Roughage to Concentrate Ratio and Saccharomyces cerevisiae Inclusion Could Modulate Feed Digestion and In Vitro Ruminal Fermentation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design and Dietary Treatments
2.2. Rumen and Substrate Inocula
2.3. In Vitro Gas Production and Fermentation Characteristics
2.4. Statistical Analysis
3. Results and Discussions
3.1. Chemical Composition of Experimental Feeds
3.2. In Vitro Gas Production Kinetics
3.3. In Vitro Digestibility
3.4. Ruminal pH and Ammonia-Nitrogen (NH3-N) Concentration
3.5. Volatile Fatty Acid and Methane Production
3.6. Rumen Microorganism
4. Conclusions and Recommendations
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- McAllister, T.A.; Beauchemin, K.A.; Alazzeh, A.Y.; Baah, J.; Teather, R.M.; Stanford, K. Review: The use of direct fed microbials to mitigate pathogens and enhance production in cattle. Can. J. Anim. Sci. 2011, 91, 193–211. [Google Scholar] [CrossRef] [Green Version]
- Dawson, K.A.; Newman, K.E.; Boiling, J.A. Effect of microbial supplements containing yeast and lactobacilli on roughage fed ruminal microbial activities. J. Anim. Sci. 1996, 62, 43–48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cagle, C.M.; Batista, L.F.D.; Anderson, R.C.; Fonseca, M.A.; Cravey, M.D.; Julien, C.; Tedeschi, L.O. Evaluation of different inclusion levels of dry live yeast impacts on various rumen parameters and in situ digestibilities of dry matter and neutral detergent fiber in growing and finishing beef cattle. J. Anim. Sci. 2019, 97, 4987–4998. [Google Scholar] [CrossRef] [PubMed]
- Lascano, G.J.; Heinrichs, A. Rumen fermentation pattern of dairy heifers fed restricted amounts of low, medium, and high concentrate diets without and with yeast culture. Livest. Sci. 2009, 124, 48–57. [Google Scholar] [CrossRef] [Green Version]
- Opsi, F.; Fortina, R.; Tassone, S.; Bodas, R.; Lopez, D. Effects of inactivated and live cells of Saccharomyces cerevisiae on in vitro ruminal fermentation of diets with different forage:concentrate ratio. J. Agric. Sci. 2012, 150, 271–283. [Google Scholar] [CrossRef] [Green Version]
- Williams, P.E.; Tait, C.A.; Innes, G.M.; Newbold, C.J. Effects of the inclusion of yeast culture (Saccharomyces cerevisiae plus growth medium) in the diet of dairy cows on milk yield and forage degradation and fermentation patterns in the rumen of steers. J. Anim. Sci. 1991, 69, 3016–3302. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; He, Z.; Beauchemin, K.A.; Tang, S.; Zhou, C.; Han, X.; Wang, M.; Kang, J.; Odongo, N.E.; Tan, Z. Evaluation of different yeast species for improving in vitro fermentation of cereal straws. Asian-Australas. J. Anim. Sci. 2016, 29, 230–240. [Google Scholar] [CrossRef] [Green Version]
