An Assessment of the Level of Protection Against Colibacillosis Conferred by Several Autogenous and/or Commercial Vaccination Programs in Conventional Pullets upon Experimental Challenge
Abstract
:1. Introduction
2. Materials and Methods
2.1. Origin of Vaccinated Pullets
2.2. Transfer to Experimental Laying Facility
2.3. Experimental Inoculation
2.4. Statistical Analysis
3. Results
3.1. Clinical Signs
3.2. Mortality
3.3. Mean Organ Lesion Scores
3.4. Re-isolation of the Challenge Strains
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Barnes, H.J.; Nolan, L.K.; Vaillancourt, J.P. Colibacillosis in poultry. In Diseases of Poultry, 12th ed.; Saif, Y.M., Fadly, A.M., Glisson, J.R., McDougald, L.R., Nolan, L.K., Swayne, D.E., Eds.; Blackwell Publishing: Ames, IA, USA, 2008; pp. 691–732. [Google Scholar]
- Brugère-Picoux, J.; Vaillancourt, J.P.; Bouzouaia, M.; Venne, D.; Shivaprasad, H.L. Manual of Poultry Diseases, 1st ed.; Association Française pour l’Advancement des Sciences: Paris, France, 2015; pp. 300–315. [Google Scholar]
- Lutful Kabir, S.M. Avian colibacillosis and salmonellosis: A closer look at epidemiology, pathogenesis, diagnosis, control and public health concerns. Inter. J. Environ. Res. Publ. Heal. 2010, 7, 89–114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- La Ragione, R.M.; Woodward, M.J. Virulence factors of Escherichia coli serotypes associated with avian colisepticaemia. Res. Vet. Sci. 2002, 73, 27–35. [Google Scholar] [CrossRef]
- Schouler, C.; Schaeffer, B.; Brée, A.; Mora, A.; Dahbi, G.; Biet, F.; Oswald, E.; Mainil, J.; Blanco, J.; Moulin-Schouleur, M. Diagnostic strategy for identifying avian pathogenic Escherichia coli based on four patterns of virulence genes. J. Clin. Microbiol. 2012, 50, 1673–1678. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghunaim, H.; Abu-Madi, A.M.; Kariyawasam, S. Advances in vaccination against avian pathogenic Escherichia coli respiratory disease: Potentials and limitations. Vet. Microbiol. 2014, 172, 13–22. [Google Scholar] [CrossRef]
- Dho-Moulin, M.; Fairbrother, J.M. Avian pathogenic Escherichia coli (APEC). Vet. Res. 1999, 30, 299–316. [Google Scholar]
- Chart, H.; Smith, H.R.; La Ragione, R.M.; Woodward, M.J. An investigation into the pathogenic properties of Escherichia coli strains BLR, BL21, DH5alpha and EQ1. J. Appl. Microbiol. 2000, 89, 1048–1058. [Google Scholar] [CrossRef]
- Zanella, A.; Alborali, G.L.; Bardotti, M.; Candotti, P.; Guadagnini, P.F.; Anna Martino, P.; Stonfer, M. Severe Escherichia coli O111 septicaemia and polyserositis in hens at the start of lay. Avian Path 2000, 29, 311–317. [Google Scholar] [CrossRef] [Green Version]
- Trampel, D.W.; Wannemuehler, Y.; Nolan, L.K. Characterization of Escherichia coli isolates from peritonitis lesions in commercial laying hens. Avian Dis. 2007, 51, 840–844. [Google Scholar] [CrossRef]
- Srinivasan, P.; Balasubramaniam, G.A.; Krishna Murthy, T.R.G.; Balachandran, P. Bacteriological and pathological studies of egg peritonitis in commercial layer chicken in Namakkal area. Asian Pac. J. Trop. Biomed. 2013, 3, 988–994. [Google Scholar] [CrossRef] [Green Version]
