Bayesian Estimation of Diagnostic Accuracy of Three Diagnostic Tests for Bovine Tuberculosis in Egyptian Dairy Cattle Using Latent Class Models
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Sample Collection
2.3. Diagnostic Tests
2.3.1. Single Cervical Tuberculin Test (SCT)
2.3.2. Rapid Lateral-Flow Test (RLFT)
2.3.3. Real-Time PCR (RT-PCR)
2.4. Post-Mortem Examination
2.5. Statistical Analysis
3. Results
3.1. Descriptive Results
3.2. Bayesian Models
3.3. Post-Mortem Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ritacco, V.; Kantor, I.N.d.; Barrera, L.; Nader, A.; Bernardelli, A.; Torrea, G.; Errico, F.; Fliess, E. Assessment of the sensitivity and specificity of Enzyme-Linked Immunosorbent Assay (ELISA) for the detection of mycobacterial antibodies in bovine tuberculosis. J. Vet. Med. Ser. B 1987, 34, 119–125. [Google Scholar] [CrossRef]
- Myers, J.A.; Steele, J.H. Attempts to control tuberculosis among cattle. In Bovine Tuberculosis Control in Man and Animals; Warren H Green, Inc.: Saint Louis, MO, USA, 1969; pp. 74–76. [Google Scholar]
- Zinsstag, J.; Schelling, E.; Roth, F.; Kazwala, R.; Thoen, C.; Steele, J. Economics of bovine tuberculosis. Mycobact. Bovis Infect. Anim. Hum. 2006, 2, 68–83. [Google Scholar]
- OIE. Bovine Tuberculosis; Chapter 2.4.7; World Organisation for Animal Health: Paris, France, 2014. [Google Scholar]
- McNair, J.; Corbett, D.; Girvin, R.; Mackie, D.; Pollock, J. Characterization of the early antibody response in bovine tuberculosis: MPB83 is an early target with diagnostic potential. Scand. J. Immunol. 2001, 53, 365–371. [Google Scholar] [CrossRef] [PubMed]
- Chambers, M.A.; Crawshaw, T.; Waterhouse, S.; Delahay, R.; Hewinson, R.G.; Lyashchenko, K.P. Validation of the BrockTB Stat-Pak assay for detection of tuberculosis in Eurasian badgers (Meles meles) and influence of disease severity on diagnostic accuracy. J. Clin. Microbiol. 2008, 46, 1498–1500. [Google Scholar] [CrossRef] [Green Version]
- Kaya, A.; Icen, H.; Tuzcu, N.; ŞİMŞEK, A.; YEŞİLMEN, S.; Kochan, A.; Yildirim, I.; Alan, A. Comparison of Tuberculin Skin Test, IFN-γ Assay, Real Time PCR and Lateral Flow Rapid Test in Diagnosis of Field Outbreaks of Bovine Tuberculosis. Kafkas Univ. Vet. Fak. Derg. 2015, 21, 739–743. [Google Scholar]
- De la Cruz, M.L.; Branscum, A.J.; Nacar, J.; Pozo, P.; Perez, A.; Grau, A.; Saez, J.L.; de Juan, L.; Diaz, R.; Minguez, O. Evaluation of the performance of the IDvet IFN-gamma test for diagnosis of bovine tuberculosis in Spain. Front. Vet. Sci. 2018, 5, 229. [Google Scholar] [CrossRef] [PubMed]
- Abbate, J.M.; Arfuso, F.; Iaria, C.; Arestia, G.; Lanteri, G. Prevalence of Bovine Tuberculosis in Slaughtered Cattle in Sicily, Southern Italy. Animals 2020, 10, 1473. [Google Scholar] [CrossRef] [PubMed]
- Hartnack, S.; Torgerson, P. The accuracy of the single intradermal comparative skin test for the diagnosis of bovine tuberculosis-estimated from a systematic literature search. Mycobact. Dis. 2012, 2, 1000120. [Google Scholar] [CrossRef] [Green Version]