- Chaucheras-Durand, F.; Ameilbonne, A.; Auffret, P.; Bernard, M.; Mialon, M.M.; Duniere, L.; Forano, E. Supplementation of live yeast based feed additive in early life promotes rumen microbial colonization and fibrolytic potential in lambs. Sci. Rep. 2019, 9, 19216. [Google Scholar] [CrossRef]
- Chung, Y.-H.; Walker, N.D.; McGinn, S.M.; Beauchemin, K.A. Differing effects of 2 active dried yeast (Saccharomyces cerevisiae) strains on ruminal acidosis and methane production in non lactating dairy cows. J. Dairy Sci. 2011, 94, 2431–2439. [Google Scholar] [CrossRef] [Green Version]
- Kumprechtova, D.; Illekl, J.; Julien, C.; Homolka, P.; Jancik, F.; Auclair, E. Effect of live yeast (Saccharomyces cerevisiae) supplementation on rumen fermentation and metabolic profile of dairy cows in early lactation. J. Anim. Physiol. Anim. Nutr. 2019, 103, 447–455. [Google Scholar] [CrossRef]
- Chaucheyras-Durand, F.; Walker, N.D.; Bach, A. Effects of active dry yeasts on the rumen microbial ecosystem: Past, present and future. Anim. Feed Sci. Technol. 2008, 145, 5–26. [Google Scholar] [CrossRef]
- Cagle, C.M.; Fonseca, M.A.; Callaway, T.R.; Runyan, C.A.; Cravey, P.M.; Tedeschi, L.O. Evaluation of the effects of live yeast on rumen parameters and in situ digestibility of dry matter and neutral detergent fiber in beef cattle fed growing and finishing diets. Appl. Anim. Sci. 2020, 36, 36–47. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis, 19th ed.; Association of Official Analytical Chemists: Gaithersburg, MD, USA, 2012. [Google Scholar]
- Van Soest, P.J.; Robertsonand, J.B.; Lewis, B.A. Methods for dietary fiber neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- National Research Council–NRC. Nutrient Requirements of Dairy Cattle, 7th ed.; National Academy Press: Washington, DC, USA, 2001. [Google Scholar]
- Makkar, H.P.S.; Blummel, M.; Becker, K. In vitro effects and interaction between tannins and saponins and fate of tannins in the rumen. J. Sci. Food Agric. 1995, 69, 481–493. [Google Scholar] [CrossRef]
- Blummel, M.; Orskov, E.R. Comparison of in vitro gas production and nylon bag degradability of roughage in predicting feed intake in cattle. Anim. Feed Sci. Technol. 1993, 40, 109–119. [Google Scholar] [CrossRef]
- Orskov, E.R.; McDonal, I. The estimation of protein degradability in the rumen from incubation measurements weighted according to rate of passage. J. Agric. Sci. 1979, 92, 499–503. [Google Scholar] [CrossRef] [Green Version]
- Galyean, M. Laboratory Procedures in Animal Nutrition Research; New Mexico State University: Las Cruces, NM, USA, 1989. [Google Scholar]
- Moss, A.R.; Jouany, J.P.; Newbold, J. Methane production by ruminants: Its contribution to global warming. Ann. Zootech. 2000, 49, 231–253. [Google Scholar] [CrossRef] [Green Version]
- Tilley, J.M.A.; Terry, R.A. A two-stage technique for the digestion of forage crops. J. Br. Grassl. Soc. 1963, 18, 104–111. [Google Scholar] [CrossRef]
