Potential Role of Avian Populations in the Epidemiology of Rickettsia spp. and Babesia spp.
Abstract
:1. Introduction
2. Rickettsia spp.
2.1. Etiology
2.2. Rickettsia spp. in Birds and Their Ticks
3. Babesia spp.
3.1. Etiology
3.2. Babesia in Birds and Their Ticks
3.3. Carriage of Zoonotic Babesia Infected Ticks
3.4. Carriage of Zoonotic Babesia by Infected Birds
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Toledo, A.; Olmeda, A.S.; Jado, I.; Gil, H.; Valcárcel, F.; Anda, P.; Escudero, R.; Casado-Nistal, M.A.; Rodríguez-Vargas, M. Tick-borne zoonotic bacteria in ticks collected from central Spain. Am. J. Trop. Med. Hyg. 2009, 81, 67–74. [Google Scholar] [CrossRef]
- Battsetseg, B.; Matsuo, T.; Xuan, X.; Boldbaatar, D.; Chee, S.H.; Umemiya, R.; Sakaguchi, T.; Hatta, T.; Zhou, J.; Verdida, A.R.; et al. Babesia parasites develop and are transmitted by the non-vector soft tick Ornithodoros moubata (Acari: Argasidae). Parasitology 2006, 134, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Buczek, A.M.; Buczek, W.; Bartosik, K. The Potential Role of Migratory Birds in the Rapid Spread of Ticks and Tick-Borne Pathogens in the Changing Climatic and Environmental Conditions in Europe. Int. J. Environ. Res. Public Health 2020, 17, 2117. [Google Scholar] [CrossRef] [Green Version]
- Víchová, B.; Reiterová, K.; Špilovská, S.; Blaňarová, L.; Hurníková, Z.; Turčeková, Ľ. Molecular screening for bacteria and protozoa in great cormorants (Phalacrocorax carbo sinensis) nesting in Slovakia, central Europe. Acta Parasitol. 2016, 61, 585–589. [Google Scholar] [CrossRef]
- Harner, S.A.; Goldberg, T.L.; Kitron, U.D.; Brawn, J.D.; Anderson, T.A.; Loss, A.R.; Walker, E.D.; Harner, G.L. Wild birds and ecology of ticks and tick-borne pathogens, Chicago, Illinois, USA, 2005–2010. Emerg. Infect. Dis. 2012, 18, 1589–1595. [Google Scholar] [CrossRef]
- Parola, P.; Paddock, C.D.; Socolovschi, C.; Labruna, M.B.; Mediannikov, O.; Kernif, T.; Abdad, M.Y.; Stenos, J.; Bitam, I.; Fournier, P.-E.; et al. Update on Tick-Borne Rickettsioses around the World: A Geographic Approach. Clin. Microbiol. Rev. 2013, 26, 657–702. [Google Scholar] [CrossRef] [Green Version]
- Brouqui, P.; Parola, P.; Fournier, P.E.; Raoult, D. Spotted fever rickettsioses in southern and eastern Europe. FEMS Immunol. Med. Microbiol. 2007, 49, 2–12. [Google Scholar] [CrossRef] [Green Version]
- Scarpulla, M.; Barlozzari, G.; Salvato, L.; De Liberato, C.; Lorenzetti, R.; Macrì, G. Rickettsia helvetica in human-parasitizing and free-living Ixodes ricinus from urban and wild green areas in the metropolitan City of Rome, Italy. Vector Borne Zoonotic Dis. 2018, 18, 404–407. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, Y.-S.; Choi, Y.-J.; Lee, K.-M.; Ahn, K.-J.; Kim, H.-C.; Klein, T.; Jiang, J.; Richards, A.; Park, K.-H.; Jang, W.-J. First isolation of Rickettsia monacensis from a patient in South Korea. Microbiol. Immunol. 2017, 61, 258–263. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oteo, J.A.; Portillo, A. Tick-borne rickettsioses in Europe. Ticks Tick-Borne Dis. 2012, 3, 271–278. [Google Scholar] [CrossRef] [PubMed]
- Cascio, A.; Torina, A.; Valenzise, M.; Blanda, V.; Camarda, N.; Bombaci, S.; Iaria, C.; De Luca, F.; Wasniewska, M. Scalp Eschar and Neck Lymphadenopathy Caused by Rickettsia massiliae. Emerg. Infect. Dis. 2013, 19, 836–837. [Google Scholar] [CrossRef] [Green Version]
- Ioannou, I.; Chochlakis, D.; Kasinis, N.; Anayiotos, P.; Lyssandrou, A.; Papadopoulos, B.; Tselentis, Y.; Psaroulaki, A. Carriage of Rickettsia spp., Coxiella burnetii and Anaplasma spp. by endemic and migratory wild birds and their ectoparasites in Cyprus. Clin. Microbiol. Infect. 2009, 15, 158–160. [Google Scholar] [CrossRef] [Green Version]
