Use of Essential Oils in Veterinary Medicine to Combat Bacterial and Fungal Infections
Abstract
:1. Introduction
2. Bacterial Infections
2.1. Gram-Negative Bacteria
2.1.1. Escherichia coli
2.1.2. Salmonella spp.
2.1.3. Pseudomonas spp.
2.1.4. Campylobacter spp.
2.2. Gram-Positive Bacteria
2.2.1. Staphylococcus spp.
2.2.2. Streptococcus spp.
2.2.3. Enterococcus spp.
2.3. Mycobacterium spp.
3. Fungal Infections
3.1. Dermatophytes
3.2. Malassezia pachydermatis
3.3. Aspergillus spp.
3.4. Sporothrix brasiliensis
3.5. Pseudogymnoascus destructans
3.6. Ascosphaera apis
3.7. Nosema ceranae
3.8. Candida spp.
4. Oomycetes
4.1. Saprolegnia spp.
4.2. Pythium insidiosum
5. Algae
Prototheca spp.
6. Discussion and Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Winkelman, W.J. Aromatherapy, botanicals, and essential oils in acne. Clin. Dermatol. 2018, 36, 299–305. [Google Scholar] [CrossRef] [PubMed]
- Plant, R.M.; Dinh, L.; Argo, S.; Shah, M. The essentials of essential Oils. Adv. Pediatr. 2019, 66, 111–122. [Google Scholar] [CrossRef] [PubMed]
- Miguel, M.G. Antioxidant and anti-inflammatory activities of essential oils: A short review. Molecules 2010, 15, 9252–9287. [Google Scholar] [CrossRef] [Green Version]
- Valdivieso-Ugarte, M.; Gomez-Llorente, C.; Plaza-Díaz, J.; Gil, Á. Antimicrobial, antioxidant, and immunomodulatory properties of essential oils: A systematic review. Nutrients 2019, 11, 2786. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pikkemaat, M.G.; Yassin, H.; van der Fels-Klerx, H.J.; Berendsen, B.J.A. Antibiotic Residues and Resistance in the Environment; Wageningen, RIKILT Report; RIKILT Wageningen UR (University & Research Centre): Wageningen, The Netherlands, 2016. [Google Scholar]
- Dziva, F.; Stevens, M.P. Colibacillosis in poultry: Unravelling the molecular basis of virulence of avian pathogenic Escherichia coli in their natural hosts. Avian. Pathol. 2008, 37, 355–366. [Google Scholar] [CrossRef] [Green Version]
- Lister, S.A.; Barrow, P. Enterobacteriaceae. In Poultry Diseases, 6th ed.; Pattison, M., McMullin, P.F., Bradbury, J.M., Alexander, D.J., Eds.; Saunders Elsevier: Edinburgh, UK, 2008; pp. 110–145. ISBN 978-0-7020-2862-5. [Google Scholar]
- Ebani, V.V.; Najar, B.; Bertelloni, F.; Pistelli, L.; Mancianti, F.; Nardoni, S. Chemical composition and in vitro antimicrobial efficacy of sixteen essential oils against Escherichia coli and Aspergillus fumigatus isolated from poultry. Vet. Sci. 2018, 5, 62. [Google Scholar] [CrossRef] [Green Version]
- Marchese, A.; Barbieri, R.; Coppo, E.; Orhan, I.E.; Daglia, M.; Nabavi, S.F.; Izadi, M.; Abdollahi, M.; Nabavi, S.M.; Ajami, M. Antimicrobial activity of eugenol and essential oils containing eugenol: A mechanistic viewpoint. Crit. Rev. Microbiol. 2017, 43, 668–689. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, X.; Wang, Y.; Jiang, P.; Quek, S.Y. Antibacterial activity and mechanism of cinnamon essential oil against Escherichia coli and Staphylococcus aureus. Food Control 2016, 59, 282–289. [Google Scholar] [CrossRef]
- Rhayour, K.; Bouchikhi, T.; Tantaoui-Elaraki, A.; Sendide, K.; Remmal, A. The mechanism of bactericidal action of oregano and clove essential oils and of their phenolic major components on Escherichia coli and Bacillus subtilis. J. Essent. Oils Res. 2003, 15, 356–362. [Google Scholar] [CrossRef]
- Li, W.R.; Shi, Q.S.; Liang, Q.; Xie, X.B.; Huang, X.M.; Chen, Y.B. Antibacterial activity and kinetics of Litsea cubeba oil on Escherichia coli. PLoS ONE 2014, 9, e110983. [Google Scholar] [CrossRef]
- Shah, G.; Shri, R.; Panchal, V.; Sharma, N.; Singh, B.; Mann, A.S. Scientific basis for the therapeutic use of Cymbopogon citratus, stapf (lemon grass). J. Adv. Pharm. Technol. Res. 2011, 2, 3–8. [Google Scholar] [CrossRef] [PubMed]
- Goudjil, M.B.; Ladjel, S.; Bencheikh, S.E.; Zighmi, S.; Hamada, D. Chemical composition, antibacterial and antioxidant activities of the essential oil extracted from the Mentha piperita of Southern Algeria. Res. J. Phytochem. 2015, 9, 79–87. [Google Scholar]
- Iscan, G.; Kirimer, N.; Kurkcuoglu, K.; Baser, K.H.C.; Demirci, F. Antimicrobial screening of Mentha piperita essential oils. J. Agric. Food Chem. 2002, 50, 3943–3946. [Google Scholar] [CrossRef] [PubMed]
- Rasooli, I.; Gachkar, L.; Yadegarinia, D.; Bagher Rezaei, M.; Alipoor Astaneh, S. Antibacterial and antioxidative characterisation of essential oils from Mentha piperita and Mentha spicata grown in Iran. Acta Aliment. Hung. 2007, 37, 41–52. [Google Scholar] [CrossRef]
- Hamidpour, R.; Hamidpour, S.; Hamidpour, M.; Marshall, V.; Hamidpour, R. Pelargonium graveolens (Rose Geranium)—A novel therapeutic agent for antibacterial, antioxidant, antifungal and diabetics. Arch. Can. Res. 2017, 5, 1. [Google Scholar] [CrossRef] [Green Version]
- Stefan, M.; Zamfirache, M.M.; Padurariu, C.; Trută, E.; Gostin, I. The composition and antibacterial activity of essential oils in three Ocimum species growing in Romania. Cent. Eur. J. Biol. 2013, 8, 600–608. [Google Scholar] [CrossRef]
- Omonijo, F.A.; Ni, L.; Gong, J.; Wang, Q.; Lahaye, L.; Yang, C. Essential oils as alternatives to antibiotics in swine production. Anim. Nutr. 2018, 4, 126–136. [Google Scholar] [CrossRef]
- Ebani, V.V.; Nardoni, S.; Bertelloni, F.; Pistelli, L.; Mancianti, F. Antimicrobial activity of five essential oils against bacteria and fungi responsible for urinary tract infections. Molecules 2018, 23, 1668. [Google Scholar] [CrossRef] [Green Version]
- Bajpai, V.K.; Baek, K.H.; Kang, S.C. Control of Salmonella in foods by using essential oils: A review. Food Res. Int. 2012, 45, 722–734. [Google Scholar] [CrossRef]
- Calo, J.R.; Baker, C.A.; Park, S.H.; Ricke, S.C. Salmonella Heidelberg strain responses to essential oil components. J. Food Res. 2015, 4, 73–80. [Google Scholar] [CrossRef]
- Ebani, V.V.; Nardoni, S.; Bertelloni, F.; Tosi, G.; Massi, P.; Pistelli, L.; Mancianti, F. In vitro antimicrobial activity of essential oils against Salmonella enterica serotypes Enteritidis and Typhimurium strains isolated from poultry. Molecules 2019, 24, 900. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jayaprakasha, G.K.; Negi, P.S.; Jena, B.S.; Jaganmohan Rao, L. Antioxidant and antimutagenic activities of Cinnamomum zeylanicum fruit extracts. J. Food Compost. Anal. 2007, 20, 330–336. [Google Scholar] [CrossRef]
- Di Pasqua, R.; Betts, G.; Hoskins, N.; Edwards, M.; Ercolini, D.; Mauriello, G. Membrane toxicity of antimicrobial compounds from essential oils. J. Agric. Food Chem. 2007, 55, 4863–4870. [Google Scholar] [CrossRef]
- Krishan, G.; Narang, A. Use of essential oils in poultry nutrition: A new approach. J. Adv. Vet. Anim. Res. 2014, 1, 156–162. [Google Scholar] [CrossRef]
- Zhang, S.; Shen, Y.R.; Wu, S.; Xiao, Y.Q.; He, Q.; Shi, S.R. The dietary combination of essential oils and organic acids reduces Salmonella enteritidis in challenged chicks. Poult. Sci. 2019, 98, 6349–6355. [Google Scholar] [CrossRef]
- Mueller, K.; Blum, N.M.; Kluge, H.; Mueller, A.S. Influence of broccoli extract and various essential oils on performance and expression of xenobiotic- and antioxidant enzymes in broiler chickens. Br. J. Nutr. 2012, 108, 588–602. [Google Scholar] [CrossRef] [Green Version]
- Hafeez, A.; Manner, K.; Schieder, C.; Zentek, J. Effect of supplementation of phytogenic feed additives (powdered vs. encapsulated) on performance and nutrient digestibility in broiler chickens. Poult. Sci. 2016, 95, 622–629. [Google Scholar] [CrossRef]
- Potron, A.; Poirel, L.; Nordmann, P. Emerging broad-spectrum resistance in Pseudomonas aeruginosa and Acinetobacter baumannii: Mechanisms and epidemiology. Int. J. Antimicrob. Agents 2015, 24, 568–585. [Google Scholar] [CrossRef] [Green Version]
- Abi-Ayad, M.; Abi-Ayad, F.Z.; Lazzouni, H.A.; Rebiahi, S.A. Antibacterial activity of Pinus halepensis essential oil from Algeria (Tlemcen). J. Nat. Prod. Plant. Resour. 2011, 1, 33–36. [Google Scholar]
- Bouhdid, S.; Abrini, J.; Amensour, M.; Zhiri, A.; Espuny, M.J.; Manresa, A. Functional and ultrastructural changes in Pseudomonas aeruginosa and Staphylococcus aureus cells induced by Cinnamomum verum essential oil. J. Appl. Microbiol. 2010, 109, 1139–1149. [Google Scholar] [CrossRef]
