Metabolic Profile of Steers Subjected to Normal Feeding, Fasting, and Re-Feeding Conditions
Abstract
:1. Introduction
2. Material and Methods
3. Results
4. Discussion
4.1. Energy Status: Fasting Contrasted with the Postprandial Period
4.2. Energy Status: Re-Feeding Contrasted with the Fasting Period
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- García, A.M.B.; Cardoso, F.C.; Campos, R.; Thedy, D.X.; González, F.H.D. Metabolic evaluation of dairy cows submitted to three different strategies to decrease the effects of negative energy balance in early postpartum. Pesqui. Vet. Bras. 2011, 31 (Suppl. 1), 11–17. [Google Scholar] [CrossRef]
- Minervino, A.H.H.; Cardoso, E.C.; Sá, C.F.B.d.; Rodrigues, R. Perfil bioquímico sanguíneo de vacas Sindi no pré-parto, pós-parto, início e final de lactação em condições de pastejo na Amazônia. Rev. Ciências Agrárias 2004, 42, 169–175. [Google Scholar]
- Pinto, M.M.; Lima, R.F.d.; Dias, S.R.; Mori, C.S.; Ortolani, E.L.; Minervino, A.H.H. Avaliação de desempenho e perfil metabólico em bovinos suplementados com solução de aminoácidos e minerais. Pubvet 2019, 13, 1–10. [Google Scholar] [CrossRef]
- Radostits, O.M.; Gay, C.C.; Hinchcliff, K.W.; Constable, P.D. Veterinary Medicine: A Textbook of the Diseases of Cattle, Sheep, Pigs, Goats, and Horses, 10th ed.; Saunders Elsevier: Philadelphia, PA, USA, 2007; ISBN 0702027774. [Google Scholar]
- Chouzouris, T.M.; Dovolou, E.; Rekkas, C.A.; Georgoulias, P.; Athanasiou, L.V.; Amiridis, G.S. A study on ghrelin and LH secretion after short fasting and on ghrelin levels at perioestrual period in dairy cattle. Reprod. Domest. Anim. 2019, 54, 91–99. [Google Scholar] [CrossRef]
- Ortolani, E.L.; Maruta, C.A.; Minervino, A.H.H. Clinical evaluation of zebuine and taurine cattle with acute rumen lactic acidosis. Braz. J. Vet. Res. Anim. 2010, 47, 253–261. [Google Scholar] [CrossRef] [Green Version]
- Gross, J.; Van Dorland, H.A.; Bruckmaier, R.M.; Schwarz, F.J. Performance and metabolic profile of dairy cows during a lactational and deliberately induced negative energy balance with subsequent realimentation. J. Dairy Sci. 2011, 94, 1820–1830. [Google Scholar] [CrossRef]
- O’Neill, H.A.; Webb, E.C.; Frylinck, L.; Strydom, P.E. Effects of short and extended fasting periods and cattle breed on glycogenolysis, sarcomere shortening and Warner-Bratzler shear force. S. Afr. J. Anim. Sci. 2018, 48, 71. [Google Scholar] [CrossRef] [Green Version]
- Bravo, V.; Gallo, C.; Acosta-Jamett, G. Effects of Short Transport and Prolonged Fasting in Beef Calves. Animals 2018, 8, 170. [Google Scholar] [CrossRef] [Green Version]
- Kaneko, J.J.; Harvey, J.W.; Bruss, M. Clinical Biochemistry of Domestic Animals; Academic Press: Cambridge, MA, USA, 2008; ISBN 9780123704917. [Google Scholar]
- Payne, J.M.; Payne, S. The Metabolic Proile Test; Oxford University Press: New York, NY, USA, 1987; Volume 1, ISBN 8173715173. [Google Scholar]