- SAS (Statistical Analysis System). User’s Guide: Statistic; Version 9.4th ed.; SAS Inst. Inc.: Cary, NC, USA, 2013. [Google Scholar]
- Crichton, N. Information point: Tukey Multiple Comparison test. J. Clin. Nurs. 1999, 8, 299–304. [Google Scholar]
- Wanapat, M.; Polyorach, S.; Boonnop, K.; Mapato, C.; Cherdthong, A. Effects of treating rice straw with urea or urea and calcium hydroxide upon intake, digestibility, rumen fermentation and milk yield of dairy cows. Livest. Sci. 2009, 125, 238–243. [Google Scholar] [CrossRef]
- Polyorach, S.; Wanapat, M. Improving quality of rice straw by urea and calcium hydroxide on rumen ecology, microbial protein synthesis in beef cattle. J. Anim. Physiol. Anim. Nutr. 2015, 99, 449–456. [Google Scholar] [CrossRef]
- Anantasook, N.; Wanapat, M. Influence of rain tree pod meal supplementation on rice straw based diets using in vitro gas fermentation technique. Asian-Australas. J. Anim. Sci. 2012, 5, 325–334. [Google Scholar] [CrossRef] [PubMed]
- Kang, S.; Wanapat, M.; Phesatcha, K.; Norrapoke, T.; Foiklang, S.; Ampapon, T.; Phesatcha, B. Using krabok (Irvingia malayana) seed oil and Flimingia macrophylla leaf meal as a rumen enhancer in an in vitro gas production system. Anim. Prod. Sci. 2017, 57, 327–333. [Google Scholar] [CrossRef]
- Tang, S.X.; Tayo, G.O.; Tan, Z.L.; Sun, Z.H.; Shen, L.X.; Zhou, C.S.; Xiao, W.J.; Ren, G.P.; Han, X.F.; Shen, S.B. Effects of yeast culture and fibrolytic enzyme supplementation on in vitro fermentation characteristics of low-quality cereal straws. J. Anim. Sci. 2008, 86, 1164–1172. [Google Scholar] [CrossRef] [PubMed]
- Hristov, A.N.; Oh, J.; Firkins, J.L.; Dijkstra, J.; Kebreab, E.; Waghorn, G.; Makkar, H.P.S.; Adesogan, A.T.; Yang, W.; Lee, C.; et al. Special Topics-Mitigation of methane and nitrous oxide emissions from animal operations: I. A review of enteric methane mitigation options. J. Anim. Sci. 2013, 91, 5045–5069. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Monnerat, J.P.; Paulino, P.V.; Detmann, E.; Valadares Filho, S.C.; Valadares, R.D.; Duarte, M.S. Effects of Saccharomyces cerevisiae and monensin on digestion, ruminal parameters, and balance of nitrogenous compounds of beef cattle fed diets with different starch concentrations. Trop. Anim. Health Prod. 2013, 45, 1251–1257. [Google Scholar] [CrossRef] [Green Version]
- Patra, A.K. The use of live yeast products as microbial feed additives in ruminant nutrition. Asian J. Anim. Vet. Adv. 2012, 7, 366–375. [Google Scholar] [CrossRef] [Green Version]
- Campanile, G.; Zicarellia, F.; Vecchio, D.; Pacelli, C.; Negliaa, G.; Balestrieri, A.; Palo, R.D.; Infascelli, F. Effects of Saccharomyces cerevisiae on in vivo organic matter digestibility and milk yield in buffalo cows. Livest. Sci. 2008, 114, 358–361. [Google Scholar] [CrossRef]