- Prabuseenivasan, S.; Jayakumar, M.; Ignacimuthu, S. In vitro antibacterial activity of some plant essential oils. BMC Complement. Altern. Med. 2006, 6, 39. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kavanaugh, N.L.; Ribbeck, K. Selected antimicrobial essential oils eradicate Pseudomonas spp. and Staphylococcus aureus biofilms. Appl. Environ. Microbiol. 2012, 78, 4057–4061. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sienkiewicz, M.; Łysakowska, M.; Denys, P.; Kowalczyk, E. The antimicrobial activity of thyme essential oil against multidrug resistant clinical bacterial strains. Microb. Drug Resist. 2012, 18, 137–148. [Google Scholar] [CrossRef] [PubMed]
- Ebani, V.V.; Nardoni, S.; Bertelloni, F.; Najar, B.; Pistelli, L.; Mancianti, F. Antibacterial and antifungal activity of essential oils against pathogens responsible for otitis externa in dogs and cats. Medicines 2017, 4, 21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Utchariyakiat, I.; Surassmo, S.; Jaturanpinyo, M.; Khuntayaporn, P.; Chomnawang, M. Efficacy of cinnamon bark oil and cinnamaldehyde on anti-multidrug resistant Pseudomonas aeruginosa and the synergistic effects in combination with other antimicrobial agents. BMC Complement. Altern. Med. 2016, 16, 158. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sadeghi, M.; Zolfaghari, B.; Jahanian-Najafabadi, A.; Abtahi, S.R. Anti-pseudomonas activity of essential oil, total extract, and proanthocyanidins of Pinus eldarica Medw. bark. Res. Pharm. Sci. 2016, 11, 58–64. [Google Scholar] [PubMed]
- Pejčić, M.; Stojanović-Radić, Z.; Genčić, M.; Dimitrijević, M.; Radulović, N. Anti-virulence potential of basil and sage essential oils: Inhibition of biofilm formation, motility and pyocyanin production of Pseudomonas aeruginosa isolates. Food Chem. Toxicol. 2020, 141, 111431. [Google Scholar] [CrossRef]
- Kačániová, M.; Terentjeva, M.; Vukovic, N.; Puchalski, C.; Roychoudhury, S.; Kunová, S.; Klūga, A.; Tokár, M.; Kluz, M.; Ivanišová, E. The antioxidant and antimicrobial activity of essential oils against Pseudomonas spp. isolated from fish. Saudi Pharm. J. 2017, 25, 1108–1116. [Google Scholar] [CrossRef]
- Tripathy, S.; Kumar, N.; Mohanty, N.; Samanta, M.; Mandal, R.N.; Maiti, N.K. Characterisation of Pseudomonas aeruginosa isolated from freshwater culture systems. Microbiol. Res. 2007, 162, 391–396. [Google Scholar] [CrossRef]
- Micciche, A.; Rothrock, M.J., Jr.; Yang, Y.; Ricke, S.C. Essential oils as an intervention strategy to reduce Campylobacter in poultry production: A review. Front. Microbiol. 2019, 10, 1058. [Google Scholar] [CrossRef]
- Connerton, P.L.; Richards, P.J.; Lafontaine, G.M.; O’Kane, P.M.; Ghaffar, N.; Cummings, N.J.; Smith, D.L.; Fish, N.M.; Connerton, I.F. The effect of the timing of exposure to Campylobacter jejuni on the gut microbiome and inflammatory responses of broiler chickens. Microbiome 2018, 6, 88. [Google Scholar] [CrossRef] [PubMed]
- Friedman, M.; Henika, P.R.; Mandrell, R.E. Bactericidal activities of plant essential oils and some of their isolated constituents against Campylobacter jejuni, Escherichia coli, Listeria monocytogenes, and Salmonella enterica. J. Food Prot. 2002, 65, 1545–1560. [Google Scholar] [CrossRef]
- Kurekci, C.; Padmanabha, J.; Bishop-Hurley, S.L.; Hassan, E.; Al Jassim, R.A.; McSweeney, C.S. Antimicrobial activity of essential oils and five terpenoid compounds against Campylobacter jejuni in pure and mixed culture experiments. Int. J. Food Microbiol. 2013, 166, 450–457. [Google Scholar] [CrossRef] [PubMed]
- El Gendy, A.N.; Leonardi, M.; Mugnaini, L.; Bertelloni, F.; Ebani, V.V.; Nardoni, S.; Mancianti, F.; Hendawy, S.; Omer, E.; Pistelli, L. Chemical composition and antimicrobial activity of essential oil of wild and cultivated Origanum syriacum plants grown in Sinai, Egypt. Ind. Crops Prod. 2015, 67, 201–207. [Google Scholar] [CrossRef]
- Kot, B.; Wierzchowska, K.; Piechota, M.; Czerniewicz, P.; Chrznowski, G.C. Antimicrobial activity of five essential oils from lamiaceae against multidrug-resistant Staphylococcus aureus. Nat. Prod. Res. 2019, 24, 3587–3591. [Google Scholar] [CrossRef] [PubMed]
- Sakkas, H.; Economou, V.; Gousia, P.; Bozidis, P.; Sakkas, V.; Petsios, S.; Mpekoulis, G.; Ilia, A.; Papadopoulou, C. Antibacterial efficacy of commercially available essential oils tested against drug resisitant Gram-positive pathogens. Appl. Sci. 2018, 8, 2201. [Google Scholar] [CrossRef] [Green Version]
- de Oliveira, J.L.T.; Diniz, M.F.M.; de Oliveira Lima, E.; Souza, E.L.; Trajano, V.N.; Santos, B.H.C. Effectiveness of Origanum vulgare L. and Origanum majorana L. essential oils in inhibiting the growth of bacterial strains isolated from the patients with conjunctivitis. Braz. Arch. Biol. Technol. 2009, 52, 45–50. [Google Scholar] [CrossRef] [Green Version]
- Ebani, V.V.; Bertelloni, F.; Najar, B.; Nardoni, S.; Pistelli, L.; Mancianti, F. Antimicrobial activity of essential oils against Staphylococcus and Malassezia strains isolated from canine dermatitis. Microorganisms 2020, 8, 252. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vitanza, L.; Maccelli, A.; Marazzato, M.; Scazzocchio, F.; Comanducci, A.; Fornarini, S.; Crestoni, M.E.; Filippi, A.; Fraschetti, C.; Rinaldi, F.; et al. Satureja montana L. essential oil and its antimicrobial activity alone or in combination with gentamicin. Microb. Pathog. 2019, 126, 323–331. [Google Scholar] [CrossRef] [PubMed]
- Adam, M.E.; Selim, S.A. Antimicrobial activity of essential oil and methanol extract from Commiphora molmol (Engl.) resin. Int. J. Curr. Microbiol. Appl. Sci. 2013, 2, 1–6. [Google Scholar]
- Mahboubi, M.; Kazempour, N. The antimicrobial and antioxidant activities of Commiphora molmol extracts. Biharean. Biol. 2016, 10, 131–133. [Google Scholar]
- Hu, W.; Li, C.; Dai, J.; Cui, H.; Lin, L. Antibacterial activity and mechanism of Litsea cubeba essential oil against methicillin-resistant Staphylococcus aureus (MRSA). Ind. Crop. Prod. 2019, 130, 34–41. [Google Scholar] [CrossRef]
- Najar, B.; Nardi, V.; Cervelli, C.; Mecacci, G.; Mancianti, F.; Ebani, V.V.; Nardoni, S.; Pistelli, L. Volatilome analyses and in vitro antimicrobial activity of the essential oils from five South Africa Helichrysum species. Molecules 2020, 25, 3196. [Google Scholar] [CrossRef] [PubMed]
- Najar, B.; Nardi, V.; Cervelli, C.; Mancianti, F.; Nardoni, S.; Ebani, V.V.; Pistelli, L. Helichrysum araxinum Takht. ex Kirp. grown in Italy: Volatiloma composition and in vitro antimicrobial activity. Z. Naturfosch. C J. Biosci. 2020, 75, 265–270. [Google Scholar]
- Nocera, F.P.; Mancini, S.; Najar, B.; Bertelloni, F.; Pistelli, L.; De Filippis, A.; Fiorito, F.; De Martino, L.; Fratini, F. Antimicrobial activity of some essential oils against Methicillin-susceptible and Methicillin-resistant Staphylococcus pseudintermedius-associated Pyoderma in dogs. Animals 2020, 10, 1782. [Google Scholar] [CrossRef]
- Naik, M.I.; Fomda, B.A.; Jaykumar, E.; Bhat, J.A. Antibacterial activity of lemongrass (Cymbopogon citratus) oil against some selected pathogenic bacteria. Asian Pac. J. Trop. Med. 2010, 3, 535–538. [Google Scholar] [CrossRef] [Green Version]
- Ehsani, A.; Alizadeh, O.; Hashemi, M.; Afshari, A.; Aminzare, M. Phytochemical, antioxidant and antibacterial properties of Melissa officinalis and Dracocephalum moldavica essential oils. Vet. Res. Forum 2017, 8, 223–229. [Google Scholar]
- Demo, M.; Oliva, M.; Lopez, M.L.; Zunino, M.P.; Zygadlo, J.A. Antimicrobial activity of essential oils obtained from aromatic plants of Argentina. J. Pharm. Biol. 2005, 43, 129–134. [Google Scholar] [CrossRef]
- Sartoratto, A.; Machado, A.L.M.; Delarmelina, C.; Figueira, G.M.; Duarte, M.C.T.; Rehder, V.L.G. Composition and antimicrobial activity of essential oils from aromatic plants used in Brazil. Braz. J. Microbiol. 2004, 35, 275–280. [Google Scholar] [CrossRef] [Green Version]
- de las Oliva, M.M.; Carezzano, E.; Gallucci, N.; Freytes, S.; Zygadlo, J.; Demo, M.S. Growth inhibition and morphological alterations of Staphylococcus aureus caused by the essential oil of Aloysia triphylla. Bull. Latinoam. Caribb. Plants Med. Aromat. 2015, 14, 83–91. [Google Scholar]
- Abboud, M.; El Rammouz, R.; Jammal, B.; Sleiman, M. In vitro and in vivo antimicrobial activity of two essential oils Thymus vulgaris and Lavandula angustifolia against bovine Staphylococcus and Streptococcus mastitis pathogen. Middle East J. Agric. Res. 2015, 4, 975–983. [Google Scholar]
- de Oliveira, M.A.C.; Borges, A.C.; Brighenti, F.L.; Salvador, M.J.; Gontijo, A.V.L.; Koga-Ito, C.Y. Cymbopogon citratus essential oil: Effect on polymicrobial caries-related biofilm with low cytotoxicity. Braz. Oral Res. 2017, 31, e89. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sienkiewicz, M.; Prosniewska, M.; Krukowska, J.; Bigos, M. Inhibitory Activity of Cinnamon Bark Oil on Group B Streptococci (GBS). J. Essent. Oil Bear. Plants 2014, 17, 981–991. [Google Scholar] [CrossRef]