- Mukherjee, N.; Beati, L.; Sellers, M.; Burton, L.; Adamson, S.; Robbins, R.G.; Moore, F.; Karim, S. Importation of exotic ticks and tick-borne spotted fever group rickettsiae into the United States by migrating songbirds. Ticks Tick-Borne Dis. 2013, 5, 127–134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hornok, S.; Kováts, D.; Csörgő, T.; Meli, M.L.; Gönczi, E.; Hadnagy, Z.; Takács, N.; Farkas, R.; Hofmann-Lehmann, R. Birds as potential reservoirs of tick-borne pathogens: First evidence of bacteraemia with Rickettsia helvetica. Parasites Vectors 2014, 7, 128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ebani, V.V.; Bertelloni, F.; Mani, P. Molecular survey on zoonotic tick-borne bacteria and chlamydiae in feral pigeons (Columba livia domestica). Asian Pac. J. Trop. Med. 2016, 9, 324–327. [Google Scholar] [CrossRef] [PubMed]
- Parsons, N.J.; Gous, T.A.; Cranfield, M.R.; Cheng, L.I.; Schultz, A.; Horne, E.; Last, R.P.; Lampen, F.; Ludynia, K.; Bousfield, B.; et al. Novel vagrant records and occurence of vevctor-borne pathogens in King Penguins (Aptenodytes patagonicus) in South Africa. Polar Biol. 2018, 41, 79–86. [Google Scholar] [CrossRef]
- Ebani, V.V.; Bertelloni, F.; Mani, P. Serological evidence of exposure to zoonotic tick-borne bacteria in pheasants (Phasianus colchicus). Ann. Agric. Environ. Med. 2017, 24, 82–85. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kelly, P.J.; Masanvi, N.; Cadman, H.F.; Mahan, S.M.; Beati, L.; Raoult, D. Serosurvey for Cowdria ruminantium, Coxiella burnetii, and Spotted Fever Group Rickettsiae in Ostriches (Struthio camelus) from Zimbabwe. Avian Dis. 1996, 40, 448. [Google Scholar] [CrossRef] [PubMed]
- Zemtsova, G.E.; Montgomery, M.; Levin, M.L. Relative Sensitivity of Conventional and Real-Time PCR Assays for Detection of SFG Rickettsia in Blood and Tissue Samples from Laboratory Animals. PLoS ONE 2015, 10, e0116658. [Google Scholar] [CrossRef] [PubMed]
- Santos-Silva, M.M.; Sousa, R.; Santos, A.S.; Melo, P.; Encarnação, V.; Bacellar, F. Ticks Parasitizing Wild Birds in Portugal: Detection of Rickettsia aeschlimannii, R. helvetica and R. massiliae. Exp. Appl. Acarol. 2006, 39, 331–338. [Google Scholar] [CrossRef]
- Graham, R.I.; Mainwaring, M.C.; Du Feu, R. Detection of spotted fever group Rickettsia spp. from bird ticks in the U.K. Med. Vet. Entomol. 2010, 24, 340–343. [Google Scholar] [CrossRef] [PubMed]
- Pajoro, M.; Pistone, D.; Boccazzi, I.V.; Mereghetti, V.; Bandi, C.; Fabbi, M.; Scattorin, F.; Sassera, D.; Montagna, M. Molecular screening for bacterial pathogens in ticks (Ixodes ricinus) collected on migratory birds captured in northern Italy. Folia Parasitol. 2018, 65, 8. [Google Scholar] [CrossRef]
- Hajduskova, E.; Literak, I.; Papousek, I.; Costa, F.B.; Novakova, M.; Labruna, M.B.; Zdrazilova-Dubska, L. ‘Candidatus Rickettsia mendelii’, a novel basal group rickettsia detected in Ixodes ricinus ticks in the Czech Republic. Ticks Tick-Borne Dis. 2016, 7, 482–486. [Google Scholar] [CrossRef] [PubMed]
- Wallménius, K.; Barboutis, C.; Fransson, T.; Jaenson, T.G.; Lindgren, P.-E.; Nyström, F.; Olsen, B.; Salaneck, E.; Nilsson, K. Spotted fever Rickettsia species in Hyalomma and Ixodes ticks infesting migratory birds in the European Mediterranean area. Parasites Vectors 2014, 7, 318. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klitgaard, K.; Højgaard, J.; Isbrand, A.; Madsen, J.J.; Thorup, K.; Bødker, R. Screening for multiple tick-borne pathogens in Ixodes ricinus ticks from birds in Denmark during spring and autumn migration seasons. Ticks Tick-Borne Dis. 2019, 10, 546–552. [Google Scholar] [CrossRef] [PubMed]
- Lommano, E.; Dvořák, C.; Vallotton, L.; Jenni, L.; Gern, L. Tick-borne pathogens in ticks collected from breeding and migratory birds in Switzerland. Ticks Tick-Borne Dis. 2014, 5, 871–882. [Google Scholar] [CrossRef]
