Measurement of Tissue Oximetry in Standing Unsedated and Sedated Horses
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Experimental Protocol
- (i)
- Success in other species such as the sartorius muscle in dogs [22];
- (ii)
- Potential ease of access and probe maintenance during recumbency during general anaesthesia. For example, the ECR is easily accessible in animals in dorsal or lateral recumbency;
- (iii)
- Presumed thin skin and minimal hair covering that may allow for more successful readings.
2.3. Statistical Analysis
3. Results
Horse Characteristics
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pellicer, A.; Bravo, M.d.C. Near-infrared spectroscopy: A methodology-focused review. Semin. Fetal Neonatal Med. 2011, 16, 42–49. [Google Scholar] [CrossRef] [PubMed]
- Wolf, M.; Naulaers, G.; van Bel, F.; Kleiser, S.; Greisen, G. A Review of near Infrared Spectroscopy for Term and Preterm Newborns. J. Near Infrared Spectrosc. 2012, 20, 43–55. [Google Scholar] [CrossRef] [Green Version]
- Steppan, J.; Hogue, C.W. Cerebral and tissue oximetry. Best Pr. Res. Clin. Anaesthesiol. 2014, 28, 429–439. [Google Scholar] [CrossRef] [Green Version]
- Huppert, T.J.; Diamond, S.; Franceschini, M.A.; Boas, D.A. HomER: A review of time-series analysis methods for near-infrared spectroscopy of the brain. Appl. Opt. 2009, 48, D280–D298. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Watzman, H.M.; Kurth, C.D.; Montenegro, L.M.; Rome, J.; Steven, J.M.; Nicolson, S.C. Arterial and Venous Contributions to Near-infrared Cerebral Oximetry. Anesthesiology 2000, 93, 947–953. [Google Scholar] [CrossRef]
- Pavlisko, N.D.; Henao-Guerrero, N.; Killos, M.B.; Riccó, C.; Shih, A.C.; Bandt, C.; Werre, S.R. Evaluation of tissue oxygen saturation with near-infrared spectroscopy during experimental acute hemorrhagic shock and resuscitation in dogs. Am. J. Vet. Res. 2014, 75, 48–53. [Google Scholar] [CrossRef]
- Pavlisko, N.D.; Killos, M.; Henao-Guerrero, N.; Riccó, C.H.; Werre, S. Evaluation of tissue hemoglobin saturation (StO2) using near-infrared spectroscopy during hypoxemia and hyperoxemia in Beagle dogs. Vet. Anaesth. Analg. 2016, 43, 18–26. [Google Scholar] [CrossRef]
- Beilman, G.; Groehler, K.E.; Lazaron, V.; Ortner, J.P. Near-infrared spectroscopy measurement of regional tissue oxyhemoglobin saturation during hemorrhagic shock. Shock 1999, 12, 196–200. [Google Scholar] [CrossRef]
- Hyttel-Sorensen, S.; Pellicer, A.; Alderliesten, T.; Austin, T.; Van Bel, F.; Benders, M.; Claris, O.; Dempsey, E.M.; Franz, A.; Fumagalli, M.; et al. Cerebral near infrared spectroscopy oximetry in extremely preterm infants: Phase II randomised clinical trial. BMJ 2015, 350, g7635. [Google Scholar] [CrossRef] [Green Version]
- Sood, B.G.; McLaughlin, K.; Cortez, J. Near-infrared spectroscopy: Applications in neonates. Semin. Fetal Neonatal Med. 2015, 20, 164–172. [Google Scholar] [CrossRef]
