Current Applications and Future Perspectives of Fluorescence Light Energy Biomodulation in Veterinary Medicine
Abstract
:1. Introduction
2. Fluorescent Photobiomodulation and Its Mode of Action in the Healing Process
3. FBM in Veterinary Clinical Practice
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Godine, R.L. Low level laser therapy (LLLT) in veterinary medicine. Photomed. Laser Surg. 2014, 32, 1–2. [Google Scholar] [CrossRef] [PubMed]
- Hill, P.B.; Lo, A.; Eden, C.A.N.; Huntley, S.; Morey, V.; Ramsey, S.; Richardson, C.; Smith, D.J.; Sutton, C.; Taylor, M.D.; et al. Survey of the prevalence, diagnosis and treatment of dermatological conditions in small animals in general practice. Vet. Rec. 2006, 158, 533–539. [Google Scholar] [CrossRef] [PubMed]
- Hill, P. Small Animal Dermatology: A Practical Guide to the Diagnosis and Managment of Skin Diseases in Dogs and Cats; Butterworth-Heinemann: Oxford, UK, 2002; pp. 143–147. [Google Scholar]
- Marsella, R.; Olivry, T.; Carlotti, D.N. Current evidence of skin barrier dysfunction in human and canine atopic dermatitis. Vet. Dermatol. 2011, 22, 239–248. [Google Scholar] [CrossRef] [PubMed]
- Woldemeskel, M. Nutraceuticals in Dermatological Disorders. In Nutraceuticals in Veterinary Medicine; Springer: Cham, Switzerland, 2019; pp. 563–568. [Google Scholar]
- Fuchs, C.; Negri, L.B.; Pham, L.; Tam, J. Light-Based Devices for Wound Healing. Curr. Dermatol. Rep. 2020, 9, 261–276. [Google Scholar] [CrossRef]
- Fesseha, H. Laser Therapy and its Potential Application in Veterinary Practice—A Review. J. Light Laser Curr. Trends 2020, 3, 007. [Google Scholar]
- Avci, P.; Gupta, A.; Sadasivam, M.; Vecchio, D.; Pam, Z.; Pam, N.; Hamblin, M.R. Low-level laser (light) therapy (LLLT) in skin: Stimulating, healing, restoring. Semin. Cutan. Med. Surg. 2013, 32, 41–52. [Google Scholar] [PubMed]
- Barger, B.K.; Bisges, A.M.; Fox, D.B.; Torres, B. Low-Level Laser Therapy for Osteoarthritis Treatment in Dogs at Missouri Veterinary Practice. J. Am. Anim. Hosp. Assoc. 2020, 56, 139–145. [Google Scholar] [CrossRef]
- Draper, W.E.; Schubert, T.A.; Clemmons, R.M.; Miles, S.A. Low-level laser therapy reduces time to ambulation in dogs after hemilaminectomy: A preliminary study. J. Small Anim. Pract. 2012, 53, 465–469. [Google Scholar] [CrossRef]
- Olivieri, L.; Cavina, D.; Radicchi, G.; Miragliotta, V.; Abramo, F. Efficacy of low-level laser therapy on hair regrowth in dogs with noninflammatory alopecia: A pilot study. Vet. Dermatol. 2015, 26, 35-e11. [Google Scholar] [CrossRef]
- Perego, R.; Proverbio, D.; Zuccaro, A.; Spada, E. Low-level laser therapy: Case-control study in dogs with sterile pyogranulomatous pododermatitis. Vet. World 2016, 9, 882–887. [Google Scholar] [CrossRef] [Green Version]
- Stich, A.N.; Rosenkrantz, W.S.; Griffin, C.E. Clinical efficacy of low-level laser therapy on localized canine atopic dermatitis severity score and localized pruritic visual analog score in pedal pruritus due to canine atopic dermatitis. Vet. Dermatol. 2014, 25, 464-e74. [Google Scholar] [CrossRef] [PubMed]
