. Dev. Comp. Immunol. 2000, 24, 355–365. [Google Scholar] [CrossRef]
- Mamber, S.W.; Lins, J.; Gurel, V.; Hutcheson, D.P.; Pinedo, P.; Bechtol, D.; Krakowka, S.; Fields-Henderson, R.; Cummins, J.M. Low-dose oral interferon modulates expression of inflammatory and autoimmune genes in cattle. Vet. Immunol. Immunopathol. 2016, 172, 64–71. [Google Scholar] [CrossRef]
- Trevisi, E.; Amadori, M.; Bakudila, A.M.; Bertoni, G. Metabolic changes in dairy cows induced by oral, low-dose interferon-alpha treatment1. J. Anim. Sci. 2009, 87, 3020–3029. [Google Scholar] [CrossRef]
- Georgiades, J.A. Effect of low dose natural human interferon alpha given into the oral cavity on the recovery time and death loss in feedlot hospital pen cattle: A field study. Arch. Immunol. Ther. Exp. 1993, 41, 205–207. [Google Scholar]
- Young, A.S.; Maritim, A.C.; Kariuki, D.P.; Stagg, D.A.; Wafula, J.M.; Mutugi, J.J.; Cummins, J.M.; Richards, A.B.; Burns, C. Low-dose oral administration of human interferon alpha can control the development of Theileria parva infection in cattle. Parasitology 1990, 101, 201–209. [Google Scholar] [CrossRef]
- Cummins, J.M. Interferon administered orally to the bovine species helps treat diseases. J. Vet. Med. Res. 2018, 5, 5–8. [Google Scholar]
- Cummins, J.M.; Gawthrop, J.; Hutcheson, D.P.; Cummins, M.J.; Zeck, D. The effect of low dose oral human interferon alpha therapy on diarrhea in veal calves. Arch. Immunol. Ther. Exp. 1993, 41, 199–203. [Google Scholar]
- Cummins, J.M.; Hutcheson, D.P.; Cummins, M.J.; Georgiades, J.A.; Richards, A.B. Oral therapy with human interferon alpha in calves experimentally injected with infectious bovine rhinotracheitis virus. Arch. Immunol. Ther. Exp. 1993, 41, 193–197. [Google Scholar]
- Namangala, B.; Inoue, N.; Kohara, J.; Kuboki, N.; Sakurai, T.; Hayashida, K.; Sugimoto, C. Evidence for the Immunostimulatory Effects of Low-Dose Orally Delivered Human IFN- α in Cattle. J. Interf. Cytokine Res. 2006, 26, 675–681. [Google Scholar] [CrossRef] [PubMed]
- Lecce, J.G.; Cummins, J.M.; Richards, A.B. Treatment of rotavirus infection in neonate and weanling pigs using natural human interferon alpha. Mol. Biother. 1990, 2, 211–216. [Google Scholar] [PubMed]
- Cummins, J.M.; Mock, R.E.; Shive, B.W.; Krakowka, S.; Richards, A.B.; Hutcheson, D.P. Oral treatment of transmissible gastroenteritis with natural human interferon alpha: A field study. Vet. Immunol. Immunopathol. 1995, 45, 355–360. [Google Scholar] [CrossRef]
- Nowacki, W.; Cederblad, B.; Renard, C.; La Bonnardière, C.; Charley, B. Age-related increase of porcine natural interferon α producing cell frequency and of interferon yield per cell. Vet. Immunol. Immunopathol. 1993, 37, 113–122. [Google Scholar] [CrossRef]
- Amadori, M.; Candotti, P.; Begni, B.; Rota; Nodari, S.; Nigrelli, A. L’Osservatorio; IZSLER: Brescia, Italy, 2002; pp. 2–4. [Google Scholar]
- Van Reeth, K.; Nauwynck, H.; Pensaert, M. Clinical Effects of Experimental Dual Infections with Porcine Reproductive and Respiratory Syndrome Virus Followed by Swine Influenza Virus in Conventional and Colostrum-deprived Pigs. J. Vet. Med. Ser. B 2001, 48, 283–292. [Google Scholar] [CrossRef]
- Van Reeth, K. Cytokines in the pathogenesis of influenza. Vet. Microbiol. 2000, 74, 109–116. [Google Scholar] [CrossRef]