- Elfving, K.; Olsen, B.; Bergström, S.; Waldenström, J.; Lundkvist, A.; Sjöstedt, A.; Mejlon, H.; Nilsson, K. Dissemination of Spotted Fever Rickettsia Agents in Europe by Migrating Birds. PLoS ONE 2010, 5, e8572. [Google Scholar] [CrossRef] [Green Version]
- Špitalská, E.; Literák, I.; Kocianová, E.; Taragel’Ová, V. The Importance of Ixodes arboricolain Transmission of Rickettsia spp., Anaplasma phagocytophilum, and Borrelia burgdorferi Sensu Lato in the Czech Republic, Central Europe. Vector-Borne Zoonotic Dis. 2011, 11, 1235–1241. [Google Scholar] [CrossRef] [PubMed]
- Rollins, R.E.; Schaper, S.; Kahlhofer, C.; Frangoulidis, D.; Strauß, A.F.; Cardinale, M.; Springer, A.; Strube, C.; Bakkes, D.K.; Becker, N.S.; et al. Ticks (Acari: Ixodidae) on birds migrating to the island of Ponza, Italy, and the tick-borne pathogens they carry. Ticks Tick-Borne Dis. 2020, 12, 101590. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Sánchez, E.T.; Cardona-Romero, M.; Ortiz-Giraldo, M.; Tobón-Escobar, W.D.; Moreno-López, D.; Ossa-López, P.A.; Pérez-Cárdenas, J.E.; Labruna, M.B.; Martins, T.F.; Castaño-Villa, G.J.; et al. Rickettsia spp. in ticks (Acari: Ixodidae) from wild birds in Caldas, Colombia. Acta Trop. 2020, 213, 105733. [Google Scholar] [CrossRef] [PubMed]
- De Abreu, D.P.B.; Peixoto, M.P.; Luz, H.R.; Zeringóta, V.; Santolin, D.A.C.; Famadas, K.M.; Faccini, J.L.H.; McIntosh, D. Two for the price of one: Co-infection with Rickettsia Bellii and spotted fever group Rickettsia in Amblyomma (Acari: Ixodidae) ticks recovered from wild birds in Brazil. Ticks Tick-Borne Dis. 2019, 10, 101266. [Google Scholar] [CrossRef] [PubMed]
- Rocha, J.M.; de Oliveira, P.B.; Martins, T.F.; Faccini, J.L.H.; Sevá, A.P.; Luz, H.R.; Albuquerque, G.R. Diversity of ticks and detection of Rickettsia Amblyommatis infecting ticks on wild birds in anthropogenic landscapes in Bahia state, northeast Brazil. Exp. Appl. Acarol. 2021, 84, 227–239. [Google Scholar] [CrossRef] [PubMed]
- Zeringóta, V.; Maturano, R.; Luz, H.R.; Senra, T.O.S.; Daemon, E.; Faccini, J.L.H.; McIntosh, D. Molecular detection of Rickettsia rhipicephali and other spotted fever group Rickettsia species in Amblyomma ticks infesting wild birds in the state of Minas Gerais, Brazil. Ticks Tick-Borne Dis. 2017, 8, 81–89. [Google Scholar] [CrossRef]
- Chastel, C.; Demazure, M.; Chastel, O.; Genevois, F.; Legrand, M.C.; Grulet, O.; Odermatt, M.; Le Goff, F. A rickettsia-like organism from Ixodes uriae ticks collected on the Kerguelen Islands (French Subantarctic Territories). Acta Virol. 1993, 37, 11–20. [Google Scholar] [PubMed]
- Latas, P.; Auckland, L.D.; Teel, P.D.; Hamer, S.A. Argas (Persicargas) giganteus soft tick infection with Rickettsia hoogstraalii and relapsing fever Borrelia on wild avian species of the desert southwest, USA. J. Wild. Dis. 2020, 56, 113–125. [Google Scholar] [CrossRef] [PubMed]
- Diop, A.; Barker, S.; Eberhard, M.; Barker, D.; Nguyen, T.T.; Di Pinto, F.; Raoult, D.; Mediannikov, O. Rickettsia fournieri sp. nov., a novel spotted fever group rickettsia from Argas lagenoplastis ticks in Australia. Int. J. Syst. Evol. Microbiol. 2018, 68, 3781–3784. [Google Scholar] [CrossRef]
- Kim, H.-C.; Jiang, J.; Hang, J.; Kim, S.Y.; Yun, S.-M.; Park, C.-U.; Kim, M.; Chong, S.-T.; Farris, C.M.; Richards, A.L.; et al. Detection of Rickettsia lusitaniae Among Ornithodoros sawaii Soft Ticks Collected from Japanese Murrelet Seabird Nest Material from Gugul Island, Republic of Korea. J. Med Entomol. 2021, 58, 1376–1383. [Google Scholar] [CrossRef] [PubMed]
- Kawabata, H.; Ando, S.; Kishimoto, T.; Kurane, I.; Takano, A.; Nogami, S.; Fujita, H.; Tsurumi, M.; Nakamura, N.; Sato, F.; et al. First Detection of Rickettsiain Soft-Bodied Ticks Associated with Seabirds, Japan. Microbiol. Immunol. 2006, 50, 403–406. [Google Scholar] [CrossRef]