- Hochman, L. Photobiomodulation Therapy in Veterinary Medicine: A Review. Top. Companion Anim. Med. 2018, 33, 83–88. [Google Scholar] [CrossRef] [PubMed]
- Chen, A.C.-H.; Arany, P.R.; Huang, Y.-Y.; Tomkinson, E.M.; Sharma, S.K.; Kharkwal, G.B.; Saleem, T.; Mooney, D.; Yull, F.E.; Blackwell, T.S.; et al. Low-Level Laser Therapy Activates NF-kB via Generation of Reactive Oxygen Species in Mouse Embryonic Fibroblasts. PLoS ONE 2011, 6, e22453. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lubart, R.; Eichler, M.; Lavi, R.; Friedman, H.; Shainberg, A. Low-energy laser irradiation promotes cellular redox activity. Photomed. Laser Surg. 2005, 23, 3–9. [Google Scholar] [CrossRef]
- Hu, W.P.; Wang, J.J.; Yu, C.L.; Lan, C.C.E.; Chen, G.S.; Yu, H.S. Helium-neon laser irradiation stimulates cell proliferation through photostimulatory effects in mitochondria. J. Investig. Dermatol. 2007, 127, 2048–2057. [Google Scholar] [CrossRef] [Green Version]
- Wong-Riley, M.T.T.; Liang, H.L.; Eells, J.T.; Chance, B.; Henry, M.M.; Buchmann, E.; Kane, M.; Whelan, H.T. Photobiomodulation directly benefits primary neurons functionally inactivated by toxins: Role of cytochrome c oxidase. J. Biol. Chem. 2005, 280, 4761–4771. [Google Scholar] [CrossRef] [Green Version]
- Rinaldi, F. Laser: A review. Clin. Dermatol. 2008, 26, 590–601. [Google Scholar] [CrossRef]
- Ball, K.A.; Castello, P.R.; Poyton, R.O. Low intensity light stimulates nitrite-dependent nitric oxide synthesis but not oxygen consumption by cytochrome c oxidase: Implications for phototherapy. J. Photochem. Photobiol. B Biol. 2011, 102, 182–191. [Google Scholar] [CrossRef]
- Prindeze, N.J.; Moffatt, L.T.; Shupp, J.W. Mechanisms of action for light therapy: A review of molecular interactions. Exp. Biol. Med. 2012, 237, 1241–1248. [Google Scholar] [CrossRef] [PubMed]
- Chung, H.; Dai, T.; Sharma, S.K.; Huang, Y.Y.; Carroll, J.D.; Hamblin, M.R. The nuts and bolts of low-level laser (Light) therapy. Ann. Biomed. Eng. 2012, 40, 516–533. [Google Scholar] [CrossRef] [Green Version]
- Ferroni, L.; Zago, M.; Patergnani, S.; Campbell, S.E.; Hébert, L.; Nielsen, M.; Scarpa, C.; Bassetto, F.; Pinton, P.; Zavan, B. Fluorescent Light Energy (FLE) Acts on Mitochondrial Physiology Improving Wound Healing. J. Clin. Med. 2020, 9, 559. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dompe, C.; Moncrieff, L.; Matys, J.; Grzech-Leśniak, K.; Kocherova, I.; Bryja, A.; Bruska, M.; Dominiak, M.; Mozdziak, P.; Skiba, T.H.I.; et al. Photobiomodulation—Underlying Mechanism and Clinical Applications. J. Clin. Med. 2020, 9, 1724. [Google Scholar] [CrossRef] [PubMed]
- Karu, T.I. Multiple roles of cytochrome c oxidase in mammalian cells under action of red and IR-A radiation. IUBMB Life 2010, 62, 607–610. [Google Scholar] [CrossRef] [PubMed]
- Becker, D.; Langer, E.; Seemann, M.; Seemann, G.; Fell, I.; Saloga, J.; Grabbe, S.; von Stebut, E. Clinical efficacy of blue light full body irradiation as treatment option for severe atopic dermatitis. PLoS ONE 2011, 6, e20566. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Huang, Y.Y.; Wang, Y.; Lyu, P.; Hamblin, M.R. Photobiomodulation (blue and green light) encourages osteoblastic-differentiation of human adipose-derived stem cells: Role of intracellular calcium and light-gated ion channels. Sci. Rep. 2016, 6, 1–9. [Google Scholar] [CrossRef] [Green Version]