- Amadori, M.; Farinacci, M.; Begni, B.; Faita, R.; Podavini, D.; Colitti, M. Effects of Interferon-α on the Inflammatory Response of Swine Peripheral Blood Mononuclear Cells. J. Interf. Cytokine Res. 2009, 29, 241–248. [Google Scholar] [CrossRef]
- Fan, W.; Jiao, P.; Zhang, H.; Chen, T.; Zhou, X.; Qi, Y.; Sun, L.; Shang, Y.; Zhu, H.; Hu, R.; et al. Inhibition of African Swine Fever Virus Replication by Porcine Type I and Type II Interferons. Front. Microbiol. 2020, 11. [Google Scholar] [CrossRef] [PubMed]
- Esparza, I.; Gonzalez, J.C.; Vinuela, E. Effect of Interferon-α, Interferon-γ and Tumour Necrosis Factor on African Swine Fever Virus Replication in Porcine Monocytes and Macrophages. J. Gen. Virol. 1988, 69, 2973–2980. [Google Scholar] [CrossRef]
- Paez, E.; Garcia, F.; Fernandez, C.G. Interferon cures cells lytically and persistently infected with African swine fever virus in vitro. Arch. Virol. 1990, 112, 115–127. [Google Scholar] [CrossRef]
- Marcus, P.I.; Van Der Heide, L.; Sekellick, M.J. Interferon Action on Avian Viruses. I. Oral Administration of Chicken Interferon-alpha Ameliorates Newcastle Disease. J. Interf. Cytokine Res. 1999, 19, 881–885. [Google Scholar] [CrossRef] [PubMed]
- Jarosinski, K.W.; Jia, W.; Sekellick, M.J.; Marcus, P.I.; Schat, K.A. Cellular Responses in Chickens Treated with IFN-α Orally or Inoculated with Recombinant Marek’s Disease Virus Expressing IFN-α. J. Interf. Cytokine Res. 2001, 21, 287–296. [Google Scholar] [CrossRef] [PubMed]
- Meng, S.; Yang, L.; Xu, C.; Qin, Z.; Xu, H.; Wang, Y.; Sun, L.; Liu, W. Recombinant Chicken Interferon-α Inhibits H9N2 Avian Influenza Virus Replication In Vivo by Oral Administration. J. Interf. Cytokine Res. 2011, 31, 533–538. [Google Scholar] [CrossRef] [PubMed]
- Bernasconi, D.; Schultz, U.; Staeheli, P. The Interferon-Induced Mx Protein of Chickens Lacks Antiviral Activity. J. Interf. Cytokine Res. 1995, 15, 47–53. [Google Scholar] [CrossRef] [PubMed]
- Daviet, S.; Van Borm, S.; Habyarimana, A.; Ahanda, M.-L.E.; Morin, V.; Oudin, A.; Van Den Berg, T.; Zoorob, R. Induction of Mx and PKR Failed to Protect Chickens from H5N1 Infection. Viral Immunol. 2009, 22, 467–472. [Google Scholar] [CrossRef]
- Benfield, C.T.O.; Lyall, J.W.; Tiley, L.S. The Cytoplasmic Location of Chicken Mx Is Not the Determining Factor for Its Lack of Antiviral Activity. PLoS ONE 2010, 5, e12151. [Google Scholar] [CrossRef]
- Jiang, H.; Yang, H.; Kapczynski, D.R. Chicken interferon alpha pretreatment reduces virus replication of pandemic H1N1 and H5N9 avian influenza viruses in lung cell cultures from different avian species. Virol. J. 2011, 8, 447. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baudin, F.; Bach, C.; Cusack, S.; Ruigrok, R.W. Structure of influenza virus RNP. I. Influenza virus nucleoprotein melts secondary structure in panhandle RNA and exposes the bases to the solvent. EMBO J. 1994, 13, 3158–3165. [Google Scholar] [CrossRef]
- Yamanaka, K.; Ishihama, A.; Nagata, K. Reconstitution of influenza virus RNA-nucleoprotein complexes structurally resembling native viral ribonucleoprotein cores. J. Biol. Chem. 1990, 265, 11151–11155. [Google Scholar] [CrossRef]
- Fulton, R.W.; Teeter, R.G.; Cummins, J.M.; Georgiades, J.A.; Hutcheson, D.P. The use of interferon modulates the negative effects of heat stress on poultry production. Arch. Immunol. Ther. Exp. 1993, 41, 209–212. [Google Scholar]