- Cherdthong, A.; Wanapat, M.; Kongmun, P.; Pilajan, R.; Khejornsart, P. Rumen fermentation, Microbial protein synthesis and cellulolytic bacterial population of swamp buffaloes as affected by roughage to concentrate ratio. J. Anim. Vet. Adv. 2010, 9, 1667–1675. [Google Scholar] [CrossRef]
- Wanapat, M.; Gunun, P.; Anantasook, N.; Kang, S. Changes of rumen pH, fermentation and microbial population as influenced by different ratios of roughage (rice straw) to concentrate in dairy steers. J. Agric. Sci. 2014, 152, 675–685. [Google Scholar] [CrossRef]
- Dias, A.L.G.; Freitas, J.A.; Micai, B.; Azevedo, R.A.; Greco, L.F.; Santos, J.E.P. Effect of supplemental yeast culture and dietary starch content on rumen fermentation and digestion in dairy cows. J. Dairy Sci. 2018, 101, 201–221. [Google Scholar] [CrossRef]
- Paula, E.M.; Broderick, G.A. Effects of replacing soybean meal with canola meal for lactating dairy cows fed 3 different ratios of alfalfa to corn silage. J. Dairy Sci. 2020, 103, 1463–1471. [Google Scholar] [CrossRef] [PubMed]
- Wanapat, M.; Pimpa, O. Effect of ruminal NH3-N levels on ruminal fermentation, purine derivatives, digestibility and rice straw intake in swamp buffaloes. Asian-Australas. J. Anim Sci. 1999, 12, 904–907. [Google Scholar] [CrossRef]
- Comert, M.; Sayan, Y.; Ozelcam, H.; Baykay, G.Y. Effects of Saccharomyces cerevisiae Supplementation and anhydrous ammonia treatment of wheat straw on in-situ degradability and, rumen fermentation and growth performance of yearling lambs. Asian-Ustralas J. Anim. Sci. 2015, 28, 639–646. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Monteiro, H.F.; Lelis, A.L.J.; Brandao, V.L.N.; Faccenda, A.; Avila, A.S.; Arce-Cordero, J.; Silva, L.G.; Dai, X.; Restelatto, R.; Carvalho, P.; et al. In vitro evaluation of Lactobacillus plantarum as direct-fed microbials in high-producing dairy cows diets. Transl. Anim. Sci. 2020, 4, 214–228. [Google Scholar] [CrossRef]
- Pelagalli, A.; Musco, N.; Trotta, N.; Cutrignelli, M.I.; Di Francia, A.; Infascelli, F.; Tudisco, R.; Lombardi, P.; Vastolo, A.; Calabrò, S. Chemical characterisation and in vitro gas production kinetics of eight Faba bean varieties. Animals 2020, 10, 398. [Google Scholar] [CrossRef] [Green Version]
- Bakr, H.A.; Hassan, M.S.; Giadinis, N.D.; Panousis, N.; Ostojić Andrić, D.; Abd El-Tawab, M.M.; Bojkovski, J. Effect of Saccharomyces cerevisiae supplementation on health and performance of dairy cows during transition and early lactation period. Biotechnol. Anim. Husb. 2015, 31, 349–364. [Google Scholar] [CrossRef]
- Mutsvangwa, T.; Edwards, I.E.; Topps, J.H.; Paterson, G.F.M. The effect of dietary inclusion of yeast culture (Yea-sacc) on patterns of rumen fermentation, food intake and growth of intensively fed bulls. Anim. Prod. 1992, 55, 35–41. [Google Scholar] [CrossRef]
- Marden, J.P.; Julien, C.; Monteils, V.; Auclair, E.; Moncoulon, R.; Bayourthe, C. How does live yeast differ from sodium bicarbonate to stabilize ruminal pH in highyielding dairy cows. J. Dairy. Sci. 2008, 9, 3528–3535. [Google Scholar] [CrossRef] [Green Version]