- Fani, M.; Kohanteb, J. In vitro antimicrobial activity of Thymus vulgaris essential oil against major oral pathogens. J. Evid. Based Complementary Altern. Med. 2017, 22, 660–666. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chaudhry, N.M.A.; Tariq, P. Anti-microbial activity of Cinnamomum cassia against diverse microbial flora with its nutritional and medicinal impacts. Pak. J. Bot. 2006, 38, 169–174. [Google Scholar]
- Mayaud, L.; Carricajo, A.; Zhiri, A.; Aubert, G. Comparison of bacteriostatic and bactericidal activity of 13 essential oils against strains with varying sensitivity to antibiotics. Lett. Appl. Microbiol. 2008, 47, 167–173. [Google Scholar] [CrossRef]
- Rattanachaikunsopon, P.; Phumkhachorn, P. Potential of cinnamon (Cinnamomum verum) oil to control Streptococcus iniae infection in tilapia (Oreochromis niloticus). Fish Sci. 2010, 76, 287–293. [Google Scholar] [CrossRef]
- Abdelkhalek, N.K.; Risha, E.; El-Adl, M.A.; Salama, M.F.; Dawood, M.A.O. Antibacterial and antioxidant activity of clove oil against Streptococcus iniae infection in Nile tilapia (Oreochromis niloticus) and its effect on hepatic hepcidin expression. Fish Shellfish Immunol. 2020, 104, 478–488. [Google Scholar] [CrossRef]
- Rodríguez, O.; Sánchez, R.; Verde, M.; Núñez, M.; Ríos, R.; Chávez, A. Obtaining the essential oil of Syzygium aromaticum, identification of eugenol and its effect on Streptococcus mutans. J. Oral Res. 2014, 3, 218–224. [Google Scholar] [CrossRef] [Green Version]
- Pulikottil, S.J.; Nath, S. Potential of clove of Syzygium aromaticum in development of a therapeutic agent for periodontal disease: A review. S. Afr. Dent. J. 2015, 70, 108–115. [Google Scholar]
- Sfeir, J.; Lefrançois, C.; Baudoux, D.; Derbré, S.; Licznar, P. In vitro antibacterial activity of essential oils against Streptococcus pyogenes. J. Evid. Based Complementary Altern. Med. 2013, 2013, 269161. [Google Scholar]
- de Aguiar, F.C.; Solarte, A.L.; Tarradas, C.; Gómez-Gascón, L.; Astorga, R.; Maldonado, A.; Huerta, B. Combined effect of conventional antimicrobials with essential oils and their main components against resistant Streptococcus suis strains. Lett. Appl. Microbiol. 2019, 68, 562–572. [Google Scholar] [CrossRef] [PubMed]
- Byappanahalli, M.N.; Nevers, M.B.; Korajkic, A.; Staley, Z.R.; Harwood, V.J. Enterococci in the environment. Microbiol. Mol. Biol. Rev. 2012, 4, 685–706. [Google Scholar] [CrossRef] [Green Version]
- Domig, K.J.; Mayer, H.K.; Kneifel, W. Methods used for the isolation, enumeration, characterization and identification of Enterococcus spp. 1. Media for isolation and enumeration. Int. J. Food Microbiol. 2003, 88, 147–164. [Google Scholar] [CrossRef]
- Hammerum, A.M. Enterococci of animal origin and their significance for public health. Clin. Microbiol. Infect. 2012, 18, 619–625. [Google Scholar] [CrossRef] [PubMed]
- Nilsson, O. Vancomycin resistant enterococci in farm animals occurrence and importance. Infect. Ecol. Epidemiol. 2012, 2. [Google Scholar] [CrossRef] [Green Version]
- Robbins, K.M.; Suyemoto, M.M.; Lyman, R.L.; Martin, M.P.; Barnes, H.J.; Borst, L.B. An outbreak and source investigation of enterococcal spondylitis in broiler caused by Enterococcus cecorum. Avian. Dis. 2012, 56, 768–773. [Google Scholar] [CrossRef] [PubMed]
- Šeputienė, V.; Bogdaitė, A.; Ružauskas, M.; Sužiedėlienė, E. Antibiotic resistance genes and virulence factors in Enterococcus faecium and Enterococcus faecalis from diseased farm animals: Pigs, cattle and poultry. Pol. J. Vet. Sci. 2012, 3, 431–438. [Google Scholar]
- Benmalek, Y.; Yahia, O.A.; Belkebir, A.; Fardeau, M.L. Anti-microbial and anti-oxidant activities of Illicium verum, Crataegus oxyacantha ssp. monogyna and Allium cepa red and white varieties. Bioengineered 2014, 4, 244–248. [Google Scholar]
- Hawrelak, J.A.; Cattley, T.; Myers, S.P. Essential oils in the treatment of intestinal dysbiosis: A preliminary in vitro study. Altern. Med. Rev. 2009, 14, 380–384. [Google Scholar] [PubMed]
- Ghorbani, A.; Esmaeilizadeh, M. Pharmacological properties of Salvia officinalis and its components. J. Tradit. Complement. Med. 2017, 7, 433–440. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Jin, P.; Gong, H.; Sun, Z.; Du, L.; Wang, D. Antibacterial and antibiofilm activities of thyme oil against foodborne multiple antibiotics-resistant Enterococcus faecalis. Poult. Sci. 2020, 99, 5127–5136. [Google Scholar] [CrossRef] [PubMed]
- Andrade-Ochoa, S.; Chacón-Vargas, K.F.; Nevárez-Moorillón, G.V.; Rivera-Chavira, B.E.; Hernández-Ochoa, L.R. Evaluation of antimycobacterium activity of the essential oils of cumin (Cuminum cyminum), clove (Eugenia caryophyllata), cinnamon (Cinnamomum verum), laurel (Laurus nobilis) and anise (Pimpinella anisum) against Mycobacterium tuberculosis. Adv. Biol. Chem. 2013, 3, 480–484. [Google Scholar] [CrossRef] [Green Version]
- Baldin, V.P.; Bertin de Lima Scodro, R.; Mariano Fernandez, C.M.; Ieque, A.L.; Caleffi-Ferracioli, K.R.; Dias Siqueira, V.L.; de Almeida, A.L.; Gonçalves, J.E.; Garcia Cortez, D.A.; Cardoso, R.F. Ginger essential oil and fractions against Mycobacterium spp. J. Ethnopharmacol. 2019, 244, 112095. [Google Scholar] [CrossRef]
- Peruč, D.; Tićac, B.; Abram, M.; Broznić, D.; Štifter, S.; Staver, M.M.; Gobin, I. Synergistic potential of Juniperus communis and essential oils against nontuberculous mycobacteria. J. Med. Microbiol. 2019, 68, 703–710. [Google Scholar] [CrossRef]
- Peruč, D.; Gobin, I.; Abram, M.; Broznić, D.; Svalina, T.; Štifter, S.; Staver, M.M.; Tićac, B. Antimycobacterial potential of the juniper berry essential oil in tap water. Archives of industrial hygiene and toxicology. Arch. Hig. Rada Toksikol. 2018, 69, 46–54. [Google Scholar] [CrossRef] [Green Version]
- Wong, S.Y.; Grant, I.R.; Friedman, M.; Elliott, C.T.; Situ, C. Antibacterial activities of naturally occurring compounds against Mycobacterium avium subsp. paratuberculosis. Appl. Environ. Microbiol. 2008, 74, 5986–5990. [Google Scholar] [CrossRef] [Green Version]
- Nowotarska, S.W.; Nowotarski, K.; Grant, I.R.; Elliott, C.E.; Friedman, M.; Situ, C. Mechanisms of antimicrobial action of cinnamon and oregano oils, Cinnamaldehyde, Carvacrol,2,5-Dihydroxybenzaldehyde, and 2-Hydroxy-5-Methoxybenzaldehyde against Mycobacterium avium subsp. Paratuberculosis (Map). Foods 2017, 6, 72. [Google Scholar] [CrossRef] [Green Version]
- Zanetti, S.; Cannas, S.; Molicotti, P.; Bua, A.; Cubeddu, M.; Porcedda, S.; Marongiu, B.; Sechi, L.A. Evaluation of the antimicrobial properties of the essential oil of Myrtus communis L. against clinical strains of Mycobacterium spp. Interdiscip. Perspect. Infect. Dis. 2010, 2010, 931530. [Google Scholar] [CrossRef] [Green Version]
- Chermette, R.; Ferreiro, L.; Guillot, J. Dermatophytoses in animals. Mycopathologia 2008, 166, 385–405. [Google Scholar] [CrossRef]
- Bond, R. Superficial veterinary mycoses. Clin. Dermatol. 2010, 28, 226–236. [Google Scholar] [CrossRef]
- Monod, M. Antifungal resistance in dermatophytes: Emerging problem and challenge for the medical community. J. Mycol. Med. 2019, 29, 283–284. [Google Scholar] [CrossRef]
- Perrucci, S.; Mancianti, F.; Cioni, P.L.; Flamini, G.; Morelli, I.; Macchioni, G. In vitro antifungal activity of essential oils against some isolates of Microsporum canis and Microsporum gypseum. Planta Med. 1994, 60, 184–187. [Google Scholar] [CrossRef] [PubMed]
- Debbabi, H.; Mokni, R.E.; Chaieb, I.; Nardoni, S.; Maggi, F.; Caprioli, G.; Hammami, S. Chemical composition, antifungal and insecticidal activities of the essential oils from Tunisian Clinopodium Nepeta Subsp. nepeta and Clinopodium Nepeta Subsp. Glandulosum. Molecules 2020, 25, 2137. [Google Scholar] [CrossRef]
- Elaissi, A.; Elsharkawy, E.; El Mokni, R.; Debbabi, H.; Brighenti, V.; Nardoni, S.; Pellati, F.; Hammami, S. Chemical composition, antifungal and antiproliferative activities of essential oils from Thymus numidicus L. Nat. Prod. Res. 2020, 4, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Mugnaini, L.; Nardoni, S.; Pinto, L.; Pistelli, L.; Leonardi, M.; Pisseri, F.; Mancianti, F. In vitro and in vivo antifungal activity of some essential oils against feline isolates of Microsporum canis. J. Mycol. Med. 2012, 22, 179–184. [Google Scholar] [CrossRef]
- Mugnaini, L.; Nardoni, S.; Pistelli, L.; Leonardi, M.; Giuliotti, L.; Benvenuti, M.N.; Pisseri, F.; Mancianti, F. An herbal antifungal formulation of Thymus serpillum, Origanum vulgare and Rosmarinus officinalis for treating ovine dermatophytosis due to Trichophyton mentagrophytes. Mycoses 2013, 56, 333–337. [Google Scholar] [CrossRef] [PubMed]
