Antimicrobial Susceptibility Profile of Several Bacteria Species Identified in the Peritoneal Exudate of Cows Affected by Parietal Fibrinous Peritonitis after Caesarean Section
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Sample Collection and Bacterial Culture
3.2. Disk Diffusion Assay
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Ethics Approval and Consent to Participat
References
- Braun, U.; Pusterla, N.; Anliker, H. Ultrasonographic findings in three cows with peritonitis in the left flank region. Vet. Rec. 1998, 142, 338–340. [Google Scholar] [CrossRef]
- Mijten, P. Puerperal Complications After Cesarean Section in Dairy Cows and in Double-Muscled Cows. Reprod. Domest. Anim. 1998, 33, 175–179. Available online: http://hdl.handle.net/1854/LU-179237 (accessed on 25 May 2021). [CrossRef]
- Lamain, G.; Touati, K.; Rollin, F. La peritonite fibrineuse parietale: Une complication dans l’espèce bovine. In Proceedings of the Groupement Technique Vétérinaire Conference, Nante, France, 26–28 May 2012; pp. 237–240. [Google Scholar]
- Djebala, S.; Evrard, J.; Moula, N.; Sartelet, A.; Bossaert, P. Atypical case of parietal fibrinous peritonitis in a Belgian Blue heifer without a history of laparotomy. Vet. Rec. Case Rep. 2020, 8, e001086. [Google Scholar] [CrossRef]
- Djebala, S.; Evrard, J.; Moula, N.; Gille, L.; Bayrou, C.; Eppe, J.; Casalta, H.; Sartelet, A.; Bossaert, P. Comparison between generalised peritonitis and parietal fibrinous peritonitis in cows after caesarean section. Vet. Rec. 2020, 105867. [Google Scholar] [CrossRef] [PubMed]
- Djebala, S.; Evrard, J.; Gregoire, F.; Thiry, D.; Bayrou, C.; Moula, N.; Sartelet, A.; Bossaert, P. Infectious Agents Identified by Real-Time PCR, Serology and Bacteriology in Blood and Peritoneal Exudate Samples of Cows Affected by Parietal Fibrinous Peritonitis after Caesarean Section. Vet. Sci. 2020, 7, 134. [Google Scholar] [CrossRef]
- Djebala, S.; Evrard, J.; Moula, N.; Gille, L.; Sartelet, A.; Bossaert, P. Parietal fibrinous peritonitis in cattle: A literature review. Vet Rec. 2021, 118. [Google Scholar] [CrossRef] [PubMed]
- Djebala, S.; Moula, N.; Bayrou, C.; Sartelet, A.; Bossaert, P.; Calixte, B.; Arnaud, S.; Philippe, B. Prophylactic antibiotic usage by Belgian veterinarians during elective caesarean section in Belgian blue cattle. Prev. Vet. Med. 2019, 172, 104785. [Google Scholar] [CrossRef] [PubMed]
- Nicol, J.M.; Billerey, M. Drainage d’un abcès péritonéal en pratique Chirurgie bovine. Point Vét. 2008, 282, 73–77. [Google Scholar]
- Bourdette, P.; Mirbach, S.; Hoolbecq, M.; Plassard, V.; El-bay, S.; Millemann, Y. “Clapier collé”: Un cas original de péritonite chez une montbéliarde en France. Point Vét. 2017, 372, 20–23. [Google Scholar]
- Gille, L.; Pilo, P.; Valgaeren, B.R.; van Driessche, L.; van Loo, H.; Bodmer, M.; Burki, S.; Boyen, F.; Haesebrouck, F.; Deprez, P.; et al. A new predilection site of Mycoplasma bovis: Postsurgical seromas in beef cattle. Vet. Microbiol. 2016, 186, 67–70. [Google Scholar] [CrossRef] [Green Version]