- Creteur, J.; Carollo, T.; Soldati, G.; Büchele, G.L.; De Backer, D.; Vincent, J.-L. The prognostic value of muscle StO2 in septic patients. Intensive Care Med. 2007, 33, 1549–1556. [Google Scholar] [CrossRef] [PubMed]
- Cohn, S.M.; Nathens, A.B.; Moore, F.A.; Rhee, P.; Puyana, J.C.; Moore, E.E.; Beilman, G.J. Tissue Oxygen Saturation Predicts the Development of Organ Dysfunction During Traumatic Shock Resuscitation. J. Trauma 2007, 62, 44–55. [Google Scholar] [CrossRef]
- Lima, A.; Van Bommel, J.; Jansen, T.C.; Ince, C.; Bakker, J. Low tissue oxygen saturation at the end of early goal-directed therapy is associated with worse outcome in critically ill patients. Crit. Care 2009, 13 (Suppl. 5), S13. [Google Scholar] [CrossRef] [Green Version]
- Shapiro, N.I.; Arnold, R.; Sherwin, R.; O’Connor, J.; Najarro, G.; Singh, S.; Lundy, D.; Nelson, T.; Trzeciak, S.W.; E Jones, A.; et al. The association of near-infrared spectroscopy-derived tissue oxygenation measurements with sepsis syndromes, organ dysfunction and mortality in emergency department patients with sepsis. Crit. Care 2011, 15, R223. [Google Scholar] [CrossRef] [Green Version]
- Gingold, B.M.; Killos, M.B.; Griffith, E.; Posner, L. Measurement of peripheral muscle oxygen saturation in conscious healthy horses using a near-infrared spectroscopy device. Vet. Anaesth. Analg. 2019, 46, 789–795. [Google Scholar] [CrossRef]
- Schneider, A.; Minnich, B.; Hofstätter, E.; Weisser, C.; Hattinger-Jürgenssen, E.; Wald, M. Comparison of four near-infrared spectroscopy devices shows that they are only suitable for monitoring cerebral oxygenation trends in preterm infants. Acta Paediatr. 2014, 103, 934–938. [Google Scholar] [CrossRef]
- Hyttel-Sorensen, S.; Hessel, T.W.; Greisen, G. Peripheral tissue oximetry: Comparing three commercial near-infrared spectroscopy oximeters on the forearm. J. Clin. Monit. 2014, 28, 149–155. [Google Scholar] [CrossRef] [Green Version]
- Scheeren, T.W.L.; Schober, P.; Schwarte, L.A. Monitoring tissue oxygenation by near infrared spectroscopy (NIRS): Background and current applications. J. Clin. Monit. 2012, 26, 279–287. [Google Scholar] [CrossRef] [Green Version]
- Thavasothy, M.; Broadhead, M.; Elwell, C.; Peters, M.; Smith, M. A comparison of cerebral oxygenation as measured by the NIRO 300 and the INVOS 5100 Near-Infrared Spectrophotometers. Anaesthesia 2002, 57, 999–1006. [Google Scholar] [CrossRef]
- Ersunan, G.; Bilir, O.; Kalkan, A.; Kalkan, Y.; Ozel, D.; Kayayurt, K.; Yavasi, O. Utility of near infrared spectrophotometry in mesenteric ischemia: An experimental study. J. Near Infrared Spectrosc. 2018, 26, 235–244. [Google Scholar] [CrossRef]
- McConnell, E.J.; Rioja, E.; Bester, L.; Sanz, M.G.; Fosgate, G.; Saulez, M.N. Use of near-infrared spectroscopy to identify trends in regional cerebral oxygen saturation in horses. Equine Vet. J. 2012, 45, 470–475. [Google Scholar] [CrossRef]