- da-Palma-Cruz, M.; da Silva, R.F.; Monteiro, D.; Rehim, H.M.M.A.; Grabulosa, C.C.; de Oliveira, A.P.L.; Lino-dos-Santos-Franco, A. Photobiomodulation modulates the resolution of inflammation during acute lung injury induced by sepsis. Lasers Med. Sci. 2019, 34, 191–199. [Google Scholar] [CrossRef] [PubMed]
- Langella, L.G.; Casalechi, H.L.; Tomazoni, S.S.; Johnson, D.S.; Albertini, R.; Pallotta, R.C.; Marcos, R.L.; de Tarso Camillo de Carvalho, P.; Leal-Junior, E.C.P. Photobiomodulation therapy (PBMT) on acute pain and inflammation in patients who underwent total hip arthroplasty—A randomized, triple-blind, placebo-controlled clinical trial. Lasers Med. Sci. 2018, 33, 1933–1940. [Google Scholar] [CrossRef]
- Enwemeka, C.S.; Parker, J.C.; Dowdy, D.S.; Harkness, E.E.; Sanford, L.E.; Woodruff, L.D. The efficacy of low-power lasers in tissue repair and pain control: A meta-analysis study. Photomed. Laser Surg. 2004, 22, 323–329. [Google Scholar] [CrossRef]
- Ayuk, S.M.; Abrahamse, H.; Houreld, N.N. Photobiomodulation alters matrix protein activity in stressed fibroblast cells in vitro. J. Biophotonics 2018, 11, e201700127. [Google Scholar] [CrossRef]
- Hamblin, M.R. Mechanisms and applications of the anti-inflammatory effects of photobiomodulation. AIMS Biophys. 2017, 4, 337–361. [Google Scholar] [CrossRef]
- Boord, M. Laser in Dermatology. Clin. Tech. Small Anim. Pract. 2006, 21, 145–149. [Google Scholar] [CrossRef] [PubMed]
- Scapagnini, G.; Marchegiani, A.; Rossi, G.; Zago, M.; Jowarska, J.; Wael, M.; Campbell, S.E.; Schiffman, Z.; Buonamici, E.; Garvao, R.; et al. Management of all three phases of wound healing through the induction of fluorescence biomodulation using fluorescence light energy. Photonic Diagn. Treat. Infect. Inflamm. Dis. II 2019, 31, 108630W1–108630W17. [Google Scholar] [CrossRef]
- Hamblin, M.R. Photobiomodulation or low-level laser therapy. J. Biophotonics 2016, 9, 1122–1124. [Google Scholar] [CrossRef]
- Nikolis, A.; Grimard, D.; Pesant, Y.; Scapagnini, G.; Vezina, D. A prospective case series evaluating the safety and efficacy of the Klox BioPhotonic System in venous leg ulcers. Chronic Wound Care Manag. Res. 2016, 3, 101–111. [Google Scholar] [CrossRef] [Green Version]
- Shnitkind, E.; Yaping, E.; Geen, S.; Shalita, A.; Lee, W. Anti-inflammatory properties of narrow-band blue light. J. Drugs Dermatol. 2006, 5, 605–610. [Google Scholar] [PubMed]
- Edge, D.; Mellergaard, M.; Dam-Hansen, C.; Corell, D.D.; Jaworska, J.; Scapagnini, G.; Nielsen, M.C.E. Fluorescent light energy: The future for treating inflammatory skin conditions? J. Clin. Aesthet. Dermatol. 2019, 12, E61–E68. [Google Scholar] [PubMed]
- Salvaggio, A.; Magi, G.E.; Rossi, G.; Tambella, A.M.; Vullo, C.; Marchegiani, A.; Botto, R.; Palumbo Piccionello, A. Effect of the topical Klox fluorescence biomodulation system on the healing of canine surgical wounds. Vet. Surg. 2020, 49, 719–727. [Google Scholar] [CrossRef] [PubMed]