- Gilger, B.C.; Rose, P.D.; Davidson, M.G.; Roberts, S.M.; Miller, T. Low-Dose Oral Administration of Interferon-alpha for the Treatment of Immune-Mediated Keratoconjunctivitis Sicca in Dogs. J. Interf. Cytokine Res. 1999, 19, 901–905. [Google Scholar] [CrossRef] [PubMed]
- Shiozawa, S.; Morimoto, I.; Tanaka, Y.; Shiozawa, K. A Preliminary Study on the Interferon-α Treatment for Xerostomia of Sjögren’s Syndrome. Rheumatology 1993, 32, 52–54. [Google Scholar] [CrossRef]
- Cummins, M.J.; Papas, A.; Kammer, G.M.; Fox, P.C. Treatment of primary sjögren’s syndrome with low-dose human interferon alfa administered by the oromucosal route: Combined phase III results. Arthritis Rheum. 2003, 49, 585–593. [Google Scholar] [CrossRef]
- Thompson, L.A.; Grieshaber, T.L.; Glickman, L.; Glickman, N. Human recombinant interferonalpha-2b for management of idiopathic recurrent superficial pyoderma in dogs: A pilot study. Vet. Ther. 2004, 5, 75–81. [Google Scholar]
- Stokking, L.B.; Ehrhart, E.J.; Lichtensteiger, C.A.; Campbell, K.L. Pigmented Epidermal Plaques in Three Dogs. J. Am. Anim. Hosp. Assoc. 2004, 40, 411–417. [Google Scholar] [CrossRef] [PubMed]
- Ito, A.; Isogai, E.; Yoshioka, K.; Sato, K.; Himeno, N.; Gotanda, T. Ability of Orally Administered IFN-ALPHA4 to Inhibit Naturally Occurring Gingival Inflammation in Dogs. J. Vet. Med. Sci. 2010, 72, 1145–1151. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sakuta, T.; Tokuda, M.; Tamura, M.; Jimi, E.; Ikebe, T.; Koga, T.; Nagaoka, S.; Takada, H. Dual Regulatory Effects of Interferon-α, -β, and -γ on Interleukin-8 Gene Expression by Human Gingival Fibroblasts in Culture upon Stimulation with Lipopolysaccharide from Prevotella intermedia, Interleukin-1α, or Tumor Necrosis Factor-α. J. Dent. Res. 1998, 77, 1597–1605. [Google Scholar] [CrossRef] [PubMed]
- Litzlbauer, P.; Weber, K.; Mueller, R.S. Oral and subcutaneous therapy of canine atopic dermatitis with recombinant feline interferon omega. Cytokine 2014, 66, 54–59. [Google Scholar] [CrossRef] [PubMed]
- Weiss, R.C.; Cummins, J.M.; Richards, A.B. Low-dose orally administered alpha interferon treatment for feline leukemia virus infection. J. Am. Vet. Med. Assoc. 1991, 199, 1477–1481. [Google Scholar]
- Gomez-Lucia, E.; Collado, V.M.; Miró, G.; Martín, S.; Benítez, L.; Doménech, A. Follow-up of viral parameters in felv-or Fiv-naturally infected cats treated orally with low doses of human interferon alpha. Viruses 2019, 11, 845. [Google Scholar] [CrossRef] [Green Version]
- Gomez-Lucia, E.; Collado, V.M.; Miró, G.; Martín, S.; Benítez, L.; Doménech, A. Clinical and hematological follow-up of long-term oral therapy with type-i interferon in cats naturally infected with feline leukemia virus or feline immunodeficiency virus. Animals 2020, 10, 1464. [Google Scholar] [CrossRef]
- McCaw, D.; Boon, G.; Jergens, A.; Kern, M.; Bowles, M.; Johnson, J. Immunomodulation therapy for feline leukemia virus infection. J. Am. Anim. Hosp. Assoc. 2001, 37, 356–363. [Google Scholar] [CrossRef] [PubMed]
- Doménech, A.; Miró, G.; Collado, V.M.; Ballesteros, N.; Sanjosé, L.; Escolar, E.; Martin, S.; Gomez-lucia, E. Use of recombinant interferon omega in feline retrovirosis: From theory to practice. Vet. Immunol. Immunopathol. 2011, 143, 301–306. [Google Scholar] [CrossRef]