- Reeves, W.K.; Loftis, A.D.; Sanders, F.; Spinks, M.D.; Wills, W.; Denison, A.; Dasch, G. Borrelia, Coxiella, and Rickettsia in Carios capensis (Acari: Argasidae) from a brown pelican (Pelecanus occidentalis) rookery in South Carolina, USA. Exp. Appl. Acarol. 2006, 39, 321–329. [Google Scholar] [CrossRef] [PubMed]
- Lafri, I.; Leulmi, H.; Baziz-Neffah, F.; Lalout, R.; Mohamed, C.; Mohamed, K.; Parola, P.; Bitam, I. Detection of a novel Rickettsia sp. in soft ticks (Acari: Argasidae) in Algeria. Microbes Infect. 2015, 17, 859–861. [Google Scholar] [CrossRef] [PubMed]
- Dietrich, M.; Lebarbenchon, C.; Jaeger, A.; Le Rouzic, C.; Bastien, M.; Lagadec, E.; McCoy, K.D.; Pascalis, H.; Le Corre, M.; Dellagi, K.; et al. Rickettsia spp. in Seabird Ticks from Western Indian Ocean Islands, 2011–2012. Emerg. Infect. Dis. 2014, 20, 838–842. [Google Scholar] [CrossRef] [PubMed]
- Vilcins, I.-M.E.; Old, J.; Deane, E.M. Molecular detection of Rickettsia, Coxiella and Rickettsiella DNA in three native Australian tick species. Exp. Appl. Acarol. 2009, 49, 229–242. [Google Scholar] [CrossRef] [PubMed]
- Sprong, H.; Wielinga, P.R.; Fonville, M.; Reusken, C.; Brandenburg, A.H.; Borgsteede, F.; Gaasenbeek, C.; van der Giessen, J.W. Ixodes ricinus ticks are reservoir hosts for Rickettsia helvetica and potentially carry flea-borne Rickettsia species. Parasites Vectors 2009, 2, 41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krause, P.J. Human babesiosis. Int. J. Parasitol. 2019, 49, 165–174. [Google Scholar] [CrossRef] [PubMed]
- Schnittger, L.; Rodriguez, A.E.; Florin-Christensen, M.; Morrison, D.A. Babesia: A world emerging. Infect. Genet. Evol. 2012, 12, 1788–1809. [Google Scholar] [CrossRef] [PubMed]
- Jalovecka, M.; Sojka, D.; Ascencio, M.; Schnittger, L. Babesia Life Cycle—When Phylogeny Meets Biology. Trends Parasitol. 2019, 35, 356–368. [Google Scholar] [CrossRef]
- Bajer, A.; Dwużnik-Szarek, D. The specificity of Babesia-tick vector interactions: Recent advances and pitfalls in molecular and field studies. Parasites Vectors 2021, 14, 507. [Google Scholar] [CrossRef] [PubMed]
- Pierce, M.A. A taxonomic review of avian piroplasms of the genus Babesia Starcovici, 1893 (Apicomplexa: Piroplasmorida: Babesiidae). J. Nat. History 2000, 34, 317–332. [Google Scholar] [CrossRef]
- Remple, J.D. Intracellular Hematozoa of Raptors: A Review and Update. J. Avian Med. Surg. 2004, 18, 75–88. [Google Scholar] [CrossRef]
- Brossy, J.; Plös, A.; Blackbeard, J.; Kline, A. Diseases acquired by captive penguins: What happens when they are released into the wild? Mar. Ornithol. 1999, 27, 185–186. [Google Scholar]
- Snyman, A.; Vanstreels, R.E.T.; Nell, C.; Schaefer, A.M.; Stracke, T.; Parsons, N.J.; Ludynia, K.; Pistorius, P.A. Determinants of external and blood parasite load in African penguins (Spheniscus Demersus) admitted for rehabilitation. Parasitology 2020, 147, 577–583. [Google Scholar] [CrossRef] [PubMed]
- Paparini, A.; McInnes, L.M.; Di Placido, D.; Mackereth, G.; Tompkins, D.M.; Clough, R.; Ryan, U.M.; Irwin, P.J. Piroplasms of New Zealand seabirds. Parasitol. Res. 2014, 113, 4407–4414. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schurenkova, A.I. Sogdianella moshkovskii gen. nov. sp. nov. A parasite belonging to the Pinoplasmidea in a raptorial bird, Gypaetus Barb. (L.). Med. Parazitol. Parazitar. Bolezni 1938, 7, 932–937. [Google Scholar]
- Laird, M.; Lari, F.A. The avian blood parasite Babesia moshkosvkii (Schunenkova, 1938), with a record from Corvus splendens. Vieillot in Pakistan. Can. J. Zool. 1957, 35, 783–795. [Google Scholar] [CrossRef]
- Peirce, M.A.; Jakob-Hoff, R.M.; Twentyman, C. New species of haematozoa from Apterygidae in New Zealand. J. Nat. Hist. 2003, 37, 1797–1804. [Google Scholar] [CrossRef]
- Yabsley, M.J.; Greiner, E.; Tseng, F.S.; Garner, M.M.; Nordhausen, R.W.; Ziccardi, M.H.; Borjesson, D.L.; Zabolotzky, S. Description of Novel Babesia Species and Associated Lesions from Common Murres (Uria aalge) from California. J. Parasitol. 2009, 95, 1183–1188. [Google Scholar] [CrossRef] [PubMed]
