Immunohistochemical Markers of Apoptotic and Hypoxic Damage Facilitate Evidence-Based Assessment in Pups with Neurological Disorders
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Idowu, O.; Heading, K. Hypoglycemia in dogs: Causes, management, and diagnosis. Can. Vet. J. 2018, 59, 642. [Google Scholar]
- Grijalva, J.; Vakili, K. Seminars in Pediatric Surgery Neonatal liver physiology. Semin. Pediatr. Surg. 2013, 22, 185–189. [Google Scholar] [CrossRef]
- Mealey, K.L.; Meurs, K.M. Breed distribution of the ABCB1-1Δ (multidrug sensitivity) polymorphism among dogs undergoing ABCB1 genotyping. J. Am. Vet. Med. Assoc. 2008, 233, 921–924. [Google Scholar] [CrossRef]
- Oechmichen, M.; Meissner, C. Cerebral Hypoxia and Ischemia: The Forensic Point of View: A Review. J. Forensic Sci. 2006, 51, 880–887. [Google Scholar] [CrossRef]
- Rahaman, P.; Del Bigio, M.R. Histology of Brain Trauma and Hypoxia-Ischemia. Acad. Forensic Pathol. 2018, 8, 539–554. [Google Scholar] [CrossRef] [PubMed]
- Mazzariol, S.; Centelleghe, C.; Petrella, A.; Marcer, F.; Beverelli, M.; Di Francesco, C.E.; Di Francesco, G.; Di Renzo, L.; Di Guardo, G.; Audino, T.; et al. Atypical Toxoplasmosis in a Mediterranean Monk Seal (Monachus monachus) Pup. J. Comput. Pathol. 2021, 184, 65–71. [Google Scholar] [CrossRef] [PubMed]
- Klintzsch, S.; Meerkamp, K.; Döring, B.; Geyer, J. Detection of the nt230 [del4] MDR1 mutation in dogs by a fluorogenic 5′ nuclease TaqMan allelic discrimination method. Vet. J. 2010, 185, 272–277. [Google Scholar] [CrossRef] [PubMed]
- Hoskins, J.D. The Liver and Pancreas. In Veterinary Pediatrics: Dogs and Cats from Birth to Six Months, 2nd ed.; Hoskins, J.D., Ed.; WB Saunders: Philadelphia, PA, USA, 1995; pp. 200–224. [Google Scholar] [CrossRef]
- de Bruijne, J.J.; Altszuler, N.; Hampshire, J.; Visser, T.J.; Hackeng, W.H.L. Fat mobilization and plasma hormone levels in fasted dogs. Metabolism 1981, 30, 190–194. [Google Scholar] [CrossRef]
- Okkens, A.C. Canine pediatrics. Vet. Q. 1994, 16, 19–20. [Google Scholar] [CrossRef]
- Milroy, C.M. Fatty Liver and the Forensic Pathologist. Acad. Forensic Pathol. 2018, 8, 296–310. [Google Scholar] [CrossRef] [PubMed]
- Van der Linde-Sipman, J.S.; van den Ingh, T.V.D.; van Toor, A.J. Fatty Liver Syndome in Puppies. J. Am. Anim. Hosp. Assoc. 1990, 26, 9–12. [Google Scholar]
- Van Amersfoort, E.S.; Van Berkel, T.J.C.; Kuiper, J. Receptors, Mediators, and Mechanisms Involved in Bacterial Sepsis and Septic Shock. Clin. Microbiol. Rev. 2003, 16, 379–414. [Google Scholar] [CrossRef] [Green Version]
- Hausmann, R.; Seidl, S.; Betz, P. Hypoxic changes in Purkinje cells of the human cerebellum. Int. J. Leg. Med. 2007, 121, 175–183. [Google Scholar] [CrossRef] [PubMed]
- Plummer, S.; Van Den Heuvel, C.; Thornton, E.; Corrigan, F.; Cappai, R. The neuroprotective properties of the amyloid precursor protein following traumatic brain injury. Aging Dis. 2016, 7, 163–179. [Google Scholar] [CrossRef] [Green Version]
- Reichard, R.R.; Smith, C.; Graham, D.I. The significance of APP immunoreactivity in forensic practice. Neuropathol. Appl. Neurobiol. 2005, 31, 304–313. [Google Scholar] [CrossRef] [PubMed]
- Morrison, C.; Mackenzie, J.M. Axonal injury in head injuries with very short survival times. Neuropathol. Appl. Neurobiol. 2008, 34, 124–125. [Google Scholar] [CrossRef]
- Ali, H.; Nakano, T.; Saino-Saito, S.; Hozumi, Y.; Katagiri, Y.; Kamii, H.; Sato, S.; Kayama, T.; Kondo, H.; Goto, K. Selective translocation of diacylglycerol kinase ζ in hippocampal neurons under transient forebrain ischemia. Neurosci. Lett. 2004, 372, 190–195. [Google Scholar] [CrossRef] [PubMed]
- Goto, K.; Tanaka, T.; Nakano, T.; Okada, M.; Hozumi, Y.; Topham, M.K.; Martelli, A.M. DGKζ under stress conditions: “To be nuclear or cytoplasmic, that is the question”. Adv. Biol. Regul. 2014, 54, 242–253. [Google Scholar] [CrossRef] [PubMed]