- Hartmann, K. Efficacy of antiviral chemotherapy for retrovirus-infected cats. What does the current literature tell us? J. Feline Med. Surg. 2015, 925–939. [Google Scholar] [CrossRef]
- Fiorito, F.; Cantiello, A.; Elvira, G.; Navas, L.; Diffidenti, C.; De Martino, L.; Maharajan, V.; Olivieri, F.; Pagnini, U.; Iovane, G. Clinical improvement in feline herpesvirus 1 infected cats by oral low dose of interleukin-12 plus interferon-gamma. Comp. Immunol. Microbiol. Infect. Dis. 2016, 48, 41–47. [Google Scholar] [CrossRef] [PubMed]
- Moore, I.; Horney, B.; Day, K.; Lofstedt, J.; Cribb, A.E. Treatment of inflammatory airway disease in young standardbreds with interferon alpha. Can. Vet. J. 2004, 45, 594–601. [Google Scholar]
- Moore, B.R.; Krakowka, S.; Cummins, J.M.; Robertson, J.T. Changes in airway inflammatory cell populations in Standardbred racehorses after interferon-alpha administration. Vet. Immunol. Immunopathol. 1996, 49, 347–358. [Google Scholar] [CrossRef]
- Scudo, E.; Campari, J. Valutazione di efficacia del medicinale omeopatico Transfactor 21 nella prevenzione delle malattie respiratorie del purosangue inglese galoppatore. La Med. Biol. 2009, 2, 35–40. [Google Scholar]
- Akai, M.; Hobo, S.; Wada, S. Effect of low-dose human interferon-alpha on shipping fever of thoroughbred racehorses. J. Equine Sci. 2008, 19, 91. [Google Scholar] [CrossRef]
- Hobo, S.; Tomita, A.; Nambo, Y.; Anzai, T. Preventive effects of low-dose interferon alpha oral medication against shipping fever in thoroughbreds. J. Jpn. Vet. Med. Assoc. 2006, 59, 741–745. [Google Scholar] [CrossRef]
- Oikawa, M.; Kamada, M.; Yoshikawa, Y.; Yoshikawa, T. Pathology of equine pneumonia associated with transport and isolation of Streptococcus equi subsp. zooepidemicus. J. Comp. Pathol. 1994, 111, 205–212. [Google Scholar] [CrossRef]
- Schafer, T.W.; Lieberman, M.; Cohen, M.; Came, P.E. Interferon Administered Orally: Protection of Neonatal Mice from Lethal Virus Challenge. Science 1972, 176, 1326–1327. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nagao, Y.; Yamashiro, K.; Hara, N.; Horisawa, Y.; Kato, K.; Uemura, A. Oral-Mucosal Administration of IFN-α Potentiates Immune Response in Mice. J. Interf. Cytokine Res. 1998, 18, 661–666. [Google Scholar] [CrossRef] [PubMed]
- Tovey, M.G.; Maury, C. Oromucosal Interferon Therapy: Marked Antiviral and Antitumor Activity. J. Interf. Cytokine Res. 1999, 19, 145–155. [Google Scholar] [CrossRef]
- Beilharz, M.W.; Mcdonald, W.; Watson, M.W.; Heng, J.; Mcgeachie, J.; Lawson, C.M. Low-Dose Oral Type I Interferons Reduce Early Virus Replication of Murine Cytomegalovirus In Vivo. J. Interf. Cytokine Res. 1997, 17, 625–630. [Google Scholar] [CrossRef]
- Bosio, E.; Beilharz, M.W.; Watson, M.W.; Lawson, C.M. Efficacy of Low-Dose Oral Use of Type I Interferon in Cytomegalovirus Infections In Vivo. J. Interf. Cytokine Res. 1999, 19, 869–876. [Google Scholar] [CrossRef] [Green Version]
- Lawson, C.M.; Beilharz, M.W. Low-Dose Oral Use of Interferon Inhibits Virally Induced Myocarditis. J. Interf. Cytokine Res. 1999, 19, 863–867. [Google Scholar] [CrossRef] [Green Version]