- Marchegiani, A. Klox Fluorescence Biomodulation System (KFBS), an alternative approach for the treatment of superficial pyoderma in dogs: Preliminary results. In Proceedings of the BSAVA Congress, Birmingham, UK, 5–8 April 2018. [Google Scholar]
- Marchegiani, A.; Cerquetella, M.; Tambella, A.M.; Palumbo Piccionello, A.; Ribecco, C.; Spaterna, A. The Klox Biophotonic System, an innovative and integrated approach for the treatment of deep pyoderma in dogs: A preliminary report. In Proceedings of the 29th Annual Congress of the ESVD-ECVD, Lausanne, Switzerland, 7–9 September 2017. [Google Scholar]
- Marchegiani, A.; Spaterna, A.; Cerquetella, M.; Tambella, A.M.; Fruganti, A.; Paterson, S. Fluorescence biomodulation in the management of canine interdigital pyoderma cases: A prospective, single-blinded, randomized and controlled clinical study. Vet. Dermatol. 2019, 30, 371. [Google Scholar] [CrossRef]
- Marchegiani, A.; Spaterna, A.; Piccionello, A.P.; Meligrana, M.; Fruganti, A.; Tambella, A.M. Fluorescence biomodulation in the management of acute traumatic wounds in two aged dogs. Vet. Med. 2020, 65, 215–220. [Google Scholar] [CrossRef]
- Salvaggio, A.; Magi, G.E.; Rossi, G.; Garvao, R.; Tambella, A.M.; Vullo, C.; Marchegiani, A.; Spaterna, A.; Piccionello, A.P. Effect of the topical Klox Fluorescence Biomodulation system (PHOVIATM) on the healing of canine cutaneous incisional wounds. Vet. Surg. 2019, 47, e42–e43. [Google Scholar]
- Marchegiani, A.; Tambella, A.M.; Fruganti, A.; Spaterna, A.; Cerquetella, M.; Paterson, S. Management of canine perianal fistula with fluorescence light energy: Preliminary findings. Vet. Dermatol. 2020, 31, 460. [Google Scholar] [CrossRef] [PubMed]
- Tambella, A.M.; Attili, A.R.; Beribè, F.; Galosi, M.; Marchegiani, A.; Cerquetella, M.; Piccionello, A.P.; Vullo, C.; Spaterna, A.; Fruganti, A. Management of otitis externa with an led-illuminated gel: A randomized controlled clinical trial in dogs. BMC Vet. Res. 2020, 16, 91. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bloom, P. Idiopathic pododermatitis in the dog: An uncommon but frustrating disease. Vet. J. 2008, 176, 123–124. [Google Scholar] [CrossRef] [PubMed]
- Breathnach, R.M.; Fanning, S.; Mulcahy, G.; Bassett, H.F.; Jones, B.R. Canine pododermatitis and idiopathic disease. Vet. J. 2008, 176, 146–157. [Google Scholar] [CrossRef]
- Duclos, D.D.; Hargis, A.M.; Hanley, P.W.; Breathnach, R.M.; Baker, K.P.; Quinn, P.J.; Mcgeady, T.A.; Aherne, C.M.; Jones, B.R.; Borio, S.; et al. Canine Pododermatitis. Vet. Clin. N. Am. Small Anim. Pract. 2013, 43, 57–87. [Google Scholar] [CrossRef]
- Bajwa, J. Canine pododermatitis. Can. Vet. J. La Rev. Vet. Can. 2016, 57, 991–993. [Google Scholar]
- Summers, J.F.; Brodbelt, D.C.; Forsythe, P.J.; Loeffler, A.; Hendricks, A. The effectiveness of systemic antimicrobial treatment in canine superficial and deep pyoderma: A systematic review. Vet. Dermatol. 2012, 23, 305–330. [Google Scholar] [CrossRef] [PubMed]
- Chammas, P.P.; Hagiwara, M.K. Evaluation of neutrophilic function (chemotaxis, phagocytosis and microbicidal activity) in healthy dogs and in dogs suffering from recurrent deep pyoderma. Vet. Immunol. Immunopathol. 1998, 64, 123–131. [Google Scholar] [CrossRef]