- Siddiqui, W.A.; Ahad, A.; Ahsan, H. The mystery of BCL-2 family: Bcl-2 proteins and apoptosis: An update. Arch. Toxicol. 2015, 89, 289–317. [Google Scholar] [CrossRef]
- Shinoura, N.; Yoshida, Y.; Nishimura, M.; Muramatsu, Y.; Asai, A.; Kirino, T.; Hamada, H. Expression level of Bcl-2 determines anti- or proapoptotic function. Cancer Res. 1999, 59, 4119–4128. [Google Scholar]
- Mishra, O.P.; Delivoria-Papadopoulos, M. Mechanism of Tyrosine Phosphorylation of procaspase-9 and Apaf1 in Cytosolic Fractions of the Cerebral Cortex of Newborn Piglets during Hypoxia. Neurosci. Lett. 2010, 480, 35–39. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zachary, J. The Nervous System. In Pathologic Basis of Veterinary Disease, 4th ed.; McGavin, M.D., Zachary, J., Eds.; Elsevier Limited: St. Louis, MO, USA, 2007. [Google Scholar]
- Intengan, H.D.; Schiffrin, E.L. Vascular remodeling in hypertension: Roles of apoptosis, inflammation, and fibrosis. Hypertension 2001, 38, 581–587. [Google Scholar] [CrossRef] [PubMed]
- Zhu, C.; Wang, X.; Xu, F.; Bahr, B.A.; Shibata, M.; Uchiyama, Y.; Hagberg, H.; Blomgren, K. The influence of age on apoptotic and other mechanisms of cell death after cerebral hypoxia-ischemia. Cell Death Differ. 2005, 12, 162–176. [Google Scholar] [CrossRef]
- Stroemer, R.P.; Rothwell, N.J. Exacerbation of Ischemic Brain Damage by Localized Striatal Injection of Interleukin-1β in the Rat. J. Cereb. Blood Flow Metabolism. 1998, 18, 833–839. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Geyer, J.; Janko, C. Treatment of MDR1 Mutant Dogs with Macrocyclic Lactones. Curr. Pharm. Biotechnol. 2012, 13, 969–986. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tranquilli, W.J.; Paul, A.J.; Todd, K.S. Assessment of toxicosis induced by high-dose administration of milbemycin oxime in Collies. Am. J. Vet. Res. 1991, 52, 1170–1172. [Google Scholar]
- Noack, S.; Harrington, J.; Carithers, D.S.; Kaminsky, R.; Selzer, P.M. Heartworm disease–Overview, intervention, and industry perspective. Int. J. Parasitol. Drugs Drug Resistance. 2021. [Google Scholar] [CrossRef]
- Merola, V.M.; Eubig, P.A. Toxicology of avermectins and milbemycins (macrocyclic lactones) and the role of P-glycoprotein in dogs and cats. Vet. Clin. Small Anim. Pract. 2018, 48, 991–1012. [Google Scholar] [CrossRef]
- Snowden, N.J.; Helyar, C.V.; Platt, S.R.; Penderis, J. Clinical presentation and management of moxidectin toxicity in two dogs. J. Small Anim. Pract. 2006, 47, 620–624. [Google Scholar] [CrossRef]
- Parish, D.C.; Goyal, H.; Dane, F.C. Mechanism of death: There’s more to it than sudden cardiac arrest. J. Thorac. Dis. 2018, 10, 3081. [Google Scholar] [CrossRef] [PubMed]
- Blair, J.A.; Wang, C.; Hernandez, D.; Siedlak, S.L.; Rodgers, M.S.; Achar, R.K.; Fahmy, L.M.; Torres, S.L.; Petersen, R.B.; Zhu, X.; et al. Individual case analysis of postmortem interval time on brain tissue preservation. PLoS ONE 2016, 11, e015161. [Google Scholar]
- Mohamed, A.A.R.; Elbohi, K.M.; El Sharkawy, N.I.; Hassan, M.A. Biochemical and apoptotic biomarkers of experimentally induced traumatic brain injury: In relation to time since death. Beni-Suef Univ. J. Basic Appl. Sci. 2018. Available online: https://www.sciencedirect.com/science/article/pii/S2314853517301579 (accessed on 8 September 2021). [CrossRef]
- Ramos-Vara, J.A.; Kiupel, M.; Baszler, T.; Bliven, L.; Brodersen, B.; Chelack, B.; Czub, S.; Del Piero, F.; Dial, S.; Ehrhart, E.J.; et al. Suggested guidelines for immunohistochemical techniques in veterinary diagnostic laboratories. J. Vet. Diagn. Investig. 2008, 20, 393–413. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mealey, K.L.; Martinez, S.E.; Villarino, N.F.; Court, M.H. Personalized medicine: Going to the dogs? Hum. Genet. 2019, 138, 467–481. [Google Scholar] [CrossRef] [PubMed]