- Yu, Z.; Huang, Z.; Shao, C.; Huang, Y.; Zhang, F.; Yang, J.; Deng, L.; Zeng, Z.; Deng, Q.; Zeng, W. Oral administration of interferon-α2b-transformed Bifidobacterium longum protects BALB/c mice against coxsackievirus B3-induced myocarditis. Virol. J. 2011, 8, 525. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaido, T.J. Intranasal Administration of IFN-α/β Inhibits the Development of Visceral Tumor Metastases. J. Interf. Cytokine Res. 1997, 17, 31–36. [Google Scholar] [CrossRef] [PubMed]
- Fleischmann, W.R.; Masoor, J.; Wu, T.Y.; Fleischmann, C.M. Orally Administered IFN-α Acts Alone and in Synergistic Combination with Intraperitoneally Administered IFN-γ to Exert an Antitumor Effect Against B16 Melanoma in Mice. J. Interf. Cytokine Res. 1998, 18, 17–20. [Google Scholar] [CrossRef] [PubMed]
- Segerer, S.; Hudkins, K.L.; Taneda, S.; Wen, M.; Cui, Y.; Segerer, M.; Farr, A.G.; Alpers, C.E. Oral interferon-α treatment of mice with cryoglobulinemic glomerulonephritis. Am. J. Kidney Dis. 2002, 39, 876–888. [Google Scholar] [CrossRef] [Green Version]
- Lawrence, H.S. The transfer in humans of delayed skin sensitivity to streptococcal m substance and to tuberculin with disrupted leucocytes 12. J. Clin. Investig. 1955, 34, 219–230. [Google Scholar] [CrossRef]
- Viza, D.; Fudenberg, H.H.; Palareti, A.; Ablashi, D.; De Vinci, C.; Pizza, G. Transfer factor: An overlooked potential for the prevention and treatment of infectious diseases. Folia Biol. 2013, 59, 53–67. [Google Scholar]
Cytokines | Disease’s Target | References |
---|---|---|
IFN-α | Hepatitis B; hepatitis C | [35,36] |
IFN-β | Multiple sclerosis | [37] |
IFN-γ | Chronic granulomatous disease; Crohn’s disease | [38,39] |
TNF-α | Rheumatoid arthritis, psoriasis; Crohn’s disease; ankylosing spondylitis; chronic obstructive pulmonary disease; sepsis; juvenile idiopathic arthritis; asthma | [40,41,42,43] |
G-CSF | Febrile neutropenia; bone marrow transplantation | [44] |
GM-CSF | Neutropenia after chemotherapy | [45] |
IL-1 | Rheumatoid arthritis; juvenile idiopathic arthritis; Still’s disease; Crohn’s disease | [42,46] |
IL-2 | Metastatic renal cell carcinoma; renal transplantation | [47,48,49] |
IL-4 | Asthma | [50] |
IL-5 | Asthma | [51] |
IL-6 | Rheumatoid arthritis | [52,53] |
IL-8 | Melanoma | [54] |
IL-10 | Crohn’s disease; rheumatoid arthritis; psoriasis; ulcerative colitis; multiple sclerosis | [55] |
IL-11 | Thrombocytopenia; ulcerative colitis; psoriasis; rheumatoid arthritis; Crohn’s disease | [56] |
EPO | Anemia | [57] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Frazzini, S.; Riva, F.; Amadori, M. Therapeutic and Prophylactic Use of Oral, Low-Dose IFNs in Species of Veterinary Interest: Back to the Future. Vet. Sci. 2021, 8, 109. https://doi.org/10.3390/vetsci8060109
Frazzini S, Riva F, Amadori M. Therapeutic and Prophylactic Use of Oral, Low-Dose IFNs in Species of Veterinary Interest: Back to the Future. Veterinary Sciences. 2021; 8(6):109. https://doi.org/10.3390/vetsci8060109
Chicago/Turabian StyleFrazzini, Sara, Federica Riva, and Massimo Amadori. 2021. "Therapeutic and Prophylactic Use of Oral, Low-Dose IFNs in Species of Veterinary Interest: Back to the Future" Veterinary Sciences 8, no. 6: 109. https://doi.org/10.3390/vetsci8060109
APA StyleFrazzini, S., Riva, F., & Amadori, M. (2021). Therapeutic and Prophylactic Use of Oral, Low-Dose IFNs in Species of Veterinary Interest: Back to the Future. Veterinary Sciences, 8(6), 109. https://doi.org/10.3390/vetsci8060109