- Courcoul, A.; Moyen, J.-L.; Brugere, L.; Faye, S.; Henault, S.; Gares, H.; Boschiroli, M.-L. Estimation of sensitivity and specificity of bacteriology, histopathology and PCR for the confirmatory diagnosis of bovine tuberculosis using latent class analysis. PLoS ONE 2014, 9, e90334. [Google Scholar] [CrossRef]
- Collins, J.; Huynh, M. Estimation of diagnostic test accuracy without full verification: A review of latent class methods. Stat. Med. 2014, 33, 4141–4169. [Google Scholar] [CrossRef] [Green Version]
- Kostoulas, P.; Nielsen, S.S.; Branscum, A.J.; Johnson, W.O.; Dendukuri, N.; Dhand, N.K.; Toft, N.; Gardner, I.A. STARD-BLCM: Standards for the Reporting of Diagnostic accuracy studies that use Bayesian Latent Class Models. Prev. Vet. Med. 2017, 138, 37–47. [Google Scholar] [CrossRef]
- OIE. Standard Operating Procedure for OIE Registration of Diagnostic Kits, Guide and Administrative Forms Paris: World Organisation for Animal Health (OIE); World Organisation for Animal Health: Paris, France, 2012. [Google Scholar]
- Abdellrazeq, G.; Elnaggar, M.; Osman, H.; Davis, W.; Singh, M. Prevalence of bovine tuberculosis in Egyptian cattle and the standardization of the interferon-gamma assay as an ancillary test. Transbound. Emerg. Dis. 2016, 63, 497–507. [Google Scholar] [CrossRef]
- Good, M.; Clegg, T.A.; Murphy, F.; More, S.J. The comparative performance of the single intradermal comparative tuberculin test in Irish cattle, using tuberculin PPD combinations from different manufacturers. Vet. Microbiol. 2011, 151, 77–84. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Humblet, M.-F.; Walravens, K.; Salandre, O.; Boschiroli, M.; Gilbert, M.; Berkvens, D.; Fauville-Dufaux, M.; Godfroid, J.; Dufey, J.; Raskin, A. Monitoring of the intra-dermal tuberculosis skin test performed by Belgian field practitioners. Res. Vet. Sci. 2011, 91, 199–207. [Google Scholar] [CrossRef] [Green Version]
- Bezos, J.; Casal, C.; Romero, B.; Schroeder, B.; Hardegger, R.; Raeber, A.J.; López, L.; Rueda, P.; Domínguez, L. Current ante-mortem techniques for diagnosis of bovine tuberculosis. Res. Vet. Sci. 2014, 97, S44–S52. [Google Scholar] [CrossRef]
- Elsohaby, I.; Ahmed, H.; El-Diasty, M.; Elgedawy, A.; Mahrous, E.; El Hofy, F. Serological and molecular evidence of Mycobacterium bovis in dairy cattle and dairy farm workers under the intensive dairy production system in Egypt. J. Appl. Microbiol. 2020, 129, 1207–1219. [Google Scholar] [CrossRef]
- OIE; World Organization for Animal Health. Manual of Diagnostic Tests and Vaccines for Terrestrial Animals. Adopted from Version Adopted by the World Assembly of Delegates of the OIE in May 2009. 2018. Available online: http://www.oie.int/fileadmin/Home/eng/Health_standards/tahm/2.04.06_BOVINE_TB.pdf (accessed on 10 April 2021).