- Nardoni, S.; Giovanelli, S.; Pistelli, L.; Mugnaini, L.; Profili, G.; Pisseri, F.; Mancianti, F. In vitro activity of twenty commercially available, plant-derived essential oils against selected dermatophyte species. Nat. Prod. Commun. 2015, 10, 1473–1478. [Google Scholar] [CrossRef] [Green Version]
- Altinier, G.; Sosa, S.; Aquino, R.P.; Mencherini, T.; Della Loggia, R.; Tubaro, A. Characterization of topical antiinflammatory compounds in Rosmarinus officinalis L. J. Agric. Food Chem. 2007, 55, 1718–1723. [Google Scholar] [CrossRef]
- Ahmad, A.; Khan, A.; Akhtar, F.; Yousuf, S.; Xess, I.; Khan, L.A.; Manzoor, N. Fungicidal activity of thymol and carvacrol by disrupting ergosterol biosynthesis and membrane integrity against Candida. Eur. J. Clin. Microbiol. Infect. Dis. 2011, 30, 41–50. [Google Scholar] [CrossRef]
- Chavan, P.S.; Tupe, S.G. Antifungal activity and mechanism of action of carvacrol and thymol against vineyard and wine spoilage yeasts. Food Control 2014, 46, 115–120. [Google Scholar] [CrossRef]
- Fontenelle, R.O.; Morais, S.M.; Brito, E.H.; Kerntopf, M.R.; Brilhante, R.S.; Cordeiro, R.A.; Tomé, A.R.; Queiroz, M.G.; Nascimento, N.R.; Sidrim, J.J.; et al. Chemical composition, toxicological aspects and antifungal activity of essential oil from Lippia sidoides Cham. J. Antimicrob. Chemother. 2007, 59, 934–940. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Domaracký, M.; Rehák, P.; Juhás, S.; Koppel, J. Effects of selected plant essential oils on the growth and development of mouse preimplantation embryos in vivo. Physiol. Res. 2007, 56, 97–104. [Google Scholar] [PubMed]
- Llana-Ruiz-Cabello, M.; Gutiérrez-Praena, D.; Pichardo, S.; Moreno, F.J.; Bermúdez, J.M.; Aucejo, S.; Cameán, A.M. Cytotoxicity and morphological effects induced by carvacrol and thymol on the human cell line Caco-2. Food Chem. Toxicol. 2014, 64, 281–290. [Google Scholar] [CrossRef]
- Fontenelle, R.O.; Morais, S.M.; Brito, E.H.; Brilhante, R.S.; Cordeiro, R.A.; Nascimento, N.R.; Kerntopf, M.R.; Sidrim, J.J.; Rocha, M.F. Antifungal activity of essential oils of Croton species from the Brazilian Caatinga biome. J. Appl. Microbiol. 2008, 104, 1383–1390. [Google Scholar] [CrossRef]
- Zuzarte, M.; Gonçalves, M.J.; Cavaleiro, C.; Cruz, M.T.; Benzarti, A.; Marongiu, B.; Maxia, A.; Piras, A.; Salgueiro, L. Antifungal and anti-inflammatory potential of Lavandula stoechas and Thymus herba-barona essential oils. Ind. Crops Prod. 2013, 44, 97–103. [Google Scholar] [CrossRef]
- Pinto, E.; Gonçalves, M.J.; Hrimpeng, K.; Pinto, J.; Vaz, S.; Vale-Silva, L.A.; Cavaleiro, C.; Salgueiro, L. Antifungal activity of the essential oil of Thymus villosus subsp. lusitanicus against Candida, Cryptococcus, Aspergillus and dermatophyte species. Ind. Crops Prod. 2013, 51, 93–99. [Google Scholar]
- Miron, D.; Battisti, F.; Silva, F.K.; Lana, A.D.; Pippi, B.; Casanova, B.; Gnoatto, S.; Fuentefria, A.; Mayorga, M.; Schapoval, E.E.S. Antifungal activity and mechanism of action of monoterpenes against dermatophytes and yeasts. Rev. Bras. Farmacogn. 2014, 24, 660–667. [Google Scholar] [CrossRef]
- Leite, M.C.; de Brito Bezerra, A.P.; de Sousa, J.P.; de Oliveira Lima, E. Investigating the antifungal activity and mechanism(s) of geraniol against Candida albicans strains. Med. Mycol. 2015, 53, 275–284. [Google Scholar] [CrossRef] [Green Version]
- Capoci, I.R.; Cunha, M.M.; Bonfim-Mendonça Pde, S.; Ghiraldi-Lopes, L.D.; Baeza, L.C.; Kioshima, E.S.; Svidzinski, T.I. Antifungal activity of Cymbopogon nardus (L.) Rendle (Citronella) against Microsporum canis from animals and home environment. Rev. Inst. Med. Trop. Sao Paulo 2015, 57, 509–511. [Google Scholar] [CrossRef]
- Soares, B.V.; Morais, S.M.; dos Santos Fontenelle, R.O.; Queiroz, V.A.; Vila-Nova, N.S.; Pereira, C.M.; Brito, E.S.; Neto, M.A.; Brito, E.H.; Cavalcante, C.S.; et al. Antifungal activity, toxicity and chemical composition of the essential oil of Coriandrum sativum L. fruits. Molecules 2012, 17, 8439–8448. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Flamini, G.; Pistelli, L.; Nardoni, S.; Ebani, V.V.; Zinnai, A.; Mancianti, F.; Ascrizzi, R.; Pistelli, L. Essential oil composition and biological activity of Pompia, a Sardinian citrus ecotype. Molecules 2019, 24, 908. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giovanelli, S.; Ciccarelli, D.; Giusti, G.; Mancianti, F.; Nardoni, S.; Pistelli, L. Comparative assessment of volatiles in juices and essential oils from minor Citrus fruits (Rutaceae). Flavour Fragr. J. 2020, 35, 639–652. [Google Scholar] [CrossRef]
- Chee, H.Y.; Kim, H.; Lee, M.H. In vitro antifungal activity of limonene against Trichophyton rubrum. Mycobiology 2009, 37, 243–246. [Google Scholar] [CrossRef] [Green Version]
- D’agostino, M.; Tesse, N.; Frippiat, J.P.; Machouart, M.; Debourgogne, A. Essential oils and their natural active compounds presenting antifungal properties. Molecules 2019, 24, 3713. [Google Scholar] [CrossRef] [Green Version]
- Pisseri, F.; Bertoli, A.; Nardoni, S.; Pinto, L.; Pistelli, L.; Guidi, G.; Mancianti, F. Antifungal activity of tea tree oil from Melaleuca alternifolia against Trichophyton equinum: An in vivo assay. Phytomedicine 2009, 16, 1056–1058. [Google Scholar] [CrossRef]
- Nardoni, S.; Bertoli, A.; Pinto, L.; Mancianti, F.; Pisseri, F.; Pistelli, L. In vitro effectiveness of tea tree oil against Trichophyton equinum. J. Mycol. Méd. 2009, 20, 75–79. [Google Scholar] [CrossRef]
- Ebani, V.V.; Nardoni, S.; Bertelloni, F.; Giovanelli, S.; Ruffoni, B.; D’Ascenzi, C.; Pistelli, L.; Mancianti, F. Activity of Salvia dolomitica and Salvia somalensis Essential oils against bacteria, molds and yeasts. Molecules 2018, 23, 396. [Google Scholar] [CrossRef] [Green Version]
- Pljevljakušić, D.; Bigović, D.; Janković, T.; Jelačić, S.; Šavikin, K. Sandy everlasting (Helichrysum arenarium (L.) Moench): Botanical, chemical and biological properties. Front. Plants Sci. 2018, 9, 1123. [Google Scholar] [CrossRef] [Green Version]
- Maksimovic, S.; Tadic, V.; Skala, D.; Zizovic, I. Separation of phytochemicals from Helichrysum italicum: An analysis of different isolation techniques and biological activity of prepared extracts. Phytochemistry 2017, 138, 9–28. [Google Scholar] [CrossRef]
- Chinou, I.B.; Bougatsos, C.; Perdetzoglou, D. Chemical composition and antimicrobial activities of Helichrysum amorginum cultivated in Greece. J. Essent. Oil Res. 2004, 16, 243–245. [Google Scholar] [CrossRef]
- Vukovic, N.; Milosevic, T.; Sukdolak, S.; Solujic, S. Antimicrobial activities of essential oil and methanol extract of Teucrium montanum. Evid. Based Complement. Altern. Med. 2007, 4, 17–20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- González, A.M.; Tracanna, M.I.; Amani, S.M.; Schu, C.; Poch, M.J.; Bach, H.; Catalán, C.A.N. Chemical composition, antimicrobial and antioxidant properties of the volatile oil and methanol extract of Xenophyllum poposum. Nat. Prod. Commun. 2012, 7, 1663–1666. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chang, H.T.; Cheng, Y.H.; Wu, C.L.; Chang, S.T.; Chang, T.T.; Su, Y.C. Antifungal activity of essential oil and its constituents from Calocedrus macrolepis var. formosana Florin leaf against plant pathogenic fungi. Bioresour. Technol. 2008, 99, 6266–6270. [Google Scholar] [CrossRef] [PubMed]
- Fahed, L.; Khoury, M.; Stien, D.; Ouaini, N.; Eparvier, V.; El Beyrouthy, M. Essential oils composition andantimicrobial activity of six conifers harvested in lebanon. Chem. Biodivers. 2017, 14, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Parasuraman, S.; Yu Ren, L.; ChikChuon, B.L.; Wong Kah Yee, S.; Ser Qi, T.; Christapher, J.P.V.; Venkateskumar, K.; Raj, P.V. Phytochemical, antimocrobial and mast cell stabilizing activity of ethanolic extract of Solanum trilobatum Linn. leaves. Malays. J. Microbiol. 2016, 12, 359–364. [Google Scholar]
- Nardoni, S.; Costanzo, A.G.; Mugnaini, L.; Pisseri, F.; Rocchigiani, G.; Papini, R.; Mancianti, F. Study comparing an essential oil-based shampoo with miconazole/chlorhexidine for haircoat disinfection in cats with spontaneous microsporiasis. J. Feline Med. Surg. 2017, 19, 697–701. [Google Scholar] [CrossRef]
- Lee, S.J.; Han, J.I.; Lee, G.S.; Park, M.J.; Choi, I.G.; Na, K.J.; Jeung, E.B. Antifungal effect of eugenol and nerolidol against Microsporum gypseum in a guinea pig model. Biol. Pharm. Bull. 2007, 30, 184–188. [Google Scholar] [CrossRef] [Green Version]