- Peirce, M.; Parsons, N. Babesia ugwidiensis, a new species of Avian piroplasm from Phalacrocoracidae in South Africa. Parasite 2012, 19, 375–379. [Google Scholar] [CrossRef] [Green Version]
- Yabsley, M.J.; Vanstreels, R.E.; Shock, B.C.; Purdee, M.; Horne, E.C.; Peirce, M.A.; Parsons, N.J. Molecular characterization of Babesia peircei and Babesia ugwidiensis provides insight into the evolution and host specificity of avian piroplasmids. Int. J. Parasitol. Parasites Wildl. 2017, 6, 257–264. [Google Scholar] [CrossRef] [PubMed]
- Willette, M.; Ponder, J.; Cruz-Martinez, L.; Arent, L.; Padilla, I.B.; De Francisco, O.N.; Redig, P. Management of Select Bacterial and Parasitic Conditions of Raptors. Vet. Clin. North Am. Exot. Anim. Pract. 2009, 12, 491–517. [Google Scholar] [CrossRef]
- Chavatte, J.-M.; Okumura, C.; Landau, I. Redescription of Babesia ardeae Toumanoff, 1940, a parasite of Ardeidae, including molecular characterization. Parasitol. Res. 2017, 116, 1089–1097. [Google Scholar] [CrossRef] [PubMed]
- Vanstreels, R.E.T.; Woehler, E.J.; Ruoppolo, V.; Vertigan, P.; Carlile, N.; Priddel, D.; Finger, A.; Dann, P.; Herrin, K.V.; Thompson, P.; et al. Epidemiology and molecular phylogeny of Babesia sp. in Little Penguins Eudyptula minor in Australia. Int. J. Parasitol. Parasites Wildl. 2015, 4, 198–205. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Quillfeldt, P.; Martínez, J.; Bugoni, L.; Mancini, P.L.; Merino, S. Blood parasites in noddies and boobies from Brazilian offshore islands—Differences between species and influence of nesting habitat. Parasitology 2013, 141, 399–410. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vanstreels, R.E.T.; Braga, E.; Catão-Dias, J.L. Blood parasites of penguins: A critical review. Parasitology 2016, 143, 931–956. [Google Scholar] [CrossRef] [PubMed]
- Tarello, W. Effective imidocarb dipropionate therapy for Babesia shortti in falcons. Vet. Rec. 2006, 158, 239–240. [Google Scholar] [CrossRef] [PubMed]
- Parsons, N.; Voogt, N.; Schaefer, A.; Peirce, M.; Vanstreels, R. Occurrence of blood parasites in seabirds admitted for rehabilitation in the Western Cape, South Africa, 2001–2013. Vet. Parasitol. 2017, 233, 52–61. [Google Scholar] [CrossRef]
- Sergent, N.; Rogers, T.; Cunningham, M. Influence of biological and ecological factors on hematological values in wild Little Penguins, Eudyptula minor. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 2004, 138, 333–339. [Google Scholar] [CrossRef]
- Parsons, N.J.; Gous, T.A.; Schaefer, A.M.; Vanstreels, R.E. Health evaluation of African penguins (Spheniscus demersus) in southern Africa. Onderstepoort J. Vet. Res. 2016, 83, 13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vanstreels, R.E.T.; Hurtado, R.; Snyman, A.; Roberts, D.G.; Parsons, N.J.; Pistorius, P. Empirical Primaquine Treatment of Avian Babesiosis in Seabirds. J. Avian Med. Surg. 2019, 33, 258–264. [Google Scholar] [CrossRef]
- Yakunin, M.P.; Krivkova, A.M. New blood parasite species of the family Babesiidae (Piroplasmidae) in birds. Parazitol. Leningr. 1971, 5, 462–465. [Google Scholar]
- Peirce, M. Nuttallia França, 1909 (babesiidae) preoccupied by Nuttallia Dall, 1898 (psammobiidae): A re-appraisal of the taxonomic position of the avian piroplasms. Int. J. Parasitol. 1975, 5, 285–287. [Google Scholar] [CrossRef]
- Toumanoff, C. Le parasite sanguin endoglobulaire du héron cendré de L’Indochine (Ardea cinerea var. rectirostris Gould), Babesia (Nicollia) ardeae nov. sp. Revue Medicale Francaise d’Extreme Orient 1940, 19, 491–496. [Google Scholar]
- Mohammed, A.H.H. Systematic and Experimental Studies on Protozoal Blood Parasites of Egyptian Birds; Cairo University Press: Cairo, Egypt, 1958; pp. 77–104. [Google Scholar]