- Lesslie, I.W.; Herbert, C.N.; Burn, K.J.; MacClancy, B.N.; Donnelly, W.J. Comparison of the specificity of human and bovine tuberculin PPD for testing cattle. 1--Republic of Ireland. Vet. Rec. 1975, 96, 332–334. [Google Scholar] [CrossRef] [PubMed]
- Thomas, A. Making BUGS open. R News 2006, 6, 12–17. [Google Scholar]
- Hui, S.L.; Walter, S.D. Estimating the error rates of diagnostic tests. Biometrics 1980, 36, 167–171. [Google Scholar] [CrossRef] [PubMed]
- Skuce, R.A.; Allen, A.R.; McDowell, S.W. Herd-level risk factors for bovine tuberculosis: A literature review. Vet. Med. Int. 2012, 2012, 621210. [Google Scholar] [CrossRef]
- Gardner, I.A.; Stryhn, H.; Lind, P.; Collins, M.T. Conditional dependence between tests affects the diagnosis and surveillance of animal diseases. Prev. Vet. Med. 2000, 45, 107–122. [Google Scholar] [CrossRef]
- Toft, N.; Jørgensen, E.; Højsgaard, S. Diagnosing diagnostic tests: Evaluating the assumptions underlying the estimation of sensitivity and specificity in the absence of a gold standard. Prev. Vet. Med. 2005, 68, 19–33. [Google Scholar] [CrossRef]
- Lahuerta-Marin, A.; Milne, M.; McNair, J.; Skuce, R.; McBride, S.; Menzies, F.; McDowell, S.; Byrne, A.; Handel, I.; Bronsvoort, B.d.C. Bayesian latent class estimation of sensitivity and specificity parameters of diagnostic tests for bovine tuberculosis in chronically infected herds in Northern Ireland. Vet. J. 2018, 238, 15–21. [Google Scholar] [CrossRef] [PubMed]
- O'Hagan, M.; Ni, H.; Menzies, F.; Pascual-Linaza, A.; Georgaki, A.; Stegeman, J. Test characteristics of the tuberculin skin test and post-mortem examination for bovine tuberculosis diagnosis in cattle in Northern Ireland estimated by Bayesian latent class analysis with adjustments for covariates. Epidemiol. Infect. 2019, 147, E209. [Google Scholar] [CrossRef] [Green Version]
- Šimundić, A.-M. Measures of diagnostic accuracy: Basic definitions. Ejifcc 2009, 19, 203. [Google Scholar]
- Toft, N.; Innocent, G.T.; Gettinby, G.; Reid, S.W. Assessing the convergence of Markov Chain Monte Carlo methods: An example from evaluation of diagnostic tests in absence of a gold standard. Prev. Vet. Med. 2007, 79, 244–256. [Google Scholar] [CrossRef] [PubMed]
- Gelman, A.; Hwang, J.; Vehtari, A. Understanding predictive information criteria for Bayesian models. Stat. Comput. 2014, 24, 997–1016. [Google Scholar] [CrossRef]
- Quirin, R.; Rasolofo, V.; Andriambololona, R.; Ramboasolo, A.; Rasolonavalona, T.; Raharisolo, C.; Rakotoaritahina, H.; Chanteau, S.; Boisier, P. Validity of Intradermal Tuberculin Testing for the Screening of Bovine Tuberculosis in Madagascar. Onderstepoort J. Vet. Res. 2001, 68, 231–238. [Google Scholar]
- Norby, B.; Bartlett, P.C.; Fitzgerald, S.D.; Granger, L.M.; Bruning-Fann, C.S.; Whipple, D.L.; Payeur, J.B. The sensitivity of gross necropsy, caudal fold and comparative cervical tests for the diagnosis of bovine tuberculosis. J. Vet. Diagn. Investig. 2004, 16, 126–131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Greiner, M.; Gardner, I. Epidemiologic issues in the validation of veterinary diagnostic tests. Prev. Vet. Med. 2000, 45, 3–22. [Google Scholar] [CrossRef]