- Haque, M.N. Dietary manipulation: A sustainable way to mitigate methane emissions from ruminants. J. Anim. Sci. Technol. 2018, 50, 15. [Google Scholar] [CrossRef] [Green Version]
- Lu, Q.; Wu, J.; Wang, M.; Zhou, C.; Han, X.; Odongo, E.N.; Tan, Z.; Tang, S. Effects of dietary addition of cellulase and a Saccharomyces cerevisiae fermentation product on nutrient digestibility, rumen fermentation and enteric methane emissions in growing goats. Arch. Anim. Nutr. 2016, 70, 224–238. [Google Scholar] [CrossRef] [PubMed]
- Elghandour, M.M.Y.; Krusro, A.; Adegbeye, M.J.; Tan, W.; Abu Hafsa, S.H.; Greiner, R.; Uglogu, E.A.; Anele, U.Y.; Salem, A.Z.M. Dynamic role of single-celled fungi in ruminal microbial ecology and activities. J. Appl. Microbiol. 2019, 128, 950–965. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghazanfar, S.; Khalid, N.; Ahmed, I.; Imran, M. Probiotic yeast: Mode of action and its effects on ruminant nutrition. In Yeast—Industrial Applications; IntechOpen: Rijeka, Croatia, 2017; pp. 179–202. [Google Scholar]
- Jiang, Y.; Ogunade, I.M.; Qi, S.; Hackmann, T.J.; Staples, C.R.; Adesogan, A.T. Effects of the dose and viability of Saccharomyces cerevisiae. Diversity of ruminal microbes as analyzed by Illumina MiSeq sequencing and quantitative PCR. J. Dairy Sci. 2017, 100, 325–342. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wanapat, M.; Boonnop, K.; Promkot, C.; Cherdthong, A. Effects of alternative protein sources on rumen microbes and productivity of dairy cows. Maejo Int. J. Sci. Technol. 2011, 5, 13–23. [Google Scholar]
Item | Concentrate | ULTRS | Roughage: Concentrate Ratio | |||
---|---|---|---|---|---|---|
80:20 | 60:40 | 40:60 | 20:80 | |||
Ingredient (kg of DM) | ||||||
Cassava chip | 65.0 | |||||
Rice bran | 10.5 | |||||
Coconut meal | 11.0 | |||||
Palm kernel meal | 6.0 | |||||
Urea | 3.0 | |||||
Molasses | 2.0 | |||||
Mineral premix | 1.0 | |||||
Salt | 1.0 | |||||
Sulfur | 0.5 | |||||
Chemical composition | ||||||
Dry matter (DM), % | 87.8 | 50.6 | 86.4 | 85.6 | 85.1 | 84.7 |
% Dry matter | ||||||
Organic matter (OM) | 93.7 | 90.1 | 92.9 | 92.2 | 91.6 | 91.0 |
Crude protein (CP) | 14.1 | 5.8 | 12.5 | 10.9 | 9.2 | 7.6 |
Neutral detergent fiber (NDF) | 18.9 | 71.4 | 29.6 | 40.1 | 49.7 | 60.3 |
Acid detergent fiber (ADF) | 14.8 | 56.3 | 23.1 | 31.3 | 39.9 | 47.8 |
Total digestible nutrients (TDN) 1 | 78.9 | - | - | - | - | - |
Treatment | R:C 1 | LY 2 | Gas Kenetics 3 | Gas (96 h) mL/0.2 g DM Substrate | |||
---|---|---|---|---|---|---|---|
a | b | c | a + b | ||||
1 | 80:20 | 0 | −3.1 | 76.4 | 0.03 | 73.3 | 65.4 |
2 | 2 | −2.7 | 74.3 | 0.03 | 66.1 | 64.3 | |
3 | 4 | −0.8 | 71.5 | 0.03 | 70.7 | 66.7 | |
4 | 6 | −2.2 | 73.4 | 0.03 | 71.7 | 66.1 | |