- Corradetti, A.; Scanga, M. Segnalazione in Europa di Babesia shortti (Mohammed, 1958) in Falco tinnunculus tinnunculus e brevi note su questo parassita. Parassitologia 1964, 6, 77–80. [Google Scholar]
- Merino, S. Babesia bennetti n. sp. from the yellow-legged gull (Larus cachinnans, Aves, Laridae) on Benidorm Island, Mediterranean Sea. J. Parasitol. 1998, 84, 422. [Google Scholar] [CrossRef]
- Earlé, R.; Huchzermeyer, F.; Bennett, G.; Brossy, J. Babesia peircei sp. nov. from the jackass penguin. S. Afr. J. Zool. 1993, 28, 88–90. [Google Scholar] [CrossRef]
- Work, T.; Rameyer, R.A. Description and Epizootiology of Babesia poelea n. sp. in Brown Boobies (Sula leucogaster (Boddaert)) on Sand Island, Johnston Atoll, Central Pacific. J. Parasitol. 1997, 83, 734–738. [Google Scholar] [CrossRef] [Green Version]
- Karshima, S.N.; Karshima, M.N.; Ahmed, M.I. Animal reservoirs of zoonotic Babesia species: A global systematic review and meta-analysis of their prevalence, distribution and species diversity. Vet. Parasitol. 2021, 298, 109539. [Google Scholar] [CrossRef]
- Hasle, G. Transport of ixodid ticks and tick-borne pathogens by migratory birds. Front. Cell. Infect. Microbiol. 2013, 3, 48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Flaisz, B.; Sulyok, K.M.; Kováts, D.; Kontschán, J.; Csörgő, T.; Csipak, Á.; Gyuranecz, M.; Hornok, S. Babesia genotypes in Haemaphysalis concinna collected from birds in Hungary reflect phylogeographic connections with Siberia and the Far East. Ticks Tick-Borne Dis. 2017, 8, 666–670. [Google Scholar] [CrossRef] [PubMed]
- Dwużnik-Szarek, D.; Mierzejewska, E.J.; Alsarraf, M.; Alsarraf, M.; Bajer, A. Pathogens detected in the tick Haemaphysalis concinna in Western Poland: Known and unknown threats. Exp. Appl. Acarol. 2021, 84, 769–783. [Google Scholar] [CrossRef] [PubMed]
- Madison-Antenucci, S.; Kramer, L.D.; Gebhardt, L.L.; Kauffman, E. Emerging Tick-Borne Diseases. Clin. Microbiol. Rev. 2020, 33, e00083-18. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Christie, J.; Köster, L.; Du, A.; Yao, C. Emerging Human Babesiosis with “Ground Zero” in North America. Microorganisms 2021, 9, 440. [Google Scholar] [CrossRef]
- Scott, J.; Pascoe, E.; Sajid, M.; Foley, J. Detection of Babesia odocoilei in Ixodes scapularis Ticks Collected in Southern Ontario, Canada. Pathogens 2021, 10, 327. [Google Scholar] [CrossRef] [PubMed]
- Gray, J.; Zintl, A.; Hildebrandt, A.; Hunfeld, K.-P.; Weiss, L. Zoonotic babesiosis: Overview of the disease and novel aspects of pathogen identity. Ticks Tick-Borne Dis. 2010, 1, 3–10. [Google Scholar] [CrossRef]
- Young, K.M.; Corrin, T.; Wilhelm, B.; Uhland, C.; Greig, J.; Mascarenhas, M.; Waddell, L.A. Zoonotic Babesia: A scoping review of the global evidence. PLoS ONE 2019, 14, e0226781. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Homer, M.J.; Aguilar-Delfin, I.; Telford, S.R., III; Krause, P.J.; Persing, D.H. Babesiosis. Clin. Microbiol. Rev. 2000, 13, 451–469. [Google Scholar] [CrossRef] [PubMed]
- Hamšíková, Z.; Kazimírová, M.; Haruštiaková, D.; Mahríková, L.; Slovák, M.; Berthová, L.; Kocianová, E.; Schnittger, L. Babesia spp. in ticks and wildlife in different habitat types of Slovakia. Parasites Vectors 2016, 9, 292. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Acharyya, S.G.; Khandelwal, A.; Kain, V.; Kumar, A.; Samajdar, J. Surface working of 304L stainless steel: Impact on microstructure, electrochemical behavior and SCC resistance. Mater. Charact. 2012, 72, 68–76. [Google Scholar] [CrossRef]
- Gray, J.S.; Estrada-Peña, A.; Zintl, A. Vectors of Babesiosis. Annu. Rev. Entomol. 2019, 64, 149–165. [Google Scholar] [CrossRef] [PubMed]
- Scott, J.; Sajid, M.; Pascoe, E.; Foley, J. Detection of Babesia odocoilei in Humans with Babesiosis Symptoms. Diagnostics 2021, 11, 947. [Google Scholar] [CrossRef]