- Koutsianos, D.; Athanasiou, L.; Mossialos, D.; Koutoulis, K. Study on prevalent serogroups and antimicrobial sensitivity profile of Escherichia coli strains isolated from commercial layer and layer breeder flocks in Greek territory. In Proceedings of the XXth International Congress of the World Veterinary Poultry Association, Edinburgh, Scotland, 4–8 September 2017; p. 356. [Google Scholar]
- Camarda, A.; Circella, E.; Pennelli, D.; Battista, P.; Di Paola, G.; Madio, A.; Tagliabue, S. Occurrence of pathogenic and faecal Escherichia coli in layer hens. Ital. J. Anim. Sci. 2008, 7, 385–389. [Google Scholar] [CrossRef] [Green Version]
- D’Incau, M.; Pennelli, D.; Lavazza, A.; Tagliabue, S. Serotypes of E. coli isolated from avian species in Lombardia and Emilia Romagna (North Italy). Ital. J. Anim. Sci. 2006, 5, 298–301. [Google Scholar]
- McPeake, S.J.W.; Smyth, J.A.; Ball, H.J. Characterization of avian pathogenic Escherichia coli (APEC) associated with colisepticaemia compared to faecal isolates from healthy birds. Vet. Microbiol. 2005, 110, 245–253. [Google Scholar] [CrossRef]
- Ewers, C.; Janßen, T.; Kießling, S.; Philipp, H.; Wieler, L.H. Molecular epidemiology of avian pathogenic Escherichia coli (APEC) isolated from colisepticemia in poultry. Vet. Microbiol. 2004, 104, 91–101. [Google Scholar] [CrossRef] [PubMed]
- Dziva, F.; Stevens, M.P. Colibacillosis in poultry: Unravelling the molecular basis of virulence of avian pathogenic Escherichia coli in their natural hosts. Avian Path. 2008, 37, 355–366. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ozaki, H.; Murase, T. Multiple routes of entry for Escherichia coli causing colibacillosis in commercial layer chickens. J. Vet. Med. Sci. 2009, 71, 1685–1689. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Landman, W.J.M.; Heuvelink, A.; Van Eck, J.H.H. Reproduction of the Escherichia coli peritonitis syndrome in laying hens. Avian Path. 2013, 42, 157–162. [Google Scholar] [CrossRef]
- Pourbakhsh, S.A.; Boulianne, M.; Martineau-Doizé, B.; Dozois, C.M.; Desautels, C.; Fairbrother, J.M. Dynamics of Escherichia coli infection in experimentally inoculated chickens. Avian Dis. 1997, 41, 221–233. [Google Scholar] [CrossRef]
- Matthijs, M.G.; Van Eck, J.H.; Landman, W.J.; Stegeman, J.A. Ability of Massachusetts-type infectious bronchitis virus to increase colibacillosis susceptibility in commercial broilers: A comparison between vaccine and virulent field virus. Avian Path. 2003, 32, 473–481. [Google Scholar] [CrossRef]
- Antao, E.M.; Glodde, S.; Li, G.; Sharifi, R.; Homeier, T.; Laturnus, C.; Diehl, I.; Bethe, A.; Philipp, H.C.; Preisinger, R.; et al. The chicken as a natural model for extraintestinal infections caused by avian pathogenic Escherichia coli (APEC). Microb. Pathogenes 2008, 45, 361–369. [Google Scholar] [CrossRef]
- Guabiraba, R.; Schouler, C. Avian colibacillosis: Still many black holes. FEMS Microbiol Lett. 2015, 362, fnv118. [Google Scholar] [CrossRef]
- Liu, Q.X.; Zhou, Y.; Li, X.M.; Ma, D.D.; Xing, S.; Feng, J.H.; Zhang, M.H. Ammonia induce lung tissue injury in broilers by activating NLRP3 inflammasome via Escherichia/Shigella. Poult. Sci. 2020. [Google Scholar] [CrossRef]
- OIE. Strategy on Antimicrobial Resistance and the Prudent Use of Antimicrobials. 2016. Available online: https://www.oie.int/fileadmin/Home/eng/Media_Center/docs/pdf/PortailAMR/EN_OIE-AMRstrategy.pdf (accessed on 4 May 2020).