- Evrard, J.; Houtain, G.Y.; Gregoire, F.; Quinet, C.; Saulmont, M. Pathogens associated with postsurgical seromas in cattle. Proccedings of the 5th European Buiatrics Forum Poster, Bilbao, Spain, 4–6 October 2017; European Buiatrics Forum. French Buiatrics Association: Nice, France, 2017; p. 186. [Google Scholar]
- Desrochers, A.; Francoz, D. Clinical Management of Septic Arthritis in Cattle. Vet. Clin. Food. Anim. 2014, 30, 177–203. [Google Scholar] [CrossRef] [PubMed]
- Alkasir, L.; Wang, J.; Goa, J.; Ali, T.; Zhang, L.; Szenci, O.; Bajcsy, C.A.; Han, B. Properties and antimicrobial susceptibility of Trueperella pyogenes isolated from bovine mastitis in China. Acta Veterinaria Hungarica 2016, 64, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duse, A.; Persson-willer, K.; Pedersen, K. Microbial aetiology, antibiotic susceptibility and pathogen-specific risk factors for udder pathogens from clinical mastitis in dairy cows. Animals 2021, 11, 2113. [Google Scholar] [CrossRef]
- French Society of Microbiology: Antibiogram Committee of the French Society of Microbiology, 2018: Veterinary Recommendations. 2018. Available online: https://www.sfmmicrobiologie.org/wpcontent/uploads/2018/12/CASFMV2_SEPTEMBRE2018.pdf (accessed on 25 May 2020).
- Association Régionale de Santé et d’Identification Animales (Annual Report). Available online: https: //www.arsia.be/wp-content/uploads/documents-telechargeables/RA-2017-light-Quality.pdf (accessed on 25 May 2020).
- Yauri Condora, K.; Escalante, E.G.; Di Conza, J.; Gutkind, G. Detection of plasmid-mediated colistin resistance by colistin pre-diffusion and inhibition with EDTA test (CPD-E) in Enterobactereaceae. J. Microbiol. Methods 2019, 167, 105759. [Google Scholar] [CrossRef]
- European Committee on Antimicrobial Susceptibility Testing (EUCAST). Antimicrobial Wild Type Distributions of Microorganisms. Available online: https://mic.eucast.org/Eucast2/SearchController/search.jsp?action=performSearch&BeginIndex=0&Micdif=mic&NumberIndex=50&Antib=43&Specium=-1 (accessed on 5 November 2021).
- Magiorakos, A.P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.E.; Giske, C.G.; Harbarth, S.; Hindler, J.F.; Kahlmeter, G.; Olsson-Liljequist, B.; et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistantbacteria: An international expert proposal for interim standarddefinitions for acquired resistance. Clin. Microbiol. Infect. 2012, 18, 268–281. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koskinen, M.T.; Wellenberg, G.J.; Sampimon, O.C.; Holopainen, J.; Rothkamp, A.; Salmikivi, L.; Van Haeringen, W.A.; Lam, T.J.G.M.; Pyörälä, S. Field comparison of real-time polymerase chain reaction and bacterial culture for identification of bovine mastitis bacteria. J. Dairy Sci. 2010, 93, 5707–5715. [Google Scholar] [CrossRef] [Green Version]
- Di Gioia, D.; Mazzola, G.; Nikodinoska, I.; Aloisio, I.; Langerholc, T.; Rossi, M.; Raimondi, S.; Melero, B.; Rovira, J. Lactic acid bacteria as protective cultures in fermented pork meat toprevent Clostridium spp. growth. Int. J. Food. Microbiol. 2016, 235, 53–59. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mijten, P.; van den Bogaard, A.E.J.M.; Hazen, M.J.; de Kruif, A. Bacterial contamination of fetal fluids at the time of caesarean section in the cow. Theriogenology 1996, 97, 513–521. [Google Scholar] [CrossRef]