5 | 60:40 | 0 | −0.4 | 70.7 | 0.04 | 70.3 | 68.8 |
6 | 2 | 1.3 | 69.2 | 0.04 | 71.5 | 70.2 | |
7 | 4 | 1.1 | 69.8 | 0.04 | 70.9 | 71.1 | |
8 | 6 | 1.6 | 69.1 | 0.04 | 70.7 | 69.7 | |
9 | 40:60 | 0 | 1.1 | 70.8 | 0.05 | 69.7 | 67.1 |
10 | 2 | 1.7 | 70.1 | 0.05 | 68.4 | 68.3 | |
11 | 4 | 2.8 | 69.2 | 0.05 | 66.4 | 70.6 | |
12 | 6 | 1.3 | 68.8 | 0.05 | 67.5 | 68.4 | |
13 | 20:80 | 0 | 3.1 | 68.0 | 0.07 | 71.1 | 72.0 |
14 | 2 | 3.4 | 71.9 | 0.07 | 75.3 | 75.2 | |
15 | 4 | 4.0 | 74.2 | 0.07 | 78.2 | 79.1 | |
16 | 6 | 4.3 | 73.1 | 0.07 | 77.4 | 79.4 | |
SEM | 0.38 | 0.43 | 0.02 | 0.35 | 0.39 | ||
Comparison | |||||||
R:C | 0.03 | 0.02 | 0.03 | 0.04 | 0.04 | ||
LY | 0.02 | 0.0.01 | 0.02 | 0.04 | 0.03 | ||
Interaction | 0.61 | 0.49 | 0.55 | 0.19 | 0.11 |
Trt | R:C 1 | LY 2 | pH | NH3-N (mg/dL) | In Vitro Digestibility, % | ||||
---|---|---|---|---|---|---|---|---|---|
4 h | 8 h | IVDMD 12 h | IVDMD 24 h | IVOMD 12 h | IVOMD 24 h | ||||
1 | 80:20 | 0 | 6.72 | 6.52 | 19.1 | 61.0 | 64.6 | 71.6 | 77.4 |
2 | 2 | 6.86 | 6.61 | 18.6 | 63.6 | 67.4 | 72.8 | 78.8 | |
3 | 4 | 6.85 | 6.76 | 17.0 | 65.6 | 69.6 | 73.3 | 79.3 | |
4 | 6 | 6.88 | 6.81 | 17.2 | 64.2 | 68.0 | 73.0 | 79.0 | |
5 | 60:40 | 0 | 6.54 | 6.49 | 20.5 | 63.2 | 67.0 | 68.8 | 74.4 |
6 | 2 | 6.53 | 6.50 | 19.4 | 64.4 | 68.2 | 70.3 | 76.1 | |
7 | 4 | 6.65 | 6.69 | 18.6 | 65.6 | 69.6 | 71.6 | 77.4 | |
8 | 6 | 6.62 | 6.71 | 18.5 | 65.4 | 69.4 | 71.2 | 77.0 | |
9 | 40:60 | 0 | 6.41 | 6.15 | 22.9 | 67.6 | 71.6 | 75.1 | 81.1 |
10 | 2 | 6.45 | 6.30 | 22.3 | 76.3 | 80.9 | 78.2 | 84.6 | |
11 | 4 | 6.49 | 6.56 | 21.4 | 77.5 | 82.1 | 78.8 | 85.2 | |
12 | 6 | 6.50 | 6.58 | 20.9 | 76.5 | 81.1 | 78.3 | 84.7 | |
13 | 20:80 | 0 | 6.42 | 6.20 | 24.1 | 70.9 | 78.1 | 79.2 | 80.6 |
14 | 2 | 6.43 | 6.22 | 24.0 | 72.3 | 86.7 | 82.2 | 88.8 | |
15 | 4 | 6.49 | 6.25 | 22.8 | 73.0 | 88.4 | 83.4 | 90.2 | |
16 | 6 | 6.49 | 6.28 | 21.6 | 72.7 | 88.8 | 84.2 | 91.0 | |
SEM | 0.38 | 0.57 | 0.77 | 1.97 | 2.43 | 1.85 | 2.47 | ||
Comparison | |||||||||
R:C | 0.02 | 0.02 | 0.04 | 0.009 | 0.02 | 0.03 | 0.009 | ||
LY | 0.01 | 0.03 | 0.02 | 0.02 | 0.01 | 0.02 | 0.01 | ||
Interaction | 0.14 | 0.61 | 0.80 | 0.39 | 0.45 | 0.82 | 0.78 |
Treatment | R:C 1 | LY 2 | Total VFA, (mM/l) | C2, (%) | C3, (%) | C4, (%) | C2:C3 Ratio | CH4 Production 3, mM |
---|---|---|---|---|---|---|---|---|
1 | 80:20 | 0 | 43.2 | 71.9 | 13.9 | 8.8 | 3.7 | 30.6 |
2 | 2 | 44.1 | 68.1 | 23.8 | 8.1 | 2.9 | 27.3 | |
3 | 4 | 43.5 | 66.4 | 25.1 | 8.4 | 2.6 | 26.3 | |
4 | 6 | 44.6 | 66.1 | 24.5 | 9.3 | 2.7 | 26.7 | |
5 | 60:40 | 0 | 45.2 | 71.4 | 19.7 | 8.9 | 3.6 | 30.3 |
6 | 2 | 47.5 | 65.0 | 25.0 | 10.0 | 2.6 | 26.4 | |
7 | 4 | 46.8 | 65.2 | 25.2 | 9.6 | 2.6 | 26.3 | |
8 | 6 | 47.1 | 64.9 | 26.6 | 8.5 | 2.4 | 25.3 | |
9 | 40:60 | 0 | 43.9 | 70.1 | 22.5 | 7.4 | 3.1 | 28.3 |
10 | 2 | 45.8 | 65.0 | 26.8 | 8.2 | 2.4 | 25.2 | |
11 | 4 | 46.3 | 65.8 | 26.4 | 7.8 | 2.5 | 25.5 | |