- Hall, K.E.; Powell, L.L.; Beilman, G.J.; Shafer, K.R.; Skala, V.K.; Olmstead, E.A. Measurement of tissue oxygen saturation levels using portable near-infrared spectroscopy in clinically healthy dogs. J. Vet. Emerg. Crit. Care 2008, 18, 594–600. [Google Scholar] [CrossRef]
- Friedrichs, K.R.; Harr, K.; Freeman, K.P.; Szladovits, B.; Walton, R.M.; Barnhart, K.F.; Blanco-Chavez, J. ASVCP reference interval guidelines: Determination of de novo reference intervals in veterinary species and other related topics. Vet. Clin. Pathol. 2012, 41, 441–453. [Google Scholar] [CrossRef]
- Wassenaar, E.B.; Brand, J.G.H.V.D. Reliability of Near-Infrared Spectroscopy in People with Dark Skin Pigmentation. J. Clin. Monit. Comput. 2005, 19, 195–199. [Google Scholar] [CrossRef]
- Myers, D.E.; Anderson, L.D.; Seifert, R.P.; Ortner, J.P.; Cooper, C.; Beilman, G.; Mowlem, J.D. Noninvasive method for measuring local hemoglobin oxygen saturation in tissue using wide gap second derivative near-infrared spectroscopy. J. Biomed. Opt. 2005, 10, 034017. [Google Scholar] [CrossRef]
- Wolf, U.; Wolf, M.; Choi, J.H.; Paunescu, L.A.; Michalos, A.; Gratton, E. Regional Differences of Hemodynamics and Oxygenation in the Human Calf Muscle Detected with Near-Infrared Spectrophotometry. J. Vasc. Interv. Radiol. 2007, 18, 1094–1101. [Google Scholar] [CrossRef] [Green Version]
- Schulz, G.; Weiss, M.; Bauersfeld, U.; Teller, J.; Haensse, D.; Bucher, H.U.; Baenziger, O. Liver tissue oxygenation as measured by near-infrared spectroscopy in the critically ill child in correlation with central venous oxygen saturation. Intensiv Care Med. 2002, 28, 184–189. [Google Scholar] [CrossRef]
- Hammer, S.M.; Hueber, D.M.; Townsend, D.K.; Huckaby, L.M.; Alexander, A.M.; Didier, K.; Barstow, T.J. Effect of assuming constant tissue scattering on measured tissue oxygenation values during tissue ischemia and vascular reperfusion. J. Appl. Physiol. 2019, 127, 22–30. [Google Scholar] [CrossRef]
- Lian, C.; Li, P.; Wang, N.; Lu, Y.; Shangguan, W. Comparison of basic regional cerebral oxygen saturation values in patients of different ages: A pilot study. J. Int. Med. Res. 2020, 48, 300060520936868. [Google Scholar] [CrossRef]
- Edmonds, H.L.; Ganzel, B.L.; Austin, E.H. Cerebral Oximetry for Cardiac and Vascular Surgery. Semin. Cardiothorac. Vasc. Anesth. 2004, 8, 147–166. [Google Scholar] [CrossRef]
- Denault, A.; Deschamps, A.; Murkin, J.M. A Proposed Algorithm for the Intraoperative Use of Cerebral Near-Infrared Spectroscopy. Semin. Cardiothorac. Vasc. Anesth. 2007, 11, 274–281. [Google Scholar] [CrossRef] [PubMed]
- Grimsrud, K.N.; Mama, K.R.; Steffey, E.P.; Stanley, S.D. Pharmacokinetics and pharmacodynamics of intravenous medetomidine in the horse. Vet. Anaesth. Analg. 2012, 39, 38–48. [Google Scholar] [CrossRef] [PubMed]