- Frommer, A.; Freidlin, P.J.; Bock, R.; Leitner, G.; Chaffer, M.; Heller, E.D. Experimental vaccination of young chickens with a live, non-pathogenic strain of Escherichia coli. Avian Path 1994, 23, 425–433. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cookson, K.; Macklin, K.; Giambrone, J. The efficacy of a novel live E. coli vaccine using a broiler skin challenge model. In Proceedings of the XXIII World’s Poultry Congress, Brisbane, Australia, 01 July 2008. Abstract 1568. [Google Scholar]
- Nagano, T.; Kitahara, R.; Nagai, S. An attenuated mutant of avian pathogenic Escherichia coli serovar O78: A possible live vaccine strain for prevention of avian colibacillosis. Microbiol. Immunol. 2012, 56, 605–612. [Google Scholar] [CrossRef]
- La Ragione, R.M.; Woodward, M.J.; Kumar, M.; Rodenberg, J.; Fan, H.; Wales, A.D.; Karaca, K. Efficacy of a Live Attenuated Escherichia coli O78:K80 Vaccine in Chickens and Turkeys. Avian Dis. 2013, 57, 273–279. [Google Scholar] [CrossRef] [PubMed]
- Mombarg, M.; Bouzoubaa, K.; Andrews, S.; Vanimisetti, H.D.; Rodenberg, J.; Karaca, K. Safety and efficacy of an aroA-deleted live vaccine against avian colibacillosis in a multicentre field trial in broilers in Morocco. Avian Path. 2014, 43, 276–281. [Google Scholar] [CrossRef] [PubMed]
- Kariyawasam, S.; Wilkie, B.N.; Gyles, C.L. Construction, characterization and evaluation of the vaccine potential of three genetically defined mutants of avian pathogenic Escherichia coli. Avian Dis. 2004, 48, 287–299. [Google Scholar] [CrossRef]
- EMA. Summary of the European Public Assessment Report (EPAR) for Poulvac E. coli. 2013. Available online: https://www.ema.europa.eu/en/medicines/veterinary/EPAR/poulvac-e-coli (accessed on 4 May 2020).
- Galal, H.M.; Tawfek, A.M.; Abdrabou, M.I.; Hessain, A.M.; Alhaaji, J.H.; Kabli, S.A.; Elbehiry, A.; Alwarhi, W.K.; Moussa, I.M. Recent approaches for control of E. coli and respiratory complex in Middle East. Saudi J. Biol. Sci. 2018, 25, 1302–1307. [Google Scholar] [CrossRef] [PubMed]
- Gomis, S.; Babiuk, L.; Allan, B.; Willson, P.; Waters, E.; Hecker, R.; Potter, A. Protection of chickens against a lethal challenge of Escherichia coli by a vaccine containing cpg oligodeoxynucleotides (cpg-odn) as an adjuvant. Avian Dis. 2007, 51, 78–83. [Google Scholar] [CrossRef]
- Gregersen, R.H.; Christensen, H.; Ewers, C.; Bisgaard, M. Impact of Escherichia coli vaccine on parent stock mortality, first week mortality of broilers and population diversity of E. coli in vaccinated flocks. Avian Path. 2010, 39, 287–295. [Google Scholar] [CrossRef] [PubMed]
- Hera, A.; Bures, J. Veterinary autogenous vaccines. Develop Biol. (Basel) 2004, 117, 19–25. [Google Scholar]
- Landman, W.J.M.; Van Eck, J.H.H. The efficacy of inactivated Escherichia coli autogenous vaccines against the E. coli peritonitis syndrome in layers. Avian Path. 2017, 46, 658–665. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Thøfner, I.; Christensen, J.P.; Ronco, T.; Pedersen, K.; Olsen, R.H. Evaluation of the efficacy of an autogenous Escherichia coli vaccine in broiler breeders. Avian Path. 2017, 46, 300–308. [Google Scholar] [CrossRef] [Green Version]
- Council Directive 1999/74/EC. Laying down minimum standards for the protection of laying hens. Official Journal of the European Communities, L203. 1999, pp. 53–57. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:31999L0074&from=EN (accessed on 4 May 2020).