- Mohammed, A.N. Field study on evaluation of the efficacy and usability of two disinfectants for drinking water treatment at small cattle breeders and dairy cattle farms. Environ. Monit. Assess. 2016, 188, 151–162. [Google Scholar] [CrossRef]
- Sheldon, I.M.; Williams, E.J.; Miller, A.N.; Nash, D.; Herath, S. Uterine diseases in cattle after parturition. Vet. J. 2008, 176, 115–121. [Google Scholar] [CrossRef]
- Kolenda, R.; Burdukiewicz, M.; Schierack, P. A systematic review and meta-analysis of the epidemiology of pathogenic Escherichia coli of calves and the role of calves as reservoirs for human pathogenic E. coli. Front. Microbiol. 2015, 5, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Rzewuska, M.; Kwiecien, E.; Chrobak-Chmiel, D.; Kizerwetter-Swida, M.; Stefanska, I.; Gierynska, M. Pathogenicity and Virulence of Trueperella pyogenes: A Review. Int. J. Mol. Sci. 2019, 2720, 2737. [Google Scholar] [CrossRef] [Green Version]
- Cray, W.C.J.; Casey, T.A.; Bosworth, B.T.; Rasmussen, N. Effect of dietary stress on fecal shedding of Escherichia coli O157:H7 in calves. Appl. Environ. Microbiol. 1998, 64, 1975–1979. [Google Scholar] [CrossRef] [Green Version]
- Berry, E.D.; Wells, J.E. Escherichia coli O157:H7: Recent advances in research on occurrence, transmission, and control in cattle and the production environment. Adv. Food. Nutr. Res. 2010, 60, 67–117. [Google Scholar] [CrossRef] [PubMed]
- Munns, K.D.; Selinger, L.B.; Stanford, K.; Guan, L.; Callaway, T.R.; McAllister, T.A. Perspectives on Super-Shedding of Escherichia coli O157:H7 by Cattle. Foodborne Pathog. Dis. 2015, 12, 89–103. [Google Scholar] [CrossRef] [PubMed]
- Saud, B.; Paude, G.; Khichaju, S.; Bajracharya, D.; Dhungana, G.; Awasthi, M.S.; Shrestha, V. Multidrug-Resistant Bacteria from Raw Meat of Buffalo and Chicken, Nepal. Vet. Med. Int. 2019, 2019, 7960268. [Google Scholar] [CrossRef] [Green Version]
- Mori, K.; kamagata, Y. The challenges of studying the anaerobic microbial world. Microbes Environ. 2014, 29, 335–337. [Google Scholar] [CrossRef] [Green Version]
- Versporten, A.; Bolokhovets, G.; Ghazaryan, L.; Abilova, V.; Pyshnik, G.; Spasojevic, T.; Korinteli, I.; Raka, L.; Kambaralieva, B.; Cizmovic, L.; et al. Antibiotic use in eastern Europe: A cross-national database study in coordination with the WHO Regional Office for Europe. Lancet Infect. Dis. 2014, 14, 381–387. [Google Scholar] [CrossRef]
- O’Hara, C.M.; Brenner, F.W.; Miller, J.M. Classification, Identification, and Clinical Significance of Proteus, Providencia, and Morganella. Clin. Microbiol. Rev. 2000, 13, 534–536. [Google Scholar] [CrossRef]
- McCoy, A.J.; Liu, H.; Falla, T.J.; Gunn, J.S. Identification of Proteus mirabilis mutants with increased sensitivity to antimicrobial peptides. Antimicrob. Agents Chemother. 2001, 45, 2030–2037. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, S.H.; Wei, C.I.; An, H. Molecular Characterization of Multidrug-Resistant Proteus mirabilis Isolates from Retail Meat Products. J. Food. Prot. 2005, 68, 1408–1413. [Google Scholar] [CrossRef] [PubMed]