- Soković, M.D.; Glamočlija, J.; Marin, P.D.; Brkić, D.D.; Vukojević, J.; Jovanović, D.; Kataranovski, D. Antifungal Activity of the Essential Oil of Mentha piperita. Pharm. Biol. 2006, 44, 511–515. [Google Scholar] [CrossRef]
- Prasad, C.S.; Shukla, R.; Kumar, A.; Dubey, N.K. In vitro and in vivo antifungal activity of essential oils of Cymbopogon martini and Chenopodium ambrosioides and their synergism against dermatophytes. Mycoses 2010, 53, 123–129. [Google Scholar] [CrossRef]
- Guillot, J.; Bond, R. Malassezia yeasts in veterinary dermatology: An updated overview. Front. Cell Infect. Microbiol. 2020, 10, 79. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Cho, Y.G.; Kim, D.S.; Choi, S.I.; Lee, H.S. First case of catheter-related Malassezia pachydermatis Fungemia in an adult. Ann. Lab. Med. 2019, 39, 99–101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iatta, R.; Battista, M.; Miragliotta, G.; Boekhout, T.; Otranto, D.; Cafarchia, C. Blood culture procedures and diagnosis of Malassezia furfur bloodstream infections: Strength and weakness. Med. Mycol. 2018, 56, 828–833. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chryssanthou, E.; Broberger, U.; Petrini, B. Malassezia pachydermatis fungaemia in a neonatal intensive care unit. Acta Paediatr. 2001, 90, 323–327. [Google Scholar] [CrossRef] [PubMed]
- Weseler, A.; Geiss, H.K.; Saller, R.; Reichling, J. Antifungal effect of Australian tea tree oil on Malassezia pachydermatis isolated from canines suffering from cutaneous skin disease. Schweiz Arch Tierheilkd 2002, 144, 215–221. [Google Scholar] [CrossRef]
- Neves, R.C.S.M.; Makino, H.; Cruz, T.P.P.; Silveira, M.M.; Sousa, V.R.F.; Dutra, V.; Lima, M.E.K.M.; Belli, C.B. In vitro and in vivo efficacy of tea tree essential oil for bacterial and yeast ear infections in dogs. Pesq. Vet. Bras. 2018, 38, 1597–1607. [Google Scholar] [CrossRef] [Green Version]
- Bohmova, E.; Conkova, E.; Harcarova, M.; Sihelska, Z. Interactions between clotrimazole and selected essential oils against Malassezia pachydermatis clinical isolates. Pol. J. Vet. Sci. 2019, 22, 173–175. [Google Scholar]
- Khosravi, A.R.; Shokri, H.; Fahimirad, S. Efficacy of medicinal essential oils against pathogenic Malassezia sp. isolates. J. Mycol. Med. 2016, 26, 28–34. [Google Scholar] [CrossRef]
- Sim, J.X.F.; Khazandi, M.; Chan, W.Y.; Trott, D.J.; Deo, P. Antimicrobial activity of thyme oil, oregano oil, thymol and carvacrol against sensitive and resistant microbial isolates from dogs with otitis externa. Vet. Dermatol. 2019, 30, 524–e159. [Google Scholar] [CrossRef]
- Pistelli, L.; Mancianti, F.; Bertoli, A.; Cioni, P.L.; Leonardi, L.; Pisseri, F.; Mugnaini, L.; Nardoni, S. Antimycotic activity of some aromatic plants essential oils against canine isolates of Malassezia pachydermatis: An in vitro assay. Open Mycol. J. 2012, 6, 17. [Google Scholar] [CrossRef] [Green Version]
- Bismarck, D.; Dusold, A.; Heusinger, A.; Müller, E. Antifungal in vitro activity of essential oils against clinical isolates of Malassezia pachydermatis from canine ears: A report from a practice laboratory. Complement. Med. Res. 2020, 27, 143–154. [Google Scholar] [CrossRef] [PubMed]
- Sim, J.X.F.; Khazandi, M.; Pi, H.; Venter, H.; Trott, D.J.; Deo, P. Antimicrobial effects of cinnamon essential oil and cinnamaldehyde combined with EDTA against canine otitis externa pathogens. J. Appl. Microbiol. 2019, 127, 99–108. [Google Scholar] [CrossRef] [PubMed]
- Fujimori, K.; Kaneko, A.; Kitamori, Y.; Aoki, M.; Makita, M.; Masuda, N.; Hokari, K. Hinokitiol (β-Thujaplicin) from the Essential Oil of Hinoki [Chamaecyparis obtuse]. J. Ess. Oil Res. 2011, 10, 711–712. [Google Scholar] [CrossRef]
- Nakano, Y.; Wada, M.; Tani, H.; Sasai, K.; Baba, E. Effects of beta-thujaplicin on anti-Malassezia pachydermatis remedy for canine otitis externa. J. Vet. Med. Sci. 2005, 67, 1243–1247. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nardoni, S.; Mugnaini, L.; Pistelli, L.; Leonardi, M.; Sanna, V.; Perrucci, S.; Pisseri, F.; Mancianti, F. Clinical and mycological evaluation of an herbal antifungal formulation in canine Malassezia dermatitis. J. Mycol. Med. 2014, 24, 234–240. [Google Scholar] [CrossRef]
- Nardoni, S.; Pistelli, L.; Baronti, I.; Najar, B.; Pisseri, F.; Bandeira Reidel, R.V.; Papini, R.; Perrucci, S.; Mancianti, F. Traditional mediterranean plants: Characterization and use of an essential oils mixture to treat Malassezia otitis externa in atopic dogs. Nat. Prod. Res. 2017, 31, 1891–1894. [Google Scholar] [CrossRef]
- Pérez-Cantero, A.; López-Fernández, L.; Guarro, J.; Capilla, J. Azole resistance mechanisms in Aspergillus: Update and recent advances. Int. J. Antimicrob. Agents 2020, 55, 105807. [Google Scholar] [CrossRef]
- Hauck, R.; Cray, C.; França, M. Spotlight on avian pathology: Aspergillosis. Avian. Pathol. 2020, 49, 115–118. [Google Scholar] [CrossRef]
- Kim, E.; Park, I.K. Fumigant antifungal activity of Myrtaceae essential oils and constituents from Leptospermum petersonii against three Aspergillus species. Molecules 2012, 17, 10459–10469. [Google Scholar] [CrossRef] [Green Version]
- Hood, J.R.; Burton, D.; Wilkinson, J.M.; Cavanagh, H.M. Antifungal activity of Leptospermum petersonii oil volatiles against Aspergillus spp. in vitro and in vivo. J. Antimicrob. Chemother. 2010, 65, 285–288. [Google Scholar] [CrossRef]
- Tartor, Y.H.; Hassan, F.A.M. Assessment of carvacrol for control of avian aspergillosis in intratracheally challenged chickens in comparison to voriconazole with a reference on economic impact. J. Appl. Microbiol. 2017, 123, 1088–1099. [Google Scholar] [CrossRef] [PubMed]
- Nardoni, S.; D’Ascenzi, C.; Rocchigiani, G.; Papini, R.A.; Pistelli, L.; Formato, G.; Najar, B.; Mancianti, F. Stonebrood and chalkbrood in Apis mellifera causing fungi: In vitro sensitivity to some essential oils. Nat. Prod. Res. 2018, 32, 385–390. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, A.M.; de Hoog, G.S.; de Camargo, Z.P. Sporothrix species causing outbreaks in animals and humans driven by animal-animal transmission. PLoS Pathog. 2016, 12, e1005638. [Google Scholar] [CrossRef] [PubMed]
- Poester, V.R.; Mattei, A.S.; Madrid, I.M.; Pereira, J.T.B.; Klafke, G.B.; Sanchotene, K.O.; Brandolt, T.M.; Xavier, M.O. Sporotrichosis in southern Brazil, towards an epidemic? Zoonoses Public Health 2018, 65, 815–821. [Google Scholar] [CrossRef]
- Rodrigues, A.M.; de Hoog, G.S.; de Cássia Pires, D.; Brihante, R.S.; Sidrim, J.J.; Gadelha, M.F.; Colombo, A.L.; de Camargo, Z.P. Genetic diversity and antifungal susceptibility profiles in causative agents of sporotrichosis. BMC Infect. Dis. 2014, 14, 219. [Google Scholar] [CrossRef] [Green Version]
- Waller, S.B.; Madrid, I.M.; Silva, A.L.; Dias de Castro, L.L.; Cleff, M.B.; Ferraz, V.; Meireles, M.C.; Zanette, R.; de Mello, J.R. In vitro susceptibility of Sporothrix brasiliensis to essential oils of Lamiaceae family. Mycopathologia 2016, 181, 857–863. [Google Scholar] [CrossRef]
- Waller, S.B.; Madrid, I.M.; Hoffmann, J.F.; Picoli, T.; Cleff, M.B.; Chaves, F.C.; Faria, R.O.; Meireles, M.C.A.; Braga de Mello, J.R. Chemical composition and cytotoxicity of extracts of marjoram and rosemary and their activity against Sporothrix brasiliensis. J. Med. Microbiol. 2017, 66, 1076–1083. [Google Scholar] [CrossRef]
- Waller, S.B.; Hoffmann, J.F.; Madrid, I.M.; Picoli, T.; Cleff, M.B.; Chaves, F.C.; Zanette, R.A.; de Mello, J.R.B.; de Faria, R.O.; Meireles, M.C.A. Polar Origanum vulgare (Lamiaceae) extracts with antifungal potential against Sporothrix brasiliensis. Med. Mycol. 2018, 56, 225–233. [Google Scholar] [CrossRef] [Green Version]
- Brilhante, R.S.; Silva, N.F.; Marques, F.J.; Castelo-Branco, D.S.; de Lima, R.A.; Malaquias, A.D.; Caetano, E.P.; Barbosa, G.R.; de Camargo, Z.P.; Rodrigues, A.M.; et al. In vitro inhibitory activity of terpenic derivatives against clinical and environmental strains of the Sporothrix schenkii complex. Med. Mycol. 2015, 53, 93–98. [Google Scholar] [CrossRef] [Green Version]
- Waller, S.B.; Cleff, M.B.; de Mattos, C.B.; da Silva, C.C.; Giordani, C.; Dalla Lana, D.F.; Fuentefria, A.M.; Freitag, R.A.; Viegas Sallis, E.S.; de Mello, J.R.B.; et al. In vivo protection of the marjoram (Origanum majorana Linn.) essential oil in the cutaneous sporotrichosis by Sporothrix brasiliensis. Nat. Prod. Res. 2019, 17, 1–5. [Google Scholar] [CrossRef]