- Schnedeker, A.H.; Cole, L.K.; Lorch, G.; Diaz, S.F.; Bonagura, J.; Daniels, J.B. In vitro bactericidal activity of blue light (465 nm) phototherapy on meticillin-susceptible and meticillin-resistant Staphylococcus pseudintermedius. Vet. Dermatol. 2017, 28, 106–463. [Google Scholar] [CrossRef]
- de Freitas, L.F.; Hamblin, M.R. Proposed Mechanisms of Photobiomodulation or Low-Level Light Therapy. IEEE J. Sel. Top. Quantum Electron. 2016, 22, 348–364. [Google Scholar] [CrossRef] [Green Version]
- Noli, C.; Minafò, G.; Galzerano, M. Quality of life of dogs with skin diseases and their owners. Part 1: Development and validation of a questionnaire. Vet. Dermatol. 2011, 22, 335–343. [Google Scholar] [CrossRef] [PubMed]
- Noli, C.; Colombo, S.; Cornegliani, L.; Ghibaudo, G.; Persico, P.; Vercelli, A.; Galzerano, M. Quality of life of dogs with skin disease and of their owners. Part 2: Administration of a questionnaire in various skin diseases and correlation to efficacy of therapy. Vet. Dermatol. 2011, 22, 344–351. [Google Scholar] [CrossRef] [PubMed]
- Noli, C. Assessing Quality of Life for Pets with Dermatologic Disease and Their Owners. Vet. Clin. N. Am. Small Anim. Pract. 2019, 49, 83–93. [Google Scholar] [CrossRef] [PubMed]
- Apostolopoulos, N.; Mayer, U. Use of fluorescent light energy for the management of bacterial skin infection associated with canine calcinosis cutis lesions. Vet. Rec. Case Rep. 2020, 8, 1285. [Google Scholar] [CrossRef]
- Marchegiani, A.; Fruganti, A.; Spaterna, A.; Vedove, E.D.; Bachetti, B.; Massimini, M.; Di Pierro, F.; Gavazza, A.; Cerquetella, M. Impact of Nutritional Supplementation on Canine Dermatological Disorders. Vet. Sci. 2020, 7, 38. [Google Scholar] [CrossRef] [Green Version]
- Devriendt, N.; de Rooster, H. Initial Management of Traumatic Wounds. Vet. Clin. N. Am. Small Anim. Pract. 2017, 47, 1123–1134. [Google Scholar] [CrossRef]
- Percival, N.J. Classification of Wounds and their Management. Surgery 2002, 20, 114–117. [Google Scholar] [CrossRef]
- Dernell, W.S. Initial Wound Management. Vet. Clin. N. Am. Small Anim. Pract. 2006, 36, 713–738. [Google Scholar] [CrossRef]
- Amalsadvala, T.; Swaim, S.F. Management of Hard-to-Heal Wounds. Vet. Clin. N. Am. Small Anim. Pract. 2006, 36, 693–711. [Google Scholar] [CrossRef]
- Krahwinkel, D.J.; Boothe, H.W. Topical and Systemic Medications for Wounds. Vet. Clin. N. Am. Small Anim. Pract. 2006, 36, 739–757. [Google Scholar] [CrossRef]
- Cain, C.L. Canine Perianal Fistulas. Vet. Clin. N. Am. Small Anim. Pract. 2018, 49, 53–65. [Google Scholar] [CrossRef] [PubMed]
- Budsberg, S.C.; Spurgeon, T.L.; Liggitt, H.D. Anatomic predisposition to perianal fistulae formation in the German shepherd dog. Am. J. Vet. Res. 1985, 46, 1468–1472. [Google Scholar] [PubMed]
- Day, M.J.; Weaver, B.M.Q. Pathology of surgically resected tissue from 305 cases of anal furunculosis in the dog. J. Small Anim. Pract. 1992, 33, 583–589. [Google Scholar] [CrossRef]
- Day, M.J. Immunopathology of analfurunculosis in the dog. J. Small Anim. Pract. 1993, 34, 381–388. [Google Scholar] [CrossRef]