- Wong, M.H.Y.; Wan, H.Y.; Chen, S. Characterization of Multidrug-Resistant Proteus mirabilis Isolated from Chicken Carcasses. Foodborne Pathog. Dis. 2013, 10, 177–182. [Google Scholar] [CrossRef] [PubMed]
- Karkman, A.; Do, T.T.; Walsh, F.; Virta, M.J.P. Antibiotic-Resistance Genes in Waste Water. Trends Microbiol. 2019, 26, 220–228. [Google Scholar] [CrossRef] [Green Version]
- Callens, B.; Cargnel, M.; Sarrazin, S.; Dewulf, J.; Hoet, B.; Vermeersch, K.; Pierre Wattiau, P.; Welby, S. Associations between a decreased veterinary antimicrobial use andresistance in commensal Escherichia colifrom Belgian livestock species (2011–2015). Prev. Vet. Med. 2018, 157, 50–58. [Google Scholar] [CrossRef] [Green Version]
- Daeseleire, E.; De Graef, E.; Rasschaert, G.; De Mulder, T.; Van den Meersche, T.; Van Coillie, E.; Dewulf, J.; Heyndrickx, M. Antibiotic use and resistance in animals: Belgian initiatives. Drug Test. Analysis 2016, 8, 549–555. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chantziaras, I.; Boyen, F.; Callens, B.; Dewulf, J. Correlation between veterinary antimicrobial use and antimicrobial resistance in food-producing animals: A report on seven countries. J. Antimicrob. Chemother. 2014, 69, 827–834. [Google Scholar] [CrossRef] [Green Version]
- Lawrence, K.E.; Wakeforda, L.; Toombs-Ruane, L.J.; MacLachlana, C.; Pfeffera, H.; Gibsonb, I.R.; Benschop, J.; Riley, C.B. Bacterial isolates, antimicrobial susceptibility and multidrug resistance in cultures from samples collected from beef and pre-production dairy cattle in New Zealand (2003–2016). N. Z. Vet. J. 2019, 4, 180–187. [Google Scholar] [CrossRef] [PubMed]
- Ashrafi Tamai, I.; Mohammadzadeh, A.; Zahraei Salehi, T.; Mahmoodi, P. Genomic characterisation, detection of genes encoding virulence factors and evaluation of antibiotic resistance of Trueperella pyogenes isolated from cattle with clinical metritis. Antonie Van Leeuwenhoek 2018, 111, 2441–2453. [Google Scholar] [CrossRef] [PubMed]
- Toutain, P.L.; Bousquet-Mélou, A.; Damborg, P.; Ferran1, A.A.; Mevius, D.; Pelligand, L.; Veldman, K.T.; Lees, P. En route towards European clinical breakpoints for veterinary antimicrobial susceptibility testing: A Position Paper Explaining the VetCAST Approach. Front. Microbiol. 2017, 8, 2344. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Aerobic/Facultative Anaerobic Bacteria Cultured | Number of Positive Samples | Anaerobic Bacteria Cultured | Number of Positive Samples |
---|---|---|---|
Trueperella pyogenes | 107 | Clostridium perfringens | 6 |
Escherichia coli | 38 | Fusobacterium necrophorum | 3 |
Proteus mirabilis | 6 | Bacteroides sp. | 1 |
Streptococcus uberis | 3 | Bacteroides fragilis | 1 |
Helcococcus ovis | 2 | Helcococcus ovis | 1 |
Mannheimia varigena | 2 | Peptoniphilus indolicus | 1 |
Staphylococcus aureus | 2 | / | / |
Streptococcus dysgalactiae | 2 | / | / |
Providencia rettgeri | 2 | / | / |