- Ringer, S.K.; Schwarzwald, C.; Portier, K.G.; Ritter, A.; Bettschart, R. Effects on cardiopulmonary function and oxygen delivery of doses of romifidine and xylazine followed by constant rate infusions in standing horses. Vet. J. 2013, 195, 228–234. [Google Scholar] [CrossRef]
- Hopster, K.; Wittenberg-Voges, L.; Kästner, S.B. Xylazine infusion in isoflurane-anesthetized and ventilated healthy horses: Effects on cardiovascular parameters and intestinal perfusion. Can. J. Vet. Res. Rev. Can. Rech. Vet. 2017, 81, 249–254. [Google Scholar]
- Daunt, D.A.; Dunlop, C.I.; Chapman, P.L.; Shafer, S.; Ruskoaho, H.; Vakkuri, O.; Hodgson, D.S.; Tyler, L.M.; Maze, M. Cardiopulmonary and behavioral responses to computer-driven infusion of detomidine in standing horses. Am. J. Vet. Res. 1993, 54, 2075–2082. [Google Scholar]
- Freeman, S.; Bowen, I.; Bettschart-Wolfensberger, R.; Alibhai, H.; England, G. Cardiovascular effects of romifidine in the standing horse. Res. Vet. Sci. 2002, 72, 123–129. [Google Scholar] [CrossRef] [PubMed]
- Tokushige, H.; Okano, A.; Arima, D.; Ito, H.; Kambayashi, Y.; Minamijima, Y.; Ohta, M. Clinical effects of constant rate infusions of medetomidine–propofol combined with sevoflurane anesthesia in Thoroughbred racehorses undergoing arthroscopic surgery. Acta Vet. Scand. 2018, 60, 71. [Google Scholar] [CrossRef]
- Auckburally, A.; Nyman, G. Review of hypoxaemia in anaesthetized horses: Predisposing factors, consequences and management. Vet. Anaesth. Analg. 2017, 44, 397–408. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Day, T.K.; Gaynor, J.S.; Muir, W.; Bednarski, R.M.; Mason, D.E. Blood Gas Values During Intermittent Positive Pressure Ventilation and Spontaneous Ventilation in 160 Anesthetized Horses Positioned in Lateral or Dorsal Recumbency. Vet. Surg. 1995, 24, 266–276. [Google Scholar] [CrossRef]
Summary Stats | |||||
---|---|---|---|---|---|
Median | IQR | Min | Max | CV | |
Female (n = 29) | |||||
Weight (kg) | 542 | 79 | 435 | 687 | 14.6 |
Age (years) | 9 | 3 | 5 | 21 | 33.3 |
PCV (%) | 35 | 6 | 30 | 55 | 17.1 |
TP (g/L) | 68 | 6 | 62 | 83 | 8.8 |
Male (n = 21) | |||||
Weight (kg) | 561 | 70 | 434 | 624 | 12.5 |
Age (years) | 16 | 13 | 6 | 23 | 81.3 |
PCV (%) | 34 | 5 | 28 | 44 | 14.7 |
TP (g/L) | 69 | 2 | 64 | 76 | 2.9 |
Treatments | Post Clipping | Post Prepping | Post Medetomidine | |||
---|---|---|---|---|---|---|
(PC) | (PP) | (PM) | ||||
Muscle of StO2 Probe Placement | No. Success | % Success | No. Success | % Success | No. Success | % Success |
Sartorius | 83/150 | 55 | 107/150 | 72 * | 119/150 | 79 |
Biceps Brachii | 49/150 | 33 | 67/135 | 50 * | 50/150 | 33 # |
Semimembranosus | 36/150 | 24 | 54/135 | 40 * | 48/150 | 32 |
Extensor digitorum Longus | 7/150 | 5 | 16/135 | 11 | 39/150 | 26 # |
Extensor Carpi Radialis | 72/150 | 48 | 88/135 | 65 * | 84/150 | 56 |