- House, A.; Gregory, S.P.; Catchpole, B. Expression of cytokine mRNA in canine anal furunculosis lesions. Vet. Rec. 2003, 153, 354–358. [Google Scholar] [CrossRef] [PubMed]
- Harkin, K.R.; Walshaw, R.; Mullaney, T.P. Association of perianal fistula and colitis in the German shepherd dog: Response to high-dose prednisone and dietary therapy. J. Am. Anim. Hosp. Assoc. 1996, 32, 515–520. [Google Scholar] [CrossRef]
- Kennedy, L.J.; O’Neill, T.; House, A.; Barnes, A.; Kyöstilä, K.; Innes, J.; Fretwell, N.; Day, M.J.; Catchpole, B.; Lohi, H.; et al. Risk of anal furunculosis in German shepherd dogs is associated with the major histocompatibility complex. Tissue Antigens 2008, 71, 51–56. [Google Scholar] [CrossRef]
- Bajwa, J. Canine otitis externa-Treatment and complications. Can. Vet. J. 2019, 60, 97–99. [Google Scholar]
- Paterson, S. Discovering the causes of otitis externa. In Pract. 2016, 38, 7–11. [Google Scholar] [CrossRef] [Green Version]
- Nikolis, A.; Fauverghe, S.; Scapagnini, G.; Sotiriadis, D.; Kontochristopoulos, G.; Petridis, A.; Rigopoulos, D.; Dessinioti, C.; Kalokasidis, K.; Antoniou, C.; et al. An extension of a multicenter, randomized, split-face clinical trial evaluating the efficacy and safety of chromophore gel-assisted blue light phototherapy for the treatment of acne. Int. J. Dermatol. 2018, 57, 94–103. [Google Scholar] [CrossRef] [Green Version]
- Romanelli, M.; Piaggesi, A.; Scapagnini, G.; Dini, V.; Janowska, A.; Iacopi, E.; Scarpa, C.; Fauverghe, S.; Bassetto, F. EUREKA study—The evaluation of real-life use of a biophotonic system in chronic wound management: An interim analysis. Drug Des. Devel. Ther. 2017, 11, 3551–3558. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Romanelli, M.; Piaggesi, A.; Scapagnini, G.; Dini, V.; Janowska, A.; Iacopi, E.; Scarpa, C.; Fauverghe, S.; Bassetto, F. EUREKA Study Group Evaluation of fluorescence biomodulation in the real-life management of chronic wounds: The EUREKA trial. J. Wound Care 2018, 27, 744–753. [Google Scholar] [CrossRef] [PubMed]
- Nikolis, A.; Bernstein, S.; Kinney, B.; Scuderi, N.; Rastogi, S.; Sampalis, J.S. A randomized, placebo-controlled, single-blinded, split-faced clinical trial evaluating the efficacy and safety of KLOX-001 gel formulation with KLOX light-emitting diode light on facial rejuvenation. Clin. Cosmet. Investig. Dermatol. 2016, 9, 115–125. [Google Scholar] [PubMed] [Green Version]
- Hillier, A.; Lloyd, D.H.; Weese, J.S.; Blondeau, J.M.; Boothe, D.; Breitschwerdt, E.; Guardabassi, L.; Papich, M.G.; Rankin, S.; Turnidge, J.D.; et al. Guidelines for the diagnosis and antimicrobial therapy of canine superficial bacterial folliculitis (Antimicrobial Guidelines Working Group of the International Society for Companion Animal Infectious Diseases). Vet. Dermatol. 2014, 25, 107-e23. [Google Scholar] [CrossRef] [PubMed]
- Morris, D.O.; Rookt, K.A.; Shofer, F.S.; Rankin, S.C.; Rook, K.A.; Shofer, F.S.; Rankin, S.C. Screening of Staphylococcus aureus, Staphylococcus intermedius, and Staphylococcus schleiferi isolates obtained from small companion animals for antimicrobial resistance: A retrospective review of 749 isolates (2003-04). Vet. Dermatol. 2006, 17, 332–337. [Google Scholar] [CrossRef] [PubMed]