- Poupon, M.-A.; Lommano, E.; Humair, P.-F.; Douet, V.; Rais, O.; Schaad, M.; Jenni, L.; Gern, L. Prevalence of Borrelia burgdorferi Sensu Lato in Ticks Collected from Migratory Birds in Switzerland. Appl. Environ. Microbiol. 2006, 72, 976–979. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Franke, J.; Fritzsch, J.; Tomaso, H.; Straube, E.; Dorn, W.; Hildebrandt, A. Coexistence of Pathogens in Host-Seeking and Feeding Ticks within a Single Natural Habitat in Central Germany. Appl. Environ. Microbiol. 2010, 76, 6829–6836. [Google Scholar] [CrossRef] [Green Version]
- Hildebrandt, A.; Franke, J.; Meier, F.; Sachse, S.; Dorn, W.; Straube, E. The potential role of migratory birds in transmission cycles of Babesia spp., Anaplasma phagocytophilum, and Rickettsia spp. Ticks Tick-Borne Dis. 2010, 1, 105–107. [Google Scholar] [CrossRef] [PubMed]
- Capligina, V.; Salmane, I.; Keišs, O.; Vilks, K.; Japina, K.; Baumanis, V.; Ranka, R. Prevalence of tick-borne pathogens in ticks collected from migratory birds in Latvia. Ticks Tick-Borne Dis. 2014, 5, 75–81. [Google Scholar] [CrossRef]
- Movila, A.; Reye, A.L.; Dubinina, H.V.; Tolstenkov, O.O.; Toderas, I.; Hübschen, J.M.; Muller, C.P.; Alekseev, A.N. Detection of Babesia Sp. EU1 and Members of Spotted Fever Group Rickettsiae in Ticks Collected from Migratory Birds at Curonian Spit, North-Western Russia. Vector-Borne Zoonotic Dis. 2011, 11, 89–91. [Google Scholar] [CrossRef] [PubMed]
- Wilhelmsson, P.; Pawełczyk, O.; Jaenson, T.G.T.; Waldenström, J.; Olsen, B.; Forsberg, P.; Lindgren, P.-E. Three Babesia species in Ixodes ricinus ticks from migratory birds in Sweden. Parasites Vectors 2021, 14, 183. [Google Scholar] [CrossRef] [PubMed]
- Kuo, C.-C.; Lin, Y.-F.; Yao, C.-T.; Shih, H.-C.; Chung, L.-H.; Liao, H.-C.; Lo-Hsuan, C.; Wang, H.-C. Tick-borne pathogens in ticks collected from birds in Taiwan. Parasites Vectors 2017, 10, 587. [Google Scholar] [CrossRef] [Green Version]
- Hersh, M.H.; Tibbetts, M.; Strauss, M.; Ostfeld, R.; Keesing, F. Reservoir Competence of Wildlife Host Species for Babesia microti. Emerg. Infect. Dis. 2012, 18, 1951–1957. [Google Scholar] [CrossRef]
- Scott, J.D.; Clark, K.L.; Durden, L.A. Presence of Babesia odocoilei and Borrelia burgdorferi Sensu Stricto in a Tick and Dual Parasitism of Amblyomma inornatum and Ixodes scapularis on a Bird in Canada. Healthcare 2019, 7, 46. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Milnes, E.L.; Thornton, G.; Léveillé, A.N.; Delnatte, P.; Barta, J.R.; Smith, D.A.; Nemeth, N. Babesia odocoilei and zoonotic pathogens identified from Ixodes scapularis ticks in southern Ontario, Canada. Ticks Tick-Borne Dis. 2019, 10, 670–676. [Google Scholar] [CrossRef] [PubMed]
- Scott, J.D.; Pascoe, E.L.; Sajid, M.S.; Foley, J.E. Detection of Babesia odocoilei in Ixodes scapularis Ticks Collected from Songbirds in Ontario and Quebec, Canada. Pathogens 2020, 9, 781. [Google Scholar] [CrossRef] [PubMed]
- Øines, Ø.; Radzijevskaja, J.; Paulauskas, A.; Rosef, O. Prevalence and diversity of Babesia spp. in questing Ixodes ricinus ticks from Norway. Parasites Vectors 2012, 5, 156. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Georgopoulou, I.; Tsiouris, V. The potential role of migratory birds in the transmission of zoonozis. Vet. Ital. 2008, 44, 671–677. [Google Scholar] [PubMed]
- Mircea, G.B.; Ioana, D.; Emoke, P.; Mihaela, N.; Marina, S. Wild birds as potential vectors for pathogen dissemination on migration routes in the Danube Delta Wetlands. Int. J. Curr. Microbiol. App. Sci. 2014, 3, 890–897. [Google Scholar]
Bird Species | Common Name | Test (Sample) | Rickettsia Agent Detected | Geographical Distribution | Reference |
---|---|---|---|---|---|
Gallinula chloropus | Common moorhen | PCR (blood) | Rickettsia sp. | Cyprus | [12] |
Phoenicopterus ruber | American flamingo | PCR (blood) | Rickettsia sp | Cyprus | [12] |