12 | 6 | 47.1 | 61.3 | 27.1 | 11.6 | 2.3 | 24.8 | |
13 | 20:80 | 0 | 45.2 | 67.8 | 26.1 | 6.2 | 2.6 | 25.8 |
14 | 2 | 48.1 | 62.9 | 29.7 | 7.4 | 2.1 | 23.1 | |
15 | 4 | 48.2 | 59.1 | 30.4 | 10.5 | 1.9 | 22.4 | |
16 | 6 | 50.4 | 59.0 | 30.6 | 10.4 | 1.9 | 22.0 | |
SEM | 2.04 | 0.75 | 0.04 | 0.32 | 0.08 | 0.13 | ||
R:C | 0.009 | 0.009 | 0.009 | 0.02 | 0.008 | 0.007 | ||
LY | 0.04 | 0.03 | 0.03 | 0.76 | 0.04 | 0.04 | ||
Interaction | 0.52 | 0.19 | 0.31 | 0.55 | 0.34 | 0.37 |
Treatment | R:C 1 | LY 2 | Bacteria (×1010 Cells/mL) | Protozoa (×105 Cells/mL) | Fungi (×103 Cells/mL) | |||
---|---|---|---|---|---|---|---|---|
4 h | 8 h | 4 h | 8 h | 4 h | 8 h | |||
1 | 80:20 | 0 | 9.5 | 8.8 | 4.0 | 4.2 | 1.3 | 1.4 |
2 | 2 | 10.3 | 11.0 | 4.6 | 5.3 | 1.9 | 1.9 | |
3 | 4 | 10.9 | 11.3 | 4.5 | 5.7 | 1.8 | 2.1 | |
4 | 6 | 10.8 | 12.1 | 4.6 | 5.8 | 1.9 | 2.1 | |
5 | 60:40 | 0 | 10.3 | 13.4 | 4.4 | 5.6 | 1.7 | 1.8 |
6 | 2 | 12.1 | 14.7 | 5.3 | 5.9 | 2.0 | 2.2 | |
7 | 4 | 14.4 | 17.4 | 6.3 | 6.5 | 2.6 | 2.9 | |
8 | 6 | 15.3 | 18.8 | 6.1 | 6.5 | 2.7 | 2.8 | |
9 | 40:60 | 0 | 13.7 | 16.1 | 6.0 | 7.0 | 2.3 | 2.6 |
10 | 2 | 15.1 | 17.8 | 6.9 | 7.1 | 2.6 | 4.0 | |
11 | 4 | 16.5 | 19.8 | 7.8 | 7.9 | 2.5 | 3.8 | |
12 | 6 | 16.9 | 20.9 | 7.7 | 8.0 | 2.8 | 4.2 | |
13 | 20:80 | 0 | 17.7 | 19.5 | 7.0 | 8.2 | 2.1 | 4.7 |
14 | 2 | 18.3 | 20.7 | 7.3 | 8.5 | 2.3 | 5.1 | |
15 | 4 | 19.2 | 22.1 | 8.6 | 9.0 | 2.6 | 5.6 | |
16 | 6 | 20.3 | 23.2 | 8.8 | 9.9 | 2.9 | 6.6 | |
SEM | 0.95 | 0.87 | 0.28 | 0.53 | 0.62 | 0.70 | ||
Comparison | ||||||||
RC | 0.009 | 0.008 | 0.008 | 0.008 | 0.03 | 0.02 | ||
LY | 0.008 | 0.008 | 0.009 | 0.009 | 0.18 | 0.32 | ||
Interaction | 0.11 | 0.14 | 0.39 | 0.65 | 0.29 | 0.44 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Phesatcha, K.; Phesatcha, B.; Wanapat, M.; Cherdthong, A. Roughage to Concentrate Ratio and Saccharomyces cerevisiae Inclusion Could Modulate Feed Digestion and In Vitro Ruminal Fermentation. Vet. Sci. 2020, 7, 151. https://doi.org/10.3390/vetsci7040151
Phesatcha K, Phesatcha B, Wanapat M, Cherdthong A. Roughage to Concentrate Ratio and Saccharomyces cerevisiae Inclusion Could Modulate Feed Digestion and In Vitro Ruminal Fermentation. Veterinary Sciences. 2020; 7(4):151. https://doi.org/10.3390/vetsci7040151
Chicago/Turabian StylePhesatcha, Kampanat, Burarat Phesatcha, Metha Wanapat, and Anusorn Cherdthong. 2020. "Roughage to Concentrate Ratio and Saccharomyces cerevisiae Inclusion Could Modulate Feed Digestion and In Vitro Ruminal Fermentation" Veterinary Sciences 7, no. 4: 151. https://doi.org/10.3390/vetsci7040151
APA StylePhesatcha, K., Phesatcha, B., Wanapat, M., & Cherdthong, A. (2020). Roughage to Concentrate Ratio and Saccharomyces cerevisiae Inclusion Could Modulate Feed Digestion and In Vitro Ruminal Fermentation. Veterinary Sciences, 7(4), 151. https://doi.org/10.3390/vetsci7040151