- Brilhante, R.S.; Pereira, V.S.; Oliveira, J.S.; Rodrigues, A.M.; de Camargo, Z.P.; Pereira-Neto, W.A.; Nascimento, N.R.; Castelo-Branco, D.S.; Cordeiro, R.A.; Sidrim, J.J.; et al. Terpinen-4-ol inhibits the growth of Sporothrix schenckii complex and exhibits synergism with antifungal agents. Future Microbiol. 2019, 14, 1221–1233. [Google Scholar] [CrossRef] [PubMed]
- Couto, C.; Raposo, N.R.B.; Rozental, S.; Borba-Santos, L.P.; Bezerra, L.M.L.; de Almeida, P.A.; Brandão, M.A.F. Chemical composition and antifungal properties of essential oil of Origanum vulgare Linnaeus (Lamiaceae) against Sporothrix schenckii and Sporothrix brasiliensis. Trop. J. Pharmaceutical Res. 2015, 14, 1207–1212. [Google Scholar] [CrossRef] [Green Version]
- Zukal, J.; Bandouchova, H.; Brichta, J.; Cmokova, A.; Jaron, K.S.; Kolarik, M.; Kovacova, V.; Kubátová, A.; Nováková, A.; Orlov, O.; et al. White-nose syndrome without borders: Pseudogymnoascus destructans infection tolerated in Europe and Palearctic Asia but not in North America. Sci. Rep. 2016, 6, 19829. [Google Scholar] [CrossRef] [PubMed]
- Gabriel, K.T.; Kartforosh, L.; Crow, S.A., Jr.; Cornelison, C.T. Antimicrobial activity of essential oils against the fungal pathogens Ascosphaera apis and Pseudogymnoascus destructans. Mycopathologia 2018, 183, 921–934. [Google Scholar] [CrossRef]
- Boire, N.; Zhang, S.; Khuvis, J.; Lee, R.; Rivers, J.; Crandall, P.; Keel, M.K.; Parrish, N. Potent inhibition of Pseudogymnoascus destructans, the causative agent of white-nose syndrome in bats, by cold-pressed, Terpeneless, Valencia orange oil. PLoS ONE 2016, 11, e0148473. [Google Scholar] [CrossRef]
- Aronstein, K.A.; Murray, K.D. Chalkbrood disease in honey bees. J. Invertebr. Pathol. 2010, 103, S20–S29. [Google Scholar] [CrossRef]
- Van Haga, A.; Keddie, B.A.; Pernal, S.F. Evaluation of lysozyme-HCl for the treatment of chalkbrood disease in honey bee colonies. J. Econ. Entomol. 2012, 105, 1878–1889. [Google Scholar] [CrossRef] [Green Version]
- Ansari, M.J.; Al-Ghamdi, A.; Usmani, S.; Khan, K.A.; Alqarni, A.S.; Kaur, M.; Al-Waili, N. In vitro evaluation of the effects of some plant essential oils on Ascosphaera apis, the causative agent of Chalkbrood disease. Saudi J. Biol. Sci. 2017, 24, 1001–1006. [Google Scholar] [CrossRef] [Green Version]
- Kloucek, P.; Smid, J.; Flesar, J.; Havlik, J.; Titera, D.; Rada, V.; Drabek, O.; Kokoska, L. In vitro inhibitory activity of essential oil vapors against Ascosphaera apis. Nat. Prod. Commun. 2012, 7, 253–256. [Google Scholar] [CrossRef] [Green Version]
- Alayrangues, J.; Hotier, L.; Massou, I.; Bertrand, Y.; Armengaud, C. Prolonged effects of in-hive monoterpenoids on the honey bee Apis mellifera. Ecotoxicology 2016, 25, 856–862. [Google Scholar] [CrossRef]
- Han, B.; Weiss, L.M. Microsporidia: Obligate intracellular pathogens within the fungal kingdom. Microbiol. Spectr. 2017, 5, 10. [Google Scholar] [CrossRef] [Green Version]
- Maistrello, L.; Lodesani, M.; Costa, C.; Leonardi, F.; Marani, G.; Caldon, M.; Mutinelli, F.; Granato, A. Screening of natural compounds for the control of nosema disease in honeybees (Apis mellifera). Apidologie 2008, 39, 436–445. [Google Scholar] [CrossRef] [Green Version]
- Huang, W.F.; Solter, L.F.; Yau, P.M.; Imai, B.S. Nosema ceranae escapes fumagillin control in honey bees. PLoS Pathog. 2013, 9, e1003185. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Porrini, M.P.; Porrini, L.P.; Garrido, P.M.; de Melo, E.; Silva Neto, C.; Porrini, D.P.; Muller, F.; Nuñez, L.A.; Alvarez, L.; Iriarte, P.F.; et al. Nosema ceranae in South American native stingless bees and social wasp. Microb. Ecol. 2017, 74, 761–764. [Google Scholar] [CrossRef]
- Bravo, J.; Carbonell, V.; Sepúlveda, B.; Delporte, C.; Valdovinos, C.E.; Martín-Hernández, R.; Higes, M. Antifungal activity of the essential oil obtained from Cryptocarya alba against infection in honey bees by Nosema ceranae. J. Invertebr. Pathol. 2017, 149, 141–147. [Google Scholar] [CrossRef]
- Whaley, S.G.; Berkow, E.L.; Rybak, J.M.; Nishimoto, A.T.; Barker, K.S.; Rogers, P.D. Azole antifungal resistance in Candida albicans and emerging non-albicans Candida species. Front. Microbiol. 2017, 7, 2173. [Google Scholar] [CrossRef] [Green Version]
- Suresh, B.; Sriram, S.; Dhanaraj, S.A.; Elango, K.; Chinnaswamy, K. Anticandidal activity of Santolina chamaecyparissus volatile oil. J. Ethnopharmacol. 1997, 55, 151–159. [Google Scholar] [CrossRef]
- Pietrella, D.; Angiolella, L.; Vavala, E.; Rachini, A.; Mondello, F.; Ragno, R.; Bistoni, F.; Vecchiarelli, A. Beneficial effect of Mentha suaveolens essential oil in the treatment of vaginal candidiasis assessed by real-time monitoring of infection. BMC Complement. Altern. Med. 2011, 11, 18. [Google Scholar] [CrossRef]
- Maruyama, N.; Takizawa, T.; Ishibashi, H.; Hisajima, T.; Inouye, S.; Yamaguchi, H.; Abe, S. Protective activity of geranium oil and its component, geraniol, in combination with vaginal washing against vaginal candidiasis in mice. Biol. Pharm. Bull. 2008, 31, 1501–1506. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Yang, K.; Chen, L.; Yan, R.; Qu, S.; Li, Y.X.; Liu, M.; Zeng, H.; Tian, J. Activities of Nerol, a natural plant active ingredient, against Candida albicans in vitro and in vivo. Appl. Microbiol. Biotechnol. 2020, 104, 5039–5052. [Google Scholar] [CrossRef]
- Tian, J.; Lu, Z.; Wang, Y.; Zhang, M.; Wang, X.; Tang, X.; Peng, X.; Zeng, H. Nerol triggers mitochondrial dysfunction and disruption via elevation of Ca2+ and ROS in Candida albicans. Int. J. Biochem. Cell Biol. 2017, 85, 114–122. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Wang, Z.; Liu, L.; Qu, S.; Mao, Y.; Peng, X.; Li, Y.X.; Tian, J. Cinnamaldehyde inhibits Candida albicans growth by causing apoptosis and its treatment on vulvovaginal candidiasis and oropharyngeal candidiasis. Appl. Microbiol. Biotechnol. 2019, 103, 9037–9055. [Google Scholar] [CrossRef]
- Zeng, H.; Tian, J.; Zheng, Y.; Ban, X.; Zeng, J.; Mao, Y.; Wang, Y. In vitro and in vivo activities of essential oil from the seed of Anethum graveolens L. against Candida spp. Evid. Based Complement. Alternat. Med. 2011, 2011, 659704. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Campos Rasteiro, V.M.; da Costa, A.C.; Araújo, C.F.; de Barros, P.P.; Rossoni, R.D.; Anbinder, A.L.; Jorge, A.O.; Junqueira, J.C. Essential oil of Melaleuca alternifolia for the treatment of oral candidiasis induced in an immunosuppressed mouse model. BMC Complement. Altern. Med. 2014, 14, 489. [Google Scholar] [CrossRef] [PubMed]
- Bandeira Reidel, R.V.; Nardoni, S.; Mancianti, F.; Anedda, C.; El Gendy, A.E.G.; Omer, E.A.; Pistelli, L. Chemical composition and antifungal activity of essential oils from four Asteraceae plants grown in Egypt. Z. Naturforsch. C J. Biosci. 2018, 73, 313–318. [Google Scholar] [CrossRef] [PubMed]
- Ksouri, S.; Djebir, S.; Bentorki, A.A.; Gouri, A.; Hadef, Y.; Benakhla, A. Antifungal activity of essential oils extract from Origanum floribundum Munby, Rosmarinus officinalis L. and Thymus ciliatus Desf. against Candida albicans isolated from bovine clinical mastitis. J. Mycol. Med. 2017, 27, 245–249. [Google Scholar] [CrossRef] [PubMed]
- Ludwig, A.; de Jesus, F.P.K.; Dutra, V.; Cândido, S.L.; Alves, S.H.; Santurio, J.M. Susceptibility profile of Candida rugosa (Diutina rugosa) against antifungals and compounds of essential oils. J. Mycol. Med. 2019, 29, 154–157. [Google Scholar] [CrossRef]
- Ebani, V.V.; Nardoni, S.; Bertelloni, F.; Giovanelli, S.; Rocchigiani, G.; Pistelli, L.; Mancianti, F. Antibacterial and antifungal activity of essential oils against some pathogenic bacteria and yeasts shed from poultry. Flav. Frag. J. 2016, 31, 302–309. [Google Scholar] [CrossRef]
- Beakes, G.W.; Glockling, S.L.; Sekimoto, S. The evolutionary phylogeny of the oomycete ‘fungi’. Protoplasma 2012, 249, 3–19. [Google Scholar] [CrossRef]
- Derevnina, L.; Petre, B.; Kellner, R.; Dagdas, Y.F.; Sarowar, M.N.; Giannakopoulou, A.; De la Concepcion, J.C.; Chaparro-Garcia, A.; Pennington, H.G.; van West, P.; et al. Emerging oomycete threats to plants and animals. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2016, 371, 20150459. [Google Scholar] [CrossRef] [Green Version]
- Tavares Dias, M. Current knowledge on use of essential oils as alternative treatment against fish parasites. Aquat. Living Resour. 2018, 31, 13. [Google Scholar] [CrossRef] [Green Version]
- Tedesco, P.; Fioravanti, M.L.; Galuppi, R. In vitro activity of chemicals and commercial products against Saprolegnia parasitica and Saprolegnia delica strains. J. Fish Dis. 2019, 42, 237–248. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perrucci, S.; Cecchini, S.; Pretti, C.; Varriale Cognetti, A.M.; Macchioni, G.; Flamini, G.; Cioni, P.L. In vitro antimycotic activity of some natural products against Saprolegnia ferax. Phytother. Res. 1995, 9, 147–149. [Google Scholar] [CrossRef]