- Rowlands, G.J. A review of variations in the concentrations of metabolites in the blood of beef and dairy cattle associated with physiology, nutrition and disease, with particular reference to the interpretation of metabolic profiles. World Rev. Nutr. Diet. 1980, 35, 172–235. [Google Scholar] [PubMed]
- Otto, F.; Ibanez, A.; Caballero, B.; Bogin, E. Blood profile of paraguayan cattle in relation to nutrition, metabolic state, management and race. Isr. J. Vet. Med. 1992, 47, 91–99. [Google Scholar]
- Souza, P.M.; Birgel, E.H.; Araujo, W.P.; Tavora, J.P.F. Valores de referência da glicose plasmática de bovinos da raça Gir, Holandesa e Girolanda criados no Estado de São Paulo. Arq. Inst. Biol. 1999, 66, 138. [Google Scholar]
- Sucupira, M.C.A. Estudo Comparativo de Exames Clínico-Laboratoriais no Diagnóstico de Carência Energética Prolongada em Garrotes. Ph.D. Thesis, Universidade de São Paulo, São Paulo, Brazil, 2003. [Google Scholar]
- Gomes, R.d.C.; Siqueira, R.F.d.; Ballou, M.A.; Stella, T.R.; Leme, P.R. Hematological profile of beef cattle with divergent residual feed intake, following feed deprivation. Pesqui. Agropecuária Bras. 2011, 46, 1105–1111. [Google Scholar] [CrossRef] [Green Version]
- Bond, J.; Rumsey, T.S.; Weinland, B.T. Effect of deprivation and reintroduction of feed and water on the feed and water intake behavior of beef cattle. J. Anim. Sci. 1975, 41, 392. [Google Scholar]
- Galyean, M.L.; Lee, R.W.; Hubbert, M.E. Influence of Fasting and Transit on Ruminal and Blood Metabolites in Beef Steers2. J. Anim. Sci. 1981, 53, 7–18. [Google Scholar] [CrossRef] [PubMed]
- National Research Council. NRC Requirements of Dairy Cattle Seventh Revised Edition, 2001; The National Academies Press: Washington, DC, USA, 2001; ISBN 0309069971. [Google Scholar]
- Sucupira, M.C.A.; Ortolani, E.L. Uso de sangue arterial e venoso no exame do equilíbrio ácido-básico de novilhos normais ou com acidose metabólica. Ciência Rural 2003, 33, 863–868. [Google Scholar] [CrossRef] [Green Version]
- Araújo, C.A.S.C.; Sousa, R.S.; Monteiro, B.M.; Oliveira, F.L.C.; Minervino, A.H.H.; Rodrigues, F.A.M.L.; Vale, R.G.; Mori, C.S.; Ortolani, E.L. Potential prophylactic effect of recombinant bovine somatotropin (rbST) in sheep with experimentally induced hyperketonemia. Res. Vet. Sci. 2018, 119, 215–220. [Google Scholar] [CrossRef]
- Araújo, C.A.S.C.; Minervino, A.H.H.; Sousa, R.S.; Oliveira, F.L.C.; Rodrigues, F.A.M.L.; Mori, C.S.; Ortolani, E.L. Validation of a handheld β-hydroxybutyrate acid meter to identify hyperketonaemia in ewes. PeerJ 2020, 8, e8933. [Google Scholar] [CrossRef]
- Little, T.M.; Hills, F.J. Agricultural Experimentation: Design and Analysis; Wiley: Ney Yoork, NY, USA, 1978; ISBN 9780471023524. [Google Scholar]
- Araujo, C.A.S.C.; Nikolaus, J.P.; Morgado, A.A.; Monteiro, B.M.; Rodrigues, F.A.M.L.; Vechiato, T.A.F.; Soares, P.C.; Sucupira, M.C.A. Perfil energético e hormonal de ovelhas Santa Inês do terço médio da gestação ao pós-parto. Pesqui. Veterinária Bras. 2014, 34, 1251–1257. [Google Scholar] [CrossRef] [Green Version]