- Meiring, C.; van Helden, P.D.; Goosen, W.J. TB control in humans and animals in South Africa: A perspective on problems and successes. Front. Vet. Sci. 2018, 5, 298. [Google Scholar] [CrossRef] [Green Version]
- Casal, C.; Infantes, J.A.; Risalde, M.A.; Díez-Guerrier, A.; Domínguez, M.; Moreno, I.; Romero, B.; de Juan, L.; Sáez, J.L.; Juste, R.; et al. Antibody detection tests 298 improve the sensitivity of tuberculosis diagnosis in cattle. Res. Vet. Sci. 2017, 112, 214–221. [Google Scholar] [CrossRef] [PubMed]
- Casal, C.; Alvarez, J.; Bezos, J.; Quick, H.; Díez-Guerrier, A.; Romero, B.; Saez, J.L.; Liandris, E.; Navarro, A.; Perez, A. Effect of the inoculation site of bovine purified protein derivative (PPD) on the skin fold thickness increase in cattle from officially tuberculosis free and tuberculosis-infected herds. Prev. Vet. Med. 2015, 121, 86–92. [Google Scholar] [CrossRef]
- McCallan, L.; Brooks, C.; Barry, C.; Couzens, C.; Young, F.J.; McNair, J.; Byrne, A.W. Serological test performance for bovine tuberculosis in cattle from herds with evidence of on-going infection in Northern Ireland. PLoS ONE 2021, 16, e0245655. [Google Scholar] [CrossRef]
- Singhla, T.; Boonyayatra, S.; Chulakasian, S.; Lukkana, M.; Alvarez, J.; Sreevatsan, S.; Wells, S.J. Determination of the sensitivity and specificity of bovine tuberculosis screening tests in dairy herds in Thailand using a Bayesian approach. BMC Vet. Res. 2019, 15, 149. [Google Scholar] [CrossRef]
- Praud, A.; Boschiroli, M.; Meyer, L.; Garin-Bastuji, B.; Dufour, B. Assessment of the sensitivity of the gamma-interferon test and the single intradermal comparative cervical test for the diagnosis of bovine tuberculosis under field conditions. Epidemiol. Infect. 2015, 143, 157–166. [Google Scholar] [CrossRef] [PubMed]
- Clegg, T.A.; Duignan, A.; Whelan, C.; Gormley, E.; Good, M.; Clarke, J.; Toft, N.; More, S.J. Using latent class analysis to estimate the test characteristics of the γ-interferon test, the single intradermal comparative tuberculin test and a multiplex immunoassay under Irish conditions. Vet. Microbiol. 2011, 151, 68–76. [Google Scholar] [CrossRef] [Green Version]
- Himsworth, C.G.; Elkin, B.T.; Nishi, J.S.; Epp, T.; Lyashchenko, K.P.; Surujballi, O.; Turcotte, C.; Esfandiari, J.; Greenwald, R.; Leighton, F.A. Comparison of test performance and evaluation of novel immunoassays for tuberculosis in a captive herd of wood bison naturally infected with Mycobacterium bovis. J. Wildl. Dis. 2010, 46, 78–86. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chapinal, N.; Elkin, B.T.; Joly, D.O.; Schumaker, B.A.; Stephen, C. Agreement between the caudal fold test and serological tests for the detection of Mycobacterium bovis infection in bison. Prev. Vet. Med. 2012, 105, 326–330. [Google Scholar] [CrossRef]