- Tampieri, M.P.; Galuppi, R.; Carelle, M.S.; Macchioni, F.; Cioni, P.L.; Morelli, I. Effect of selected essential oils and pure compounds on Saprolegnia parasitica. Pharm. Biol. 2003, 41, 584–591. [Google Scholar] [CrossRef] [Green Version]
- Gormez, O.; Diler, O. In vitro antifungal activity of essential oils from Tymbra, Origanum, Satureja species and some pure compounds on the fish pathogenic fungus, Saprolegnia parasitica. Aquacult Res. 2014, 45, 1196–1201. [Google Scholar] [CrossRef]
- Nardoni, S.; Najar, B.; Fronte, B.; Pistelli, L.; Mancianti, F. In vitro activity of essential oils against Saprolegnia parasitica. Molecules 2019, 24, 1270. [Google Scholar] [CrossRef] [Green Version]
- SavadKouhi, T.; Ahari, P.; Anvar, H.; Jafari, A.A. Effect of Carum copticum nano essence against Saprolegnia and Fusarium and multiplex PCR assay for the detection of these organisms in rainbow trout Oncorhynchus mykiss. Arch. Razi Inst. 2020, 76. in press. [Google Scholar]
- Khosravi, A.R.; Shokri, H.; Sharifrohani, M.; Mousavi, H.E.; Moosavi, Z. Evaluation of the antifungal activity of Zataria multiflora, Geranium herbarium, and Eucalyptus camaldolensis essential oils on Saprolegnia parasitica-infected rainbow trout (Oncorhynchus mykiss) eggs. Foodborne Pathog. Dis. 2012, 9, 674–679. [Google Scholar] [CrossRef] [Green Version]
- Madrid, A.; Godoy, P.; González, S.; Zaror, L.; Moller, A.; Werner, E.; Cuellar, M.; Villena, J.; Montenegro, I. Chemical characterization and anti-oomycete activity of Laureliopsis philippianna essential oils against Saprolegnia parasitica and S. australis. Molecules 2015, 20, 8033–8047. [Google Scholar] [CrossRef] [Green Version]
- Mousavi, S.M.; Mirzargar, S.S.; Ebrahim Zadeh Mousavi, H.; Omid Baigi, R.; Khosravi, A.; Bahonar, A.; Ahmadi, M.R. Evaluation of antifungal activity of new combined essential oils in comparison with malachite green on hatching rate in rainbow trout (Oncoryncus mykiss) eggs. J. Fish. Aquat. Sci. 2009, 4, 103–110. [Google Scholar]
- Wang, Y.; Dai, C.C.; Chen, Y. Antimicrobial activity of volatile oil from Atractylodes lancea against three species of endophytic fungi and seven species of exogenous fungi]. Ying Yong Sheng Tai Xue Bao 2009, 20, 2778–2784. [Google Scholar] [PubMed]
- Gaastra, W.; Lipman, L.J.; De Cock, A.W.; Exel, T.K.; Pegge, R.B.; Scheurwater, J.; Vilela, R.; Mendoza, L. Pythium insidiosum: An overview. Vet. Microbiol. 2010, 146, 1–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Souza Silveira Valente, J.; de Oliveira da Silva Fonseca, A.; Brasil, C.L.; Sagave, L.; Cramer Flores, F.; de Bona da Silva, C.; Sangioni, L.A.; Pötter, L.; Morais Santurio, J.; de Avila Botton, S.; et al. In vitro activity of Melaleuca alternifolia (tea tree) in its free oil and nanoemulsion formulations against Pythium insidiosum. Mycopathologia 2016, 181, 865–869. [Google Scholar] [CrossRef]
- Grooters, A.M. Pythiosis, lagenidiosis, and zygomycosis in small animals. Vet. Clin. N. Am. 2003, 33, 695–720. [Google Scholar] [CrossRef]
- Fonseca, A.O.; Pereira, D.I.; Jacob, R.G.; Maia Filho, F.S.; Oliveira, D.H.; Maroneze, B.P.; Valente, J.S.; Osório, L.G.; Botton, S.A.; Meireles, M.C. In vitro susceptibility of Brazilian Pythium insidiosum isolates to essential oils of some Lamiaceae family species. Mycopathologia 2015, 179, 253–258. [Google Scholar] [CrossRef] [PubMed]
- Fonseca, A.O.; Pereira, D.I.; Botton, S.A.; Pötter, L.; Sallis, E.S.; Júnior, S.F.; Filho, F.S.; Zambrano, C.G.; Maroneze, B.P.; Valente, J.S.; et al. Treatment of experimental pythiosis with essential oils of Origanum vulgare and Mentha piperita singly, in association and in combination with immunotherapy. Vet. Microbiol. 2015, 178, 265–269. [Google Scholar] [CrossRef] [PubMed]
- Jesus, F.P.; Ferreiro, L.; Bizzi, K.S.; Loreto, É.S.; Pilotto, M.B.; Ludwig, A.; Alves, S.H.; Zanette, R.A.; Santurio, J.M. In vitro activity of carvacrol and thymol combined with antifungals or antibacterials against Pythium insidiosum. J. Mycol. Med. 2015, 2, e89–e93. [Google Scholar] [CrossRef]
- Valente, J.S.; Fonseca, A.O.; Denardi, L.B.; Dal Ben, V.S.; Maia Filho, F.S.; Zambrano, C.G.; Braga, C.Q.; Alves, S.H.; Botton, S.A.; Brayer Pereira, D.I. In vitro activity of antifungals in combination with essential oils against the oomycete Pythium insidiosum. J. Appl. Microbiol. 2016, 121, 998–1003. [Google Scholar] [CrossRef]
- Kano, R. Emergence of fungal-like organisms: Prototheca. Mycopathologia 2020, 185, 747–757. [Google Scholar] [CrossRef]
- Nardoni, S.; Pisseri, F.; Pistelli, L.; Najar, B.; Luini, M.; Mancianti, F. In vitro activity of 30 essential oils against bovine clinical isolates of Prototheca zopfii and Prototheca blaschkeae. Vet. Sci. 2018, 5, 45. [Google Scholar] [CrossRef] [Green Version]
- Tortorano, A.M.; Prigitano, A.; Dho, G.; Piccinini, R.; Daprà, V.; Viviani, M.A. In vitro activity of conventional antifungal drugs and natural essences against the yeast-like alga Prototheca. J. Antimicrob. Chemother. 2008, 61, 1312–1314. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grzesiak, B.; Kołodziej, B.; Głowacka, A.; Krukowski, H. The effect of some natural essential oils against bovine mastitis caused by Prototheca zopfii isolates in vitro. Mycopathologia 2018, 183, 541–550. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grzesiak, B.; Głowacka, A.; Krukowski, H.; Lisowski, A.; Lassa, H.; Sienkiewicz, M. The in vitro efficacy of essential oils and antifungal drugs against Prototheca zopfii. Mycopathologia. 2016, 181, 609–615. [Google Scholar] [CrossRef] [PubMed]
- Bouari, C.; Bolfa, P.; Borza, G.; Nadăş, G.; Cătoi, C.; Fiţ, N. Antimicrobial activity of Mentha piperita and Saturenja hortensis in a murine model of cutaneous protothecosis. J. Mycol. Med. 2014, 24, 34–43. [Google Scholar] [CrossRef] [PubMed]
- Horky, P.; Skalickova, S.; Smerkova, K.; Skladanka, J. Essential oils as a feed additives: Pharmacokinetics and potential toxicity in monogastric animals. Animals 2019, 9, 352. [Google Scholar] [CrossRef] [Green Version]
- Posadzki, P.; Alotaibi, A.; Ernst, E. Adverse effects of aromatherapy: A systematic review of case reports and case series. Int. J. Risk Saf. Med. 2012, 24, 147–161. [Google Scholar] [CrossRef]
- Nardoni, S.; Tortorano, A.; Mugnaini, L.; Profili, G.; Pistelli, L.; Giovanelli, S.; Pisseri, F.; Papini, R.; Mancianti, F. Susceptibility of Microsporum canis arthrospores to a mixture of chemically defined essential oils: A perspective for environmental decontamination. Z. Naturforsch. C J. Biosci. 2015, 70, 15–24. [Google Scholar] [CrossRef]
Bacterial Pathogen | Study | Animal Source | Active Essential Oils | References |
---|---|---|---|---|
Escherichia coli | In vitro | Poultry | Cinnamomum zeylanicum | [8] |
Syzigium aromaticum | [8] | |||
Litsea cubeba | [8] | |||
Cymbopogon citratus | [8,13] | |||
Mentha piperita | [8,14] | |||
Ocimum basilicum | [8] | |||
Pelargonium graveolens | [8,17,18] | |||
In vitro | Dog | Origanum vulgare | [20] | |
Thymus vulgaris | [20] | |||
Illicium verum | [20] | |||
ocimum basilicum | [20] | |||
Salvia sclarea | [20] | |||
Salmonella enterica serov Enteritidis and Typhimurium | In vitro | Poultry | Cinnamomum zeylanicum | [23] |
Syzigium aromaticum | [23] | |||
Salmonella enterica serov. Enteritidis | In vivo | Poultry | EOA1, EOA2 * | [27] |
Pseudomonas aeruginosa | In vitro | Dog | Salvia sclarea | [36] |
Ocimum basilicum | [36] | |||
Rosmarinus officinals | [36] | |||
Pseudomonas spp. | In vitro | Fish | Cinnamomum zeylanicum | [40] |
Lavandula angustifolia | [40] | |||
Pinus montana | [40] | |||
Pinus sylvestris | [40] | |||
Mentha piperita | [40] | |||
Foeniculum vulgare | [40] | |||
Satureja hortensis | [40] | |||
Origanum vulgare | [40] | |||
Pimpinella anisum | [40] | |||
Rosmarinus officinalis | [40] | |||
Salvia officinalis | [40] | |||
Abies alba | [40] | |||
Citrus aurantium var. dulce | [40] | |||
Citrus sinensis | [40] | |||
Cymbopogon nardus | [40] | |||
Mentha spicata var. crispa | [40] | |||
Thymus vulgaris | [40] | |||
Thymus serpyllum | [40] | |||
Ocimum basilicum | [40] | |||
Coriandrum sativum | [40] | |||
Carum carvi | [40] | |||
Campylobacter jejuni | In vitro | Poultry | Leptospermum sp. | [45] |
Melaleuca alternifolia | [45] | |||
Backhousia citriodora | [45] | |||
Staphylococcus spp. | In vitro | Dog | Cinnamomum zeylanicum | [50,57] |
Commiphora myrrha | [50] | |||