- Bouchat, J.C.; Doizé, F.; Paquay, R. Influence of diet and prolonged fasting on blood lipids, ketone bodies, glucose and insulin in adult sheep. Reprod. Nutr. Dev. 1981, 21, 69–81. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, F.L.C.; Barrêto-Júnior, R.A.; Minervino, A.H.H.; Reis, L.F.; Araújo, C.A.S.C.; Rodrigues, F.A.M.L.; Sousa, R.S.; Gameleira, J.S.; Souza, F.J.A.; Mori, C.S.; et al. Avaliação hemogasométrica, bioquímica e hematológica de ovinos suplementados com melão. Arq. Bras. Med. Vet. Zootec. 2015, 67, 1272–1278. [Google Scholar] [CrossRef]
- Ndibualonji, B.B.; Dehareng, D.; Beckers, F.; Van Eenaeme, C.; Godeau, J.M. Continuous profiles and within-day variations of metabolites and hormones in cows fed diets varying in alimentary supplies before short-term feed deprivation. J. Anim. Sci. 1997, 75, 3262–3267. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rule, D.C.; Beitz, D.C.; De Boer, G.; Lyle, R.R.; Trenkle, A.H.; Young, J.W. Changes in Hormone and Metabolite Concentrations in Plasma of Steers during a Prolonged Fast1. J. Anim. Sci. 1985, 61, 868–875. [Google Scholar] [CrossRef] [PubMed]
- Lima, A.S.; Sucupira, M.C.A.; Ortolani, E.L. Long term dietary deficiency in steers: Vital functions and T3 and IGF-1 relationships. Pesqui. Veterinária Bras. 2014, 34, 896–902. [Google Scholar] [CrossRef] [Green Version]
- Lomax, M.A.; Baird, G.D. Blood flow and nutrient exchange across the liver and gut of the dairy cow. Effects of lactation and fasting. Br. J. Nutr. 1983, 49, 481–496. [Google Scholar] [CrossRef] [Green Version]
- Herdt, T.H. Fuel Homeostasis in the Ruminant. Vet. Clin. N. Am. Food Anim. Pr. 1988, 4, 213–231. [Google Scholar] [CrossRef]
- Krebs, H. Bovine ketosis. Vet. Rec. 1966, 78, 187–192. [Google Scholar] [CrossRef]
- Benedet, A.; Manuelian, C.L.; Zidi, A.; Penasa, M.; De Marchi, M. Invited review: β-hydroxybutyrate concentration in blood and milk and its associations with cow performance. Animal 2019, 13, 1676–1689. [Google Scholar] [CrossRef] [Green Version]
- Herdt, T.H. Ruminant adaptation to negative energy balance. Influences on the etiology of ketosis and fatty liver. Vet. Clin. N. Am. Food Anim. Pr. 2000, 16, 215–230. [Google Scholar] [CrossRef]
- Minervino, A.H.H.; Araújo, C.A.S.C.; Kaminishikawahara, C.M.; Soares, F.B.; Rodrigues, F.A.M.L.; Dos Reis, L.F.; Oliveira, F.L.C.; Barrêto Júnior, R.A.; Mori, C.S.; Ortolani, E.L. Influência de diferentes dietas com alto teor de concentrados sobre parâmetros ruminais, bioquímicos e urinários de ovinos. Braz. J. Vet. Res. Anim. Sci. 2014, 51, 30–36. [Google Scholar] [CrossRef]
- Ortolani, E.L.; Maruta, C.A.; Minervino, A.H.H. Influence of the breed on volemia and renal function in cattle with experimentally induced acute rumen lactic acidosis. Braz. J. Vet. Res. Anim. Sci. 2008, 45, 451–457. [Google Scholar]
Composition | Hay | Concentrated | Global Diet |
---|---|---|---|
% DM (dry matter) | 87.2 | 84.3 | 86.3 |
% CF (crude fiber) | 31.2 | 6.4 | 23.7 |
% CP (crude protein) | 7.1 | 17.6 | 10.3 |
% EE (ether extract) | 1.8 | 5.1 | 2.8 |
% MM (mineral matter) | 6.4 | 9.5 | 7.3 |
% NNFE * (non-nitrogen free extract) | 53.6 | 61.4 | 55.9 |
% TDN (total digestible nutrients) | 54.3 | 74.9 | 60.5 |