- Cousins, D.; Florisson, N. A review of tests available for use in the diagnosis of tuberculosis in non-bovine species. Rev. Sci. Et Tech. (Int. Off. Epizoot.) 2005, 24, 1039–1059. [Google Scholar] [CrossRef]
- Wood, P.; Corner, L.; Rothel, J.; Ripper, J.; Fifis, T.; McCormick, B.; Francis, B.; Melville, L.; Small, K.; De Witte, K. A field evaluation of serological and cellular diagnostic tests for bovine tuberculosis. Vet. Microbiol. 1992, 31, 71–79. [Google Scholar] [CrossRef]
- Buddle, B.; Nolan, A.; McCarthy, A.; Heslop, J.; Aldwell, F.; Jackson, R.; Pfeiffer, D. Evaluation of three serological assays for the diagnosis of Mycobacterium bovis infection in brushtail possums. N. Z. Vet. J. 1995, 43, 91–95. [Google Scholar] [CrossRef]
- Elsohaby, I.; Mahmmod, Y.S.; Mweu, M.M.; Ahmed, H.A.; El-Diasty, M.M.; Elgedawy, A.A.; Mahrous, E.; El Hofy, F.I. Accuracy of PCR, mycobacterial culture and interferon-γ assays for detection of Mycobacterium bovis in blood and milk samples from Egyptian dairy cows using Bayesian modelling. Prev. Vet. Med. 2020, 181, 105054. [Google Scholar] [CrossRef]
- Sánchez-Carvajal, J.M.; Galán-Relaño, Á.; Ruedas-Torres, I.; Jurado-Martos, F.; Larenas-Muñoz, F.; Vera, E.; Gómez-Gascón, L.; Cardoso-Toset, F.; Rodríguez-Gómez, I.M.; Maldonado, A. Real-Time PCR validation for Mycobacterium tuberculosis complex detection targeting IS6110 directly from bovine lymph nodes. Front. Vet. Sci. 2021, 8, 231. [Google Scholar] [CrossRef]
- Hamed, Y.K.; Nasr, E.; Azooz, M.F.; Youssef, H.M. Prevalence and risk factors of bovine tuberculosis in dairy cattle farms in Egypt. Iraqi J. Vet. Sci. 2021, 35, 351–359. [Google Scholar] [CrossRef]
- Abdelaal, H.F.; Spalink, D.; Amer, A.; Steinberg, H.; Hashish, E.A.; Nasr, E.A.; Talaat, A.M. Genomic polymorphism associated with the emergence of virulent isolates of Mycobacterium bovis in the Nile Delta. Sci. Rep. 2019, 9, 11657. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Algammal, A.M.; Wahdan, A.; Elhaig, M.M. Potential efficiency of conventional and advanced approaches used to detect Mycobacterium bovis in cattle. Microb. Pathog. 2019, 134, 103574. [Google Scholar] [CrossRef] [PubMed]
- Borham, M.; Oreiby, A.; El-Gedawy, A.; Hegazy, Y.; Hemedan, A.; Al-Gaabary, M. Abattoir survey of bovine tuberculosis in tanta, centre of the Nile delta, with in silico analysis of gene mutations and protein–protein interactions of the involved mycobacteria. Transbound. Emerg. Dis. 2021, 1–17. [Google Scholar] [CrossRef]
- Picasso-Risso, C.; Gil, A.; Nunez, A.; Suanes, A.; Macchi, V.; Salaberry, X.; Alvarez, J.; Perez, A. Diagnostic interaction between bovine tuberculosis (bTB) and Johne’s disease in bTB highly prevalent dairy farms of Uruguay. Vet. Anim. Sci. 2019, 7, 100052. [Google Scholar] [CrossRef]
- Pollock, J.; Welsh, M.; McNair, J. Immune responses in bovine tuberculosis: Towards new strategies for the diagnosis and control of disease. Vet. Immunol. Immunopathol. 2005, 108, 37–43. [Google Scholar] [CrossRef]
Tests | Number (%) of Test Positive | Number (%) of Test Negative | Total |
---|---|---|---|