Helichrysum pandurifolium | [55,56] | |||
Helichrysum trilineatum | [55,56] | |||
Helichrysum araxinum | [55,56] | |||
Satureja montana | [57] | |||
Melissa officinalis | [57] | |||
Leptospermum scoparium | [57] | |||
Thymus vulgaris | [36,50] | |||
Origanum vulgare | [36,50] | |||
Staphylococcus spp. | In vivo | Cattle | Thymus vulgaris | [63] |
Lavandula angustifolia | [63] | |||
Streptococcus iniae | In vivo/in vitro | Fish | Cinnamomum verum | [69] |
In vivo | Fish | Syzigium aromaticum | [70] | |
Streptococcus suis | In vitro | Swine | Thymus vulgaris | [74] |
Origanum vulgare | [74] | |||
Enterococcus spp. | In vitro | Dog/Cat | Thymus vulgaris | [20] |
Origanum vulgare | [20] | |||
Mycobacterium spp (NTM) | In vitro | Not specified | Zingiber officinale | [86] |
Mycobacterium avium | In vitro | Cattle | Origanum vulgare | [89,90] |
paratuberculosis | Cinnamomum sp. | [89,90] |
Fungal Pathogen | Study | Animal Source | Active Essential Oils | References |
---|---|---|---|---|
Microsporum canis | In vitro | Feline, dog, horse | Thymus vulgaris | [95] |
Satureja montana | [95] | |||
In vitro | Feline | Thymus numidicus | [97] | |
In vitro | Feline | Cymbopogon nardus | [112] | |
In vitro | Feline, canine | Coriandrum sativum | [113] | |
In vitro | Feline | Helichrysum pandurifolium | [55] | |
In vitro | Feline | Litsea cubeba | [100] | |
Origanum vulgare | [100] | |||
Thymus serpyllum | [100] | |||
In vitro/in vivo * | Feline | Mixture: T. serpyllum 2% | [98,129] | |
Origanum vulgare 5%, Rosmarinus officinalis 5% | ||||
Microsporum gypseum | In vitro | Dog, horse | Thymus vulgaris | [95] |
Satureja montana | [95] | |||
Calamintha nepeta | [95] | |||
In vitro | Dog | Thymus numidicus | [97] | |
In vitro | Dog | Litsea cubeba | [100] | |
Origanum vulgare | [100] | |||
Thymus serpyllum | [100] | |||
In vitro/in vivo ** | Stock culture strain | Japanese cypress oil | [130] | |
In vitro/in vivo ** | Stock culture strain | Cymbopogon martini | [133] | |
Chenopodium ambrosoides | [132] | |||
Trichophyton mentagrophytes | In vitro | Feline | Clinopodium nepeta var glandulosum | [96] |
In vitro | Feline | Thymus numidicus | [97] | |
In vitro | Feline | Litsea cubeba Thymus serpyllum | [100] | |
In vitro/in vivo *** | Ovine | Mixture: Thymus serpyllum 2%Origanum vulgare 5%, Rosmarinus officinalis 5% | [99] | |
Trichophyton erinacei | In vitro | Dog | Litsea cubeba | [100] |
Trichophyton equinum | In vivo **** | Equine | Melaleuca alternifolia | [118] |
In vitro | Equine | Melaleuca alternifolia | [119] | |
Malassezia pachydermatis | In vitro | Dog | Melaleuca alternifolia | [137,138] |
In vitro | Dog | Zataria multiflora | [140] | |
In vitro | Dog | Thymus spp. Satureja montana | [140,141,142] | |
In vitro | Dog | Origanum vulgare | [50,143] | |
In vitro | Dog | Cymbopogon spp | [141,142,143] | |
In vitro | Dog | Citrus limon | [143] | |
Dog | Mentha piperita | [142] | ||
In vitro | Dog | Cinnamomum sp | [50,143,144] | |
In vitro | Dog | Aloysia triphylla | [50] | |
In vivo § | Dog | Chamaecyparis obtusa | [145] | |
In vitro/in vivo § | Dog | Mixture: Citrus aurantium 1%, Lavandula officinalis 1%, Origanum vulgare 0.5%, Origanum majorana 5%, Mentha piperita 0.5%, Helichrysum italicum 0.5% | [147] | |
In vitro/in vivo § | Dog | Mixtures: 1. Citrus limon 1% Rosmarinus officinalis 1%, Salvia sclarea 0.5%, Anthemis nobilis 0.5% 2. Citrus paradisi 0.5%, S. sclarea 0,5%, Ocimum basilicum 0,5%, R. officinalis 1% 3. S. sclarea 1%, Lavandula hybrida 1%, R. officinalis | [148] | |
Aspergillus fumigatus | In vitro | Dog | Litsea cubeba | [36] |
Origanum vulgare | [36] | |||
Illicium verum | [36] | |||
Rosmarinus officinals | [36] | |||
In vitro | Poultry | Cymbopogon citratus | [8] | |
Aloysia triphylla | [8] | |||
In vitro | Birds | Origanum syriacum | [46] | |
In vitro/in vivo ° | - | Leptospermum petersonii | [152] | |
Aspergillus flavus | In vitro | Bee stonebrood | I. verum, O. vulgare, L. cubeba, Cynnamomum zeylanicum, Cymbopogon flexuosus, Pelargonium graveolens Mixtures: 1 L. cubeba, C. zeylanicum, Cymbopogon flexuosus 0.02% each 2 L. cubeba, C. zeylanicum, P. graveolens, C. flexuosus 0.015% each | [154] |
Sporothrix brasiliensis | In vitro | Stock | Origanum majorana | [161] |
Origanum vulgare | [161] | |||
In vivo $ | Feline, canine | O. majorana | [162] | |
Pseudogymnoascus destructans | In vitro | Bat | Cinnamon leaf and bark, citronella, lemongrass | [166] |
In vitro | Bat | Terpenless Valencia orange | [167] | |
Ascosphaera apis | In vitro | Bee chalkbrood | Syzygium aromaticum | [170] |
Litsea cubeba | [154,170] | |||
Cymbopogon flexuosus | [171] | |||
Mixtures: 1 L. cubeba, Cinnamomum zeylanicum, Cymbopogon flexuosus 0.02% each 2 Litsea cubeba, Cinnamomum zeylanicum, Pelargonium graveolens, Cymbopogon flexuosus 0.015% each | [154] | |||
Nosema ceranae | In vivo ^ | Bee | Cryptocarya alba | [177] |
Pathogen | Study (*) | Animal Source | Active Essential Oils | References |
---|---|---|---|---|
Candida albicans | In vitro/in vivo | Stock culture strain | Santolina chamaecyparissus | [179] |
In vitro/in vivo | Stock culture strain | Mentha suaveolens | [180] | |
In vitro/in vivo | Stock culture strain | Geranium sp | [111,181] | |
In vitro/in vivo | Stock culture strain | Citrus sp | [182,183] | |
In vitro/in vivo | Stock culture strain | cinnamaldehyd | [184] | |
In vitro/in vivo | Stock culture strain | Anethum graveolens | [185] | |
In vitro | Birds | Clinopodium nepeta | [96] | |
In vitro | Birds | Thymus numidicus | [97] | |
In vitro | Bovine | Origanum floribundum | [188] | |
Thymus ciliatus | [188] | |||
In vitro | Poultry | Origanum vulgare | [190] | |
Candida rugosa | In vitro | Animals ** | cinnamaldehyd | [189] |
Candida tropicalis | In vitro | Dog | Origanum vulgare | [36] |
In vitro | Poultry | Origanum vulgare | [190] | |
In vitro | Dog | Salvia sclarea | [20] | |
In vitro | Dog | Origanum vulgare | [36] | |
Rosmarinus officinalis | [36] | |||
Candida parapsilosis | In vitro | Poultry | Origanum vulgare | [190] |
Candida guilliermondii | In vitro | Poultry | Litsea cubeba | [190] |
Origanum vulgare | [190] | |||
Candida krusei | In vitro | Poultry | Thymus vulgaris | [190] |
Saprolegnia spp | In vitro | Fish | Thymus vulgaris | [195,196,197,198] |
Origanum vulgare | [195,196,197,198] | |||
In vitro | Fish | Carum copticum | [199] | |
In vitro | Fish | Origanum majorana | [198] | |
In vitro | Fish | Cymbopogon flexuosus | [195,198] | |
In vitro | Fish | Citrus bergamia | [115] | |
In vitro | Fish | Zataria multiflora | [50,143,144] | |
In vivo ° | Fish | Eucalyptus camaldulensis | [200] | |
In vitro | Fish | Laureliopsis philipianna | [201] | |
In vitro | Fish | Mixture: Thymus vulgaris, Salvia | [202] | |
officinalis, Mentha piperita Eucalyptus globulus | ||||
In vitro | Fish | Atractyloides lancea | [203] | |
Pythium insidiosum | In vitro | Horse and dog | Melaleuca alternifolia | [205] |
In vitro | Horse | Origanum vulgare | [205,208] | |
Origanum majorana | [205,208] | |||
Mentha piperita | [205,208] | |||
In vivo | Not specified | Origanum vulgare + Mentha piperita | [210] | |
Prototheca zopfii | In vitro | Bovine | Thymus vulgaris | [212] |
Litsea cubeba | [212] | |||
Origanum vulgare | [212] | |||
In vitro | Bovine | Thymus vulgaris | [214] | |
Origanum vulgare | [214] | |||
In vitro | Bovine | Cinnamomum zeylanicum | [215] | |
Syzygium aromaticum | [215] | |||
In vivo | Bovine | Mentha piperita | [216] | |
Satureja hortensis | [216] | |||
Prototheca blaschkeae | In vitro | Bovine | Thymus vulgaris | [212] |
Litsea cubeba | [212] | |||
Origanum vulgare | [212] | |||
Citrus bergamia | [212] | |||
Prototheca wickerhamii | In vitro | Bovine | Citrus bergamia | [213] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ebani, V.V.; Mancianti, F. Use of Essential Oils in Veterinary Medicine to Combat Bacterial and Fungal Infections. Vet. Sci. 2020, 7, 193. https://doi.org/10.3390/vetsci7040193
Ebani VV, Mancianti F. Use of Essential Oils in Veterinary Medicine to Combat Bacterial and Fungal Infections. Veterinary Sciences. 2020; 7(4):193. https://doi.org/10.3390/vetsci7040193
Chicago/Turabian StyleEbani, Valentina Virginia, and Francesca Mancianti. 2020. "Use of Essential Oils in Veterinary Medicine to Combat Bacterial and Fungal Infections" Veterinary Sciences 7, no. 4: 193. https://doi.org/10.3390/vetsci7040193
APA StyleEbani, V. V., & Mancianti, F. (2020). Use of Essential Oils in Veterinary Medicine to Combat Bacterial and Fungal Infections. Veterinary Sciences, 7(4), 193. https://doi.org/10.3390/vetsci7040193