- Loeffler, A.; Lloyd, D.H. What has changed in canine pyoderma? A narrative review. Vet. J. 2018, 235, 73–82. [Google Scholar] [CrossRef] [Green Version]
- Morris, D.O.; Loeffler, A.; Davis, M.F.; Guardabassi, L.; Weese, J.S. Recommendations for approaches to meticillin-resistant staphylococcal infections of small animals: Diagnosis, therapeutic considerations and preventative measures.: Clinical Consensus Guidelines of the World Association for Veterinary Dermatology. Vet. Dermatol. 2017, 28, 304-e69. [Google Scholar] [CrossRef]
- De Briyne, N.; Atkinson, J.; Pokludová, L.; Borriello, S.P. Antibiotics used most commonly to treat animals in Europe. Vet. Rec. 2014, 175, 325. [Google Scholar] [CrossRef] [Green Version]
- Stefanetti, V.; Bietta, A.; Pascucci, L.; Marenzoni, M.L.; Coletti, M.; Franciosini, M.P.; Passamonti, F.; Proietti, P.C. Indagine su antibiotico-resistenza e formazione di biofilm in ceppi di Staphylococcus pseudintermedius isolati da piodermiti canine. Vet. Ital. 2017, 53, 289–296. [Google Scholar]
- Schwarz, S.; Loeffler, A.; Kadlec, K. Bacterial resistance to antimicrobial agents and its impact on veterinary and human medicine. Vet. Dermatol. 2017, 28, 82-e19. [Google Scholar] [CrossRef] [Green Version]
- Sinnott, S.-J.; Bhate, K.; Margolis, D.J.; Langan, S.M. Antibiotics and acne: An emerging iceberg of antibiotic resistance? Br. J. Dermatol. 2016, 175, 1127–1128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heim, D.; Kuster, S.; Willi, B. Antibiotic-resistant bacteria in dogs and cats: Recommendations for -owners. Schweiz Arch Tierheilkd 2020, 162, 141–151. [Google Scholar] [CrossRef] [PubMed]
- Faires, M.C.; Tater, K.C.; Weese, J.S. An investigation of methicillin-resistant Staphylococcus aureus colonization in people and pets in the same household with an infected person or infected pet. J. Am. Vet. Med. Assoc. 2009, 235, 540–543. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Cytokines | Regulation |
---|---|
EGF | ↑ |
FGF | ↑ |
TGF-β | ↑ |
TNF-α | ↓ |
Coll I | ↑ |
Coll III | ↑ |
Ki67 | ↑ |
FVIII | ↑ |
DCN | ↑ |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marchegiani, A.; Spaterna, A.; Cerquetella, M. Current Applications and Future Perspectives of Fluorescence Light Energy Biomodulation in Veterinary Medicine. Vet. Sci. 2021, 8, 20. https://doi.org/10.3390/vetsci8020020
Marchegiani A, Spaterna A, Cerquetella M. Current Applications and Future Perspectives of Fluorescence Light Energy Biomodulation in Veterinary Medicine. Veterinary Sciences. 2021; 8(2):20. https://doi.org/10.3390/vetsci8020020
Chicago/Turabian StyleMarchegiani, Andrea, Andrea Spaterna, and Matteo Cerquetella. 2021. "Current Applications and Future Perspectives of Fluorescence Light Energy Biomodulation in Veterinary Medicine" Veterinary Sciences 8, no. 2: 20. https://doi.org/10.3390/vetsci8020020
APA StyleMarchegiani, A., Spaterna, A., & Cerquetella, M. (2021). Current Applications and Future Perspectives of Fluorescence Light Energy Biomodulation in Veterinary Medicine. Veterinary Sciences, 8(2), 20. https://doi.org/10.3390/vetsci8020020