SCT | 215 (87.8) | 30 (12.2) | 245 |
RLFT | 65 (26.5) | 180 (73.5) | 245 |
RT-PCR | 59 (24.1) | 186 (75.9) | 245 |
Post-mortem | 49 (75.4) | 16 (24.6) | 65 |
Herds | Tests Combinations (SCT T1; RLFT T2; RT-PCR T3) | Total | |||||||
---|---|---|---|---|---|---|---|---|---|
+++ | ++− | +−+ | +−− | −++ | −+− | −−+ | −−− | ||
Herd1 | 6 | 0 | 0 | 4 | 0 | 0 | 0 | 3 | 13 |
Herd2 | 12 | 1 | 0 | 3 | 0 | 0 | 0 | 3 | 19 |
Herd3 | 1 | 0 | 1 | 6 | 0 | 0 | 0 | 3 | 11 |
Herd4 | 0 | 0 | 0 | 5 | 0 | 0 | 0 | 3 | 8 |
Herd5 | 3 | 1 | 0 | 6 | 0 | 0 | 0 | 3 | 13 |
Herd6 | 0 | 0 | 1 | 9 | 0 | 0 | 0 | 3 | 13 |
Herd7 | 2 | 0 | 0 | 8 | 0 | 0 | 0 | 3 | 13 |
Herd8 | 5 | 0 | 0 | 5 | 0 | 0 | 0 | 3 | 13 |
Herd9 | 3 | 0 | 1 | 4 | 0 | 0 | 0 | 3 | 11 |
Herd10 | 0 | 0 | 0 | 8 | 0 | 0 | 0 | 3 | 11 |
Herd11 | 24 | 7 | 0 | 89 | 0 | 0 | 0 | 0 | 120 |
Total | 56 | 9 | 3 | 147 | 0 | 0 | 0 | 30 | 245 |
Parameters 1 | Test Estimates (SCT T1; RLFT T2; RT-PCR T3) | |
---|---|---|
Median | 95% PCI 2 | |
SeSCT | 0.93 | 0.89–0.93 |
SeRLFT | 0.93 | 0.31–0.99 |
SeRT-PCR | 0.83 | 0.28–0.93 |
SpSCT | 0.60 | 0.59–0.65 |
SpRLFT | 0.99 | 0.96–1.00 |
SpRT-PCR | 0.99 | 0.95–1.00 |
Herd1 | 0.51 | 0.24–0.86 |
Herd2 | 0.71 | 0.47–0.94 |
Herd3 | 0.23 | 0.04–0.71 |
Herd4 | 0.09 | 0.003–0.49 |
Herd5 | 0.36 | 0.13–0.81 |
Herd6 | 0.11 | 0.004–0.64 |
Herd7 | 0.22 | 0.051–0.72 |
Herd8 | 0.44 | 0.19–0.83 |
Herd9 | 0.40 | 0.14–0.80 |
Herd10 | 0.07 | 0.003–0.51 |
Herd11 | 0.28 | 0.19–0.99 |
y.index[SCT] | 0.52 | 0.48–0.58 |
y.index[RLFT] | 0.92 | 0.28–0.99 |
y.index[RT-PCR] | 0.82 | 0.25–0.92 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elsohaby, I.; Alahadeb, J.I.; Mahmmod, Y.S.; Mweu, M.M.; Ahmed, H.A.; El-Diasty, M.M.; Elgedawy, A.A.; Mahrous, E.; El Hofy, F.I. Bayesian Estimation of Diagnostic Accuracy of Three Diagnostic Tests for Bovine Tuberculosis in Egyptian Dairy Cattle Using Latent Class Models. Vet. Sci. 2021, 8, 246. https://doi.org/10.3390/vetsci8110246
Elsohaby I, Alahadeb JI, Mahmmod YS, Mweu MM, Ahmed HA, El-Diasty MM, Elgedawy AA, Mahrous E, El Hofy FI. Bayesian Estimation of Diagnostic Accuracy of Three Diagnostic Tests for Bovine Tuberculosis in Egyptian Dairy Cattle Using Latent Class Models. Veterinary Sciences. 2021; 8(11):246. https://doi.org/10.3390/vetsci8110246
Chicago/Turabian StyleElsohaby, Ibrahim, Jawher I. Alahadeb, Yasser S. Mahmmod, Marshal M. Mweu, Heba A. Ahmed, Mohamed M. El-Diasty, Attia A. Elgedawy, Eman Mahrous, and Fatma I. El Hofy. 2021. "Bayesian Estimation of Diagnostic Accuracy of Three Diagnostic Tests for Bovine Tuberculosis in Egyptian Dairy Cattle Using Latent Class Models" Veterinary Sciences 8, no. 11: 246. https://doi.org/10.3390/vetsci8110246
APA StyleElsohaby, I., Alahadeb, J. I., Mahmmod, Y. S., Mweu, M. M., Ahmed, H. A., El-Diasty, M. M., Elgedawy, A. A., Mahrous, E., & El Hofy, F. I. (2021). Bayesian Estimation of Diagnostic Accuracy of Three Diagnostic Tests for Bovine Tuberculosis in Egyptian Dairy Cattle Using Latent Class Models. Veterinary Sciences, 8(11), 246. https://doi.org/10.3390/vetsci8110246