% NDF (neutral detergent soluble fiber) | 76.2 | 27.0 | 61.4 |
% ADF (acid detergent soluble fiber) | 38.1 | 12.4 | 30.4 |
CE (crude energy) ** (kcal/kg) | 4224 | 4275 | 4240 |
Times | Glucose | Free Fatty Acids | β-Hydroxybutyrate | ||||
---|---|---|---|---|---|---|---|
(mmol/L) | (μmol/L) | (mmol/L) | |||||
PP | 0 h | 4.1 ± 0.7 | a | 124 ± 50 | a | 0.45 ± 0.09 | b |
1 h | 3.9 ± 0.4 | a | 122 ± 44 | a | 0.49 ± 0.09 | ab | |
3 h | 4.0 ± 0.5 | a | 120 ± 40 | a | 0.54 ± 0.09 | a | |
5 h | 4.1 ± 0.5 | a | 108 ± 33 | a | 0.56 ± 0.12 | a | |
7 h | 4.2 ± 0.5 | a | 111 ± 40 | a | 0.57 ± 0.10 | a | |
9 h | 4.2 ± 0.5 | a | 114 ± 31 | a | 0.54 ± 0.09 | a | |
11 h | 4.3 ± 0.5 | a | 109 ± 49 | a | 0.55 ± 0.07 | a | |
F | 0 h | 4.5 ± 0.8 | a | 124 ± 59 | e | 0.54 ± 0.03 | ab |
12 h | 4.4 ± 0.7 | a | 317 ± 135 | d | 0.39 ± 0.06 | c | |
24 h | 4.3 ± 0.7 | a | 622 ± 126 | c | 0.46 ± 0.08 | bc | |
36 h | 3.8 ± 0.6 | b | 821 ± 113 | b | 0.51 ± 0.10 | ab | |
48 h | 3.5 ± 0.3 | b | 1115 ± 272 | a | 0.57 ± 0.19 | a | |
RF | 0 h | 3.5 ± 0.3 | c | 1115 ± 272 | a | 0.57 ± 0.19 | a |
6 h | 4.0 ± 0.3 | b | 509 ± 141 | b | 0.52 ± 0.13 | a | |
12 h | 4.8 ± 0.4 | a | 245 ± 121 | c | 0.39 ± 0.13 | b | |
24 h | 4.5 ± 0.3 | ab | 141 ± 48 | cd | 0.35 ± 0.10 | b | |
48 h | 4.3 ± 0.2 | b | 91 ± 38 | d | 0.33 ± 0.07 | b |
Times | Creatinine | Urea | Cholesterol | AST | |||||
---|---|---|---|---|---|---|---|---|---|
(μmol/L) | (mmol/L) | (mmol/L) | (U/L) | ||||||
PP | 0 h | 159 ± 21 | a | 3.74 ± 1.80 | b | 4.11 ± 0.92 | a | 30.6 ± 2.9 | a |
1 h | 159 ± 17 | a | 4.39 ± 1.76 | ab | 3.98 ± 0.75 | a | 31.5 ± 3.0 | a | |
3 h | 162 ± 19 | a | 5.49 ± 1.92 | a | 4.00 ± 0.79 | a | 31.9 ± 3.5 | a | |
5 h | 163 ± 22 | a | 6.00 ± 2.00 | a | 3.86 ± 0.68 | a | 31.5 ± 3.2 | a | |
7 h | 162 ± 22 | a | 5.79 ± 1.99 | a | 3.85 ± 0.62 | a | 32.2 ± 4.2 | a | |
9 h | 162 ± 20 | a | 5.41 ± 2.06 | a | 3.95 ± 0.70 | a | 31.6 ± 4.9 | a | |
11 h | 161 ± 18 | a | 4.86 ± 2.05 | ab | 3.92 ± 0.72 | a | 35.1 ± 7.0 | a | |
F | 0 h | 162 ± 17 | a | 3.35 ± 1.73 | b | 4.03 ± 0.76 | a | 35.4 ± 6.8 | a |
12 h | 160 ± 19 | a | 4.04 ± 1.34 | b | 4.11 ± 0.91 | a | 36.6 ± 6.5 | a | |
24 h | 167 ± 24 | a | 5.48 ± 1.20 | a | 4.24 ± 0.85 | a | 35.8 ± 6.5 | a | |
36 h | 168 ± 30 | a | 5.49 ± 1.23 | a | 4.20 ± 0.68 | a | 35.0 ± 5.2 | a | |
48 h | 169 ± 33 | a | 5.59 ± 1.46 | a | 4.34 ± 0.77 | a | 34.5 ± 4.0 | a | |
RF | 0 h | 169 ± 33 | b | 5.59 ± 1.46 | c | 4.34 ± 0.77 | a | 34.5 ± 4.0 | a |
6 h | 185 ± 38 | a | 8.30 ± 1.51 | a | 4.18 ± 0.64 | ab | 35.2 ± 4.7 | a | |
12 h | 185 ± 37 | a | 6.97 ± 1.68 | b | 3.92 ± 0.64 | ab | 33.8 ± 4.8 | a | |
24 h | 179 ± 36 | ab | 3.81 ± 1.84 | d | 3.93 ± 0.76 | ab | 33.7 ± 4.6 | a | |
48 h | 165 ± 25 | b | 3.31 ± 1.46 | d | 3.85 ± 0.68 | b | 33.4 ± 5.9 | a |
Times | Total Protein | Albumin | Globulin | ||||
---|---|---|---|---|---|---|---|
(g/L) | (g/L) | (g/L) | |||||
PP | 0 h | 68.0 ± 6.3 | a | 31.5 ± 1.7 | a | 36.5 ± 6.0 | a |
1 h | 68.6 ± 5.2 | a | 31.7 ± 1.3 | a | 37.0 ± 5.1 | a | |
3 h | 68.1 ± 6.2 | a | 31.4 ± 1.7 | a | 36.7 ± 5.7 | a | |