Proteus sp. | 2 | / | / |
Proteus vulgaris | 1 | / | / |
Helcococcus sp. | 1 | / | / |
Salmonella typhimurium | 1 | / | / |
Streptococcus mitis | 1 | / | / |
Pseudomonas aeruginosa | 1 | / | / |
Actinobacillus rossii | 1 | / | / |
contaminants | 9 | / | 1 |
Total | 172 strains | Total | 13 strains |
Bacteria Tested | E. coli (38) | P. mirabilis (6) | S. uberis (3) | P. rettgeri (2) | S. dysgalactiae (2) | M. varigena (2) | S. mitis (1) | S. aureus (1) | A. rossii (1) | P. sp (1) | P. aeruginosa (1) | S. typhimurium (1) | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Antibiotics | S | R | I | S | R | S | R | S | R | S | R | S | R | S | R | S | R | S | R | S | R | I | S | R | S | R |
amoxicillin-clavulanate | 15 | 10 | 13 | 5 | 1 | 3 | 0 | 0 | 2 | 2 | 0 | 2 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 1 |
amoxicillin | 11 | 27 | 0 | 2 | 4 | / | / | 0 | 2 | / | / | 2 | 0 | / | / | / | / | / | / | 0 | 1 | 0 | 0 | 1 | 0 | 1 |
cefquinome | 30 | 8 | 0 | 6 | 0 | 3 | 0 | 1 | 1 | 2 | 0 | 2 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 |
ceftiofur | 31 | 7 | 0 | 6 | 0 | 3 | 0 | 1 | 1 | 2 | 0 | 2 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 0 |
colistin | 38 | 0 | 0 | 0 | 6 | / | / | 0 | 2 | / | / | 2 | 0 | / | / | / | / | / | / | 0 | 1 | 0 | 1 | 0 | 1 | 0 |
enrofloxacin | 27 | 11 | 0 | 3 | 3 | 3 | 0 | 1 | 1 | 2 | 0 | 2 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 |
florfenicol | 20 | 16 | 2 | 5 | 1 | / | / | 1 | 1 | / | / | 2 | 0 | / | / | / | / | / | / | 0 | 1 | 0 | 0 | 1 | 0 | 1 |
gentamicin | 25 | 13 | 0 | 4 | 2 | 3 | 0 | 1 | 1 | 2 | 0 | 2 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 |
kanamycin | 15 | 23 | 0 | 2 | 4 | / | / | 0 | 2 | / | / | 2 | 0 | / | / | / | / | / | / | 0 | 1 | 0 | 0 | 1 | 1 | 0 |
marbofloxacin | 27 | 10 | 1 | 5 | 1 | 3 | 0 | 1 | 1 | 2 | 0 | 2 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 0 |
tetracycline | 12 | 26 | 0 | 0 | 6 | 1 | 2 | 0 | 2 | 1 | 1 | 2 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 1 |
trimethoprim-sulfonamide | 15 | 23 | 0 | 2 | 4 | 3 | 0 | 0 | 2 | 2 | 0 | 2 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 0 |
cephalexin | / | / | / | / | / | 3 | 0 | / | / | 2 | 0 | / | / | 1 | 0 | 0 | 1 | 1 | 0 | / | / | / | / | / | / | / |
cefoxitin | / | / | / | / | / | 3 | 0 | / | / | / | / | / | / | / | / | 0 | 1 | 1 | 0 | / | / | / | / | / | / | / |
erythromycin | / | / | / | / | / | 1 | 2 | / | / | 2 | 0 | / | / | 0 | 1 | 1 | 0 | 1 | 0 | / | / | / | / | / | / | / |
lincomycin | / | / | / | / | / | 1 | 2 | / | / | 2 | 0 | / | / | 1 | 0 | 1 | 0 | 1 | 0 | / | / | / | / | / | / | / |
oxacillin | / | / | / | / | / | 3 | 0 | / | / | 2 | 0 | / | / | 0 | 1 | 0 | 1 | 1 | 0 | / | / | / | / | / | / | / |
penicillin | / | / | / | / | / | 2 | 1 | / | / | 2 | 0 | / | / | 1 | 0 | 0 | 1 | 1 | 0 | / | / | / | / | / | / | / |
spiramycin | / | / | / | / | / | 1 | 2 | / | / | 2 | 0 | / | / | 1 | 0 | 1 | 0 | 1 | 0 | / | / | / | / | / | / | / |
tildipirosin | / | / | / | / | / | / | / | / | / | / | / | / | / | / | / | / | / | 1 | 0 | / | / | / | / | / | / | / |