Hylocichla mustelina | Wood thrush | PCR (blood) | Rickettsia sp. “Argentina”/REA | Louisiana (USA) | [13] |
Passerina ciris | Painted bunting | PCR (blood) | Rickettsia sp. “Argentina”/REA | Louisiana (USA) | [13] |
Wilsonia citrina | Hooded warbler | PCR (blood) | Rickettsia sp. “Argentina”/REA | Louisiana (USA) | [13] |
Passerina cyanea | Indigo bunting | PCR (blood) | Rickettsia sp. “Argentina”/REA | Louisiana (USA) | [13] |
Geothlypis trichas | Common yellowthroat | PCR (blood) | Rickettsia sp. “Argentina”/REA | Louisiana (USA) | [13] |
Helmitheros vermivorus | Worm-eating warbler | PCR (blood) | Rickettsia sp. “Argentina”/REA | Louisiana (USA) | [13] |
Pheucticus ludoviacianus | Rose-breasted grosbeak | PCR (blood) | Rickettsia sp. “Argentina”/REA | Louisiana (USA) | [13] |
Oporomis formosus | Kentucky warbler | PCR (blood) | Rickettsia sp. “Argentina”/REA | Louisiana (USA) | [13] |
Catharus ustulatus | Swainson’s thrush | PCR (blood) | Rickettsia sp. “Argentina”/REA | Louisiana (USA) | [13] |
Melospiza georgiana | Swamp sparrow | PCR (blood) | Rickettsia sp. “Argentina”/REA | Louisiana (USA) | [13] |
Empidonax virescens | Acadian flycatcher | PCR (blood) | Rickettsia sp. “Argentina”/REA | Louisiana (USA) | [13] |
Erithacus rubecula | Robin | PCR (blood) | Rickettsia helvetica | Hungary | [14] |
Prunella modularis | Dunnock | PCR (blood) | Rickettsia helvetica | Hungary | [14] |
Columba livia domestica | Feral pigeon | PCR (spleen) | Rickettsia sp. | Italy | [15] |
Aptenodytes patagonicus | King penguin | Smear (blood) | Rickettsia-like | South Africa | [16] |
Phasianus colchicus | Pheasant | IFI (blood serum) | SFG Rickettsia sp. | Italy | [17] |
Struthio camelus | Ostrich | IFI (blood serum) | SFG Rickettsia sp. | Zimbabwe | [18] |
Bird Family | Test | Babesia Species | Geographical Distribution | References |
---|---|---|---|---|
Accipitridae | Microscopy | Babesia moshkovskii | Tadjikistan, Pakistan | [53,54] |
Alaudidae | Microscopy | Babesia kazachstanica | Kazachstan | [69,70] |
Apterygidae | Microscopy | Babesia kiwiensis | New Zealand | [55] |
Ardeinae | Microscopy | Babesia ardeae | Indochina | [71] |
Corvidae | Microscopy | Babesia frugilegica | Kazachstan, Pakistan | [69,70] |
Emberyzinae | Microscopy | Babesia emberizica | Kazachstan | [69,70] |
Falconidae | Microscopy | Babesia shortti | Egypt, Italy | [72,73] |
Gruidae | Microscopy | Babesia balearicae | Egypt | [70,72] |
Hirundinidae | Microscopy | Babesia rustica | Kazachstan, Kenya | [69,70] |
Laridae | Microscopy | Babesia bennetti | Spain | [74] |
Passeridae | Microscopy | Babesia mujunkumica | Kazachstan | [69,70] |
Spheniscidae | Microscopy | Babesia peircei | South Africa | [75] |
Sulidae | Microscopy | Babesia poelea | Sand Island, Johnston Atoll, Central Pacific | [76] |
Upupidae | Microscopy | Babesia krylovi | Kazachstan | [69,70] |
Alcidae | Microscopy and PCR | Babesia uriae | California (US) | [56] |
Phalacrocidae | Microscopy | Babesia ugwidiensis | South Africa | [57] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ebani, V.V.; Mancianti, F. Potential Role of Avian Populations in the Epidemiology of Rickettsia spp. and Babesia spp. Vet. Sci. 2021, 8, 334. https://doi.org/10.3390/vetsci8120334
Ebani VV, Mancianti F. Potential Role of Avian Populations in the Epidemiology of Rickettsia spp. and Babesia spp. Veterinary Sciences. 2021; 8(12):334. https://doi.org/10.3390/vetsci8120334
Chicago/Turabian StyleEbani, Valentina Virginia, and Francesca Mancianti. 2021. "Potential Role of Avian Populations in the Epidemiology of Rickettsia spp. and Babesia spp." Veterinary Sciences 8, no. 12: 334. https://doi.org/10.3390/vetsci8120334
APA StyleEbani, V. V., & Mancianti, F. (2021). Potential Role of Avian Populations in the Epidemiology of Rickettsia spp. and Babesia spp. Veterinary Sciences, 8(12), 334. https://doi.org/10.3390/vetsci8120334