5 h | 67.3 ± 5.1 | a | 31.1 ± 1.4 | a | 36.1 ± 5.0 | a | |
7 h | 67.9 ± 6.2 | a | 31.2 ± 1.4 | a | 36.8 ± 6.1 | a | |
9 h | 69.2 ± 5.3 | a | 31.4 ± 1.5 | a | 37.8 ± 5.1 | a | |
11 h | 67.2 ± 5.0 | a | 31.4 ± 1.4 | a | 35.8 ± 4.8 | a | |
F | 0 h | 69.2 ± 5.1 | b | 31.5 ± 1.2 | b | 37.7 ± 4.8 | b |
12 h | 71.5 ± 4.9 | ab | 31.8 ± 1.7 | b | 39.6 ± 4.7 | ab | |
24 h | 71.6 ± 6.5 | ab | 32.2 ± 1.7 | ab | 39.4 ± 6.1 | ab | |
36 h | 70.9 ± 4.7 | ab | 32.5 ± 1.2 | ab | 38.3 ± 4.8 | ab | |
48 h | 75.2 ± 5.8 | a | 33.4 ± 1.7 | a | 41.8 ± 5.5 | a | |
RE | 0 h | 75.2 ± 5.8 | a | 33.4 ± 1.7 | a | 41.8 ± 5.5 | a |
6 h | 71.5 ± 4.5 | ab | 33.2 ± 1.2 | a | 38.3 ± 4.5 | ab | |
12 h | 68.4 ± 5.3 | b | 31.9 ± 1.3 | b | 36.5 ± 5.2 | b | |
24 h | 69.4 ± 2.6 | b | 32.3 ± 1.1 | ab | 37.1 ± 2.9 | b | |
48 h | 67.3 ± 6.2 | b | 31.6 ± 2.2 | b | 35.6 ± 4.6 | b |
Variable | Physiological Period | p | |||||
---|---|---|---|---|---|---|---|
Postprandial | Fasting | Re-Feeding | |||||
Total Protein (g/L) | 68.9 | b | 73.0 | a | 70.0 | b | <0.01 |
Globulin (g/L) | 38.1 | b | 40.2 | a | 36.7 | b | 0.01 |
Creatinine (μmol/L) | 160 | b | 166 | ab | 177 | a | 0.05 |
Urea (mmol/L) | 4.81 | a | 5.15 | a | 5.98 | a | 0.52 |
Cholesterol (mmol/L) | 3.7 | b | 4.0 | a | 3.9 | ab | <0.01 |
AST (U/L) | 31.8 | b | 35.4 | a | 33.9 | a | <0.05 |
Pt DVP (%) | ND | −4.5 | b | 0.1 | a | 0.0005 | |
Albumin DVP (%) | ND | −3.0 | a | −2.7 | a | 0.45 | |
DVP Globulin (%) | ND | −4.3 | b | 2.2 | a | 0.0001 |
Variable | Glucose | FFA | βHB | Urea |
---|---|---|---|---|
Fasting time (h) | r = −0.52; p < 0.0001 | r = 0.92; p < 0.00001 | r = 0.33; p > 0.05 | r = 0.52; p < 0.001 |
Glucose | r = −0.23; p > 0.05 | r = −0.25; p > 0.05 | r = −0.12; p > 0.05 | |
FFA | r = 0,68; p < 0.0001 | r = 0.41; p > 0.05 | ||
βHB | r = 0.37; p > 0.05 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ortolani, E.L.; Maruta, C.A.; Barrêto Júnior, R.A.; Mori, C.S.; Antonelli, A.C.; Sucupira, M.C.A.; Minervino, A.H.H. Metabolic Profile of Steers Subjected to Normal Feeding, Fasting, and Re-Feeding Conditions. Vet. Sci. 2020, 7, 95. https://doi.org/10.3390/vetsci7030095
Ortolani EL, Maruta CA, Barrêto Júnior RA, Mori CS, Antonelli AC, Sucupira MCA, Minervino AHH. Metabolic Profile of Steers Subjected to Normal Feeding, Fasting, and Re-Feeding Conditions. Veterinary Sciences. 2020; 7(3):95. https://doi.org/10.3390/vetsci7030095
Chicago/Turabian StyleOrtolani, Enrico Lippi, Celson Akio Maruta, Raimundo Alves Barrêto Júnior, Clara Satsuki Mori, Alexandre Coutinho Antonelli, Maria Claudia Araripe Sucupira, and Antonio Humberto Hamad Minervino. 2020. "Metabolic Profile of Steers Subjected to Normal Feeding, Fasting, and Re-Feeding Conditions" Veterinary Sciences 7, no. 3: 95. https://doi.org/10.3390/vetsci7030095
APA StyleOrtolani, E. L., Maruta, C. A., Barrêto Júnior, R. A., Mori, C. S., Antonelli, A. C., Sucupira, M. C. A., & Minervino, A. H. H. (2020). Metabolic Profile of Steers Subjected to Normal Feeding, Fasting, and Re-Feeding Conditions. Veterinary Sciences, 7(3), 95. https://doi.org/10.3390/vetsci7030095