Control Dog (M/F) | Breed | Age | Cause of Death | Pertinent Pathological Findings | Post-Mortem Interval |
---|---|---|---|---|---|
Puppy-1 (M) | Australian Shepherd | 5 weeks | To be determined | Hepatic, enteric, respiratory and central nervous system damage (described in “Results”) | 24 h |
Puppy-2 (M) | Australian Shepherd | 5 weeks | To be determined | Hepatic, enteric, respiratory and central nervous system damage (describe in “Results”) | 20 min |
Control-1 (F) | Toy Poodle | 12 years | Cardiovascular insufficiency | Aortic aneurism; monolateral inner ear infection | 24 h |
Control-2 (F) | Shitzu | 1 week | Neonatal immaturity and pneumonia potentially resulting in septicemic shock | Diffuse atelectasis; diffuse severe pleuropneumonia; moderate multifocal tubular necrosis, mild diffuse gastroenteritis | 48 h |
Control-3 (M) | Dogue de Bordeaux | 1 week | Neonatal immaturity and cardiorespiratory insufficiency | Diffuse atelectasis; ascites (serosanguinous); perihepatic vascular mineralisations | 72 h |
Antibody | Puppy | Puppy-1 | Puppy-2 | ||||
---|---|---|---|---|---|---|---|
PMI | 24 h | 20 min | |||||
Cell Type | Neurons | Glia | Meninges/ Endothelia | Neurons | Glia | Meninges/ Endothelia | |
APP | Cortex | +++ Synaptic membranes Diffuse | ++ Light background + Multifocal coalescing axons in WM | - | ++ Synaptic membranes in sulci | + Light background | - |
Cerebellum | ++ Cytoplasmic | + Light background | - | +++ Cytoplasmic | ++ Light-moderate background | - | |
Bcl-2 | Cortex | +++ Cytoplasmic Multifocal in gyri | +/++ Granular Diffuse | +++ Leptomeninx Multifocal ++ Cytoplasmic, choroid plexus endothelia Diffuse | - | + Granular Diffuse, mild pericapillary emphasis | ++ Leptomeninx Few foci |
Cerebellum | ++ Cytoplasmic Multifocal in gyri | - | - | −/+ very light cytoplasm, Single foci | - | - | |
DGK-ζ | Cortex | + Cytoplasmic Diffuse | + Light background ++ Astrocyte cytoplasm Multifocal | + Leptomeninx Multifocal | +++ Cytoplasmic Diffuse | ++ Moderate background +++ Astrocyte nuclear Multifocal | +++ Endothelia Diffuse |
Cerebellum | ++/+++ Cytoplasmic Diffuse, with multifocal shrunken, deformed cells | + | −/+ Leptomeninx Single foci | +++ Cytoplasmic, Diffuse; Nuclear, Multifocal | −/+ | ++ Endothelial Multifocal | |
Apaf1 | Cortex | - | +++ Cytoplasmic and nuclear Multifocal in WM | +++ Leptomeninx Multifocal | - | - | ++ Small/mid-caliber vessels Multifocal |
Cerebellum | - Cytoplasmic +++ Diffuse in molecular layer axons | + Light background | +++ Leptomeninx Diffuse | ++ cytoplasmic Multifocal in gyri ++/+++ Multifocal-coalescing in sulci | + Light background | +/++ Leptomeninx Multifocal-coalescing |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Orekhova, K.; Mazzariol, S.; Sussan, B.; Bucci, M.; Bonsembiante, F.; Verin, R.; Centelleghe, C. Immunohistochemical Markers of Apoptotic and Hypoxic Damage Facilitate Evidence-Based Assessment in Pups with Neurological Disorders. Vet. Sci. 2021, 8, 203. https://doi.org/10.3390/vetsci8100203
Orekhova K, Mazzariol S, Sussan B, Bucci M, Bonsembiante F, Verin R, Centelleghe C. Immunohistochemical Markers of Apoptotic and Hypoxic Damage Facilitate Evidence-Based Assessment in Pups with Neurological Disorders. Veterinary Sciences. 2021; 8(10):203. https://doi.org/10.3390/vetsci8100203
Chicago/Turabian StyleOrekhova, Ksenia, Sandro Mazzariol, Beatrice Sussan, Massimo Bucci, Federico Bonsembiante, Ranieri Verin, and Cinzia Centelleghe. 2021. "Immunohistochemical Markers of Apoptotic and Hypoxic Damage Facilitate Evidence-Based Assessment in Pups with Neurological Disorders" Veterinary Sciences 8, no. 10: 203. https://doi.org/10.3390/vetsci8100203