Brachiocephalicus | 43/150 | 29 | 66/135 | 48 * | 65/150 | 43 |
Muscle Group and Treatment | Summary Statistics | ||||
---|---|---|---|---|---|
Mean (90% CI) | SD | Min | Max | CV | |
Biceps Brachii | |||||
Post Clipping (PC) | 47 (43–51) | 11 | 28 | 62 | 22.4 |
Post Prepping (PP) | 46 (42–49) | 10 | 22 | 63 | 22.7 |
Post Medetomidine (PM) | 37 * (33–39) | 10 | 15 | 45 | 25.7 |
Brachiocephalicus | |||||
PC | 46 (40–50) | 12 | 15 | 67 | 26.9 |
PP | 43 (40–47) | 10 | 19 | 61 | 22.9 |
PM | 34 * (31–37) | 8 | 15 | 54 | 24.1 |
Extensor Carpi Radialis | |||||
PC | 39 (36–42) | 8 | 26 | 62 | 21.3 |
PP | 40 (37–43) | 9 | 19 | 58 | 23.5 |
PM | 30 * (28–33) | 7 | 16 | 43 | 23.6 |
Extensor Digitorum Longus | |||||
PC | 38 (25–51) | 11 | 23 | 48 | 28.1 |
PP | 41 (36–44) | 6 | 34 | 49 | 13.9 |
PM | 29 (20–42) | 13 | 16 | 54 | 47.1 |
Semimembranosus | |||||
PC | 45 (41–51) | 10 | 28 | 67 | 26.9 |
PP | 40 (35–43) | 10 | 24 | 59 | 25.5 |
PM | 32 * (30–36) | 8 | 19 | 46 | 22.6 |
Sartorius | |||||
PC | 48 (45–51) | 10 | 25 | 71 | 20.8 |
PP | 48 (46–51) | 9 | 28 | 70 | 19.6 |
PM | 40 * (39–42) | 7 | 20 | 54 | 16.7 |
Variable | Category | Estimate | SE | t Value | p-Value | 95% CI | |
---|---|---|---|---|---|---|---|
LCL | UCL | ||||||
Intercept | 47.5 | 5 | 9.6 | <0.001 | 37.7 | 57.2 | |
Treatment | PC | Ref | |||||
PP | 0.3 | 0.9 | 0.37 | 0.712 | −1.4 | 2.1 | |
PM | −9.2 | 0.9 | −10.2 | <0.001 | −11 | −7.4 | |
Muscle group | Biceps Brachii | Ref | |||||
Brachiocephalicus | −2.9 | 1.3 | −2.3 | 0.021 | −5.4 | −0.5 | |
Extensor Carpi Radialis | −5.6 | 1.1 | −4.7 | <0.001 | −8.0 | −3.3 | |
Extensor Digitorum Longus | −8.4 | 2 | −4.2 | <0.001 | −12.3 | −4.6 | |
Sartorius | 5.0 | 1.2 | 4.2 | <0.001 | 2.7 | 7.3 | |
Semimembranosus | −5.7 | 1.4 | −4.2 | <0.001 | −8.4 | −3.1 | |
Random Effects | |||||||
σ2 | 50.18 | ||||||
VarHORSE | 38.25 | ||||||
ICC | 0.43 | ||||||
NHORSE | 49 | ||||||
Observations | 403 | ||||||
Marginal R2/Conditional R2 | 0.350/0.631 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cowling, N.; Woldeyohannes, S.; Sole Guitart, A.; Goodwin, W. Measurement of Tissue Oximetry in Standing Unsedated and Sedated Horses. Vet. Sci. 2021, 8, 202. https://doi.org/10.3390/vetsci8100202
Cowling N, Woldeyohannes S, Sole Guitart A, Goodwin W. Measurement of Tissue Oximetry in Standing Unsedated and Sedated Horses. Veterinary Sciences. 2021; 8(10):202. https://doi.org/10.3390/vetsci8100202
Chicago/Turabian StyleCowling, Nicholas, Solomon Woldeyohannes, Albert Sole Guitart, and Wendy Goodwin. 2021. "Measurement of Tissue Oximetry in Standing Unsedated and Sedated Horses" Veterinary Sciences 8, no. 10: 202. https://doi.org/10.3390/vetsci8100202
APA StyleCowling, N., Woldeyohannes, S., Sole Guitart, A., & Goodwin, W. (2021). Measurement of Tissue Oximetry in Standing Unsedated and Sedated Horses. Veterinary Sciences, 8(10), 202. https://doi.org/10.3390/vetsci8100202