tulathromycin | / | / | / | / | / | / | / | / | / | / | / | / | / | / | / | / | / | 1 | 0 | / | / | / | / | / | / | / |
gamitromycin | / | / | / | / | / | / | / | / | / | / | / | / | / | / | / | / | / | 1 | 0 | / | / | / | / | / | / | / |
Species susceptibility | 266 | 174 | 16 | 32 | 40 | 36 | 9 | 6 | 18 | 27 | 1 | 24 | 0 | 12 | 2 | 5 | 10 | 15 | 0 | 3 | 7 | 2 | 5 | 7 | 8 | 4 |
Total of tested strains | 456 | 72 | 45 | 24 | 28 | 24 | 14 | 15 | 15 | 12 | 12 | 12 |
Bacteria Tested (Number of Tests) | Weakly Resistant: Resistant to Less than Three Tested Antimicrobial Classes | Multidrug Resistant: Resistant to Three or More Tested Antimicrobial Classes | Extensively Drug Resistant: Resistant to All Except One or Two Antimicrobial Classes | Pandrug Resistant: Resistant to All Tested Antimicrobials | p-Value |
---|---|---|---|---|---|
E. coli (38) | 12 (32%) | 18 (47%) | 8 (21%) | 0 | p < 0.001 |
P. mirabilis (6) | 1 (17%) | 3 (50%) | 2 (33%) | 0 | / |
S. uberis (3) | 3 (100%) | 0 | 0 | 0 | / |
P. rettgeri (2) | 0 | 1 (50%) | 0 | 1 (50%) | / |
S. dysgalactiae (2) | 2 (100%) | 0 | 0 | 0 | / |
M. varigena (2) | 2 (100%) | 0 | 0 | 0 | / |
S. mitis (1) | 1 (100%) | 0 | 0 | 0 | / |
S. aureus (1) | 0 | 1 (100%) | 0 | 0 | / |
A. rossii (1) | 1 (100%) | 0 | 0 | 0 | / |
P. sp (1) | 0 | 0 | 1 (100%) | 0 | / |
P. aeruginosa (1) | 0 | 0 | 1 (100%) | 0 | / |
S. typhimurium (1) | 0 | 1 (100%) | 0 | 0 | / |
Total | 22/59 (37%) | 24/59 (41%) | 12/59 (20%) | 1/59 (2%) | p < 0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Djebala, S.; Evrard, J.; Gregoire, F.; Bayrou, C.; Gille, L.; Eppe, J.; Casalta, H.; Frisée, V.; Moula, N.; Sartelet, A.; et al. Antimicrobial Susceptibility Profile of Several Bacteria Species Identified in the Peritoneal Exudate of Cows Affected by Parietal Fibrinous Peritonitis after Caesarean Section. Vet. Sci. 2021, 8, 295. https://doi.org/10.3390/vetsci8120295
Djebala S, Evrard J, Gregoire F, Bayrou C, Gille L, Eppe J, Casalta H, Frisée V, Moula N, Sartelet A, et al. Antimicrobial Susceptibility Profile of Several Bacteria Species Identified in the Peritoneal Exudate of Cows Affected by Parietal Fibrinous Peritonitis after Caesarean Section. Veterinary Sciences. 2021; 8(12):295. https://doi.org/10.3390/vetsci8120295
Chicago/Turabian StyleDjebala, Salem, Julien Evrard, Fabien Gregoire, Calixte Bayrou, Linde Gille, Justine Eppe, Hélène Casalta, Vincent Frisée, Nassim Moula, Arnaud Sartelet, and et al. 2021. "Antimicrobial Susceptibility Profile of Several Bacteria Species Identified in the Peritoneal Exudate of Cows Affected by Parietal Fibrinous Peritonitis after Caesarean Section" Veterinary Sciences 8, no. 12: 295. https://doi.org/10.3390/vetsci8120295
APA StyleDjebala, S., Evrard, J., Gregoire, F., Bayrou, C., Gille, L., Eppe, J., Casalta, H., Frisée, V., Moula, N., Sartelet, A., Thiry, D., & Bossaert, P. (2021). Antimicrobial Susceptibility Profile of Several Bacteria Species Identified in the Peritoneal Exudate of Cows Affected by Parietal Fibrinous Peritonitis after Caesarean Section. Veterinary Sciences, 8(12), 295. https://doi.org/10.3390/vetsci8120295