- Koutsianos, D.; Gantelet, H.; Athanasiou, L.; Mossialos, D.; Thibault, E.; Koutoulis, K. Pathogenicity testing of 3 Escherichia coli strains after intramuscular and intratracheal experimental challenge in commercial layers. In Proceedings of the XIVth Pan-Hellenic Veterinary Congress, Thessaloniki, Greece, 11–13 May 2018. [Google Scholar]
- Blanco, J.E.; Blanco, M.; Mora, A.; Jansen, W.M.; Garcia, V.; Vazquez, M.L.; Blanco, J. Serotypes of Escherichia coli isolated from septicaemic chickens in Galicia (Northwest Spain). Vet. Microbiol. 1998, 61, 229–235. [Google Scholar] [CrossRef]
- Dou, X.; Gong, J.; Han, X.; Xu, M.; Shen, H.; Zhang, D.; Zhuang, L.; Liu, J.; Zou, J. Characterization of avian pathogenic Escherichia coli isolated in eastern China. Gene 2016, 576, 244–248. [Google Scholar] [CrossRef] [PubMed]
- Sadeyen, J.R.; Wu, Z.; Davies, H.; Van Diemen, P.M.; Milicic, A.; Roberto, M.; La Ragione, R.M.; Kaiser, P.; Stevens, M.P.; Dziva, F. Immune responses associated with homologous protection conferred by commercial vaccines for control of avian pathogenic Escherichia coli in turkeys. Vet. Res. 2015, 46. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Filho, T.F.; Fávaro, C., Jr.; Ingberman, M.; Beirão, B.C.; Inoue, A.; Gomes, L.; Caron, L.F. Effect of spray Escherichia coli vaccine on the immunity of poultry. Avian Dis. 2013, 57, 671–676. [Google Scholar] [CrossRef]
- Vandekerchove, D.; De Herdt, P.; Laevens, H.; Pasmans, F. Risk factors associated with colibacillosis outbreaks in caged layer flocks. Avian Path. 2004, 33, 337–342. [Google Scholar] [CrossRef] [Green Version]
- Peighambari, S.M.; Julian, R.J.; Gyles, C.L. Experimental Escherichia coli respiratory infection in broilers. Avian Dis. 2000, 44, 759–769. [Google Scholar] [CrossRef]
- Vaez Zadeh, F.; Esmaily, F.; Sharifi-Yazdi, M.K. Protective immune responses induced in chickens by outer membrane proteins extracted from different strains of Escherichia coli. Iran. J. Aller Asth. Immunol. 2004, 3, 133–137. [Google Scholar]
Ref BIOVAC | E. coli Strain * | iutA | A12 | D7 | A9 | PAP | FEL | papG1 | papG2 | Genetic Pattern |
---|---|---|---|---|---|---|---|---|---|---|
170564 | O78 | + | + | - | - | + | + | - | + | A |
170655 | O111 | + | + | + | - | - | + | - | - | B |
50176 | O18 | + | + | + | + | - | - | - | - | B |
Target Organ | Score | Description |
---|---|---|
Air sacs | (0–3) | 0: absence of lesions 1: presence of a small amount of fibrin in the pericardium and/or a minor change in the transparency and thickness of pericardium 2: presence of a medium amount of fibrin in the pericardium and/or an intermediate change in the transparency and thickness of pericardium 3: presence of a massive amount of fibrin in the pericardium and/or an important change in the transparency and thickness of pericardium |
Liver | (0–2) | 0: normal liver appearance 1: small presence of fibrine material on the liver surface, the changing of natural liver color and texture 2: increased amount of fibrin covering the liver surface |
Spleen | (0–1) | 0: normal size and appearance of spleen 1: enlarged and congested spleen |
Heart | (0–3) | 0: normal transparent pericardium 1: pericardium is vascular, lack of transparency 2: increased pericardiac fluid that is (or is not) transparent 3: severe fibrinous pericarditis |
Lungs | (0–5) | 0: absence of lesions 1: presence of a limited affected area with necrosis/fibrin covering 1/5 of lungs 2: One or more lesions covering 2/5 of lungs 3: lesions covering 1/2 of lungs 4: lesions covering 4/5 of lungs 5: lesions covering 5/5 of lungs |
Peritonitis | (0–2) | 0: absence of lesions 1: presence of spots of fibrin inside the peritoneum 2: presence of mass fibrinous material inside the peritoneum |
Challenge Strain | O78 | O18 | O111 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Vaccination protocol | A | B | C | D | A | B | C | D | A | B | C | D |
Mortality (%) | 9/20a (45%) | 7/20a (35%) | 0/20b (0%) | 0/20b (0%) | 0/20 (0%) | 1/20 (5%) | 1/20 (5%) | 0/20 (0%) | 2/20 (10%) | 0/20 (0%) | 0/20 (0%) | 0/20 (0%) |
Heart | 2a ± 0.72 | 2a ± 0.85 | 1b ± 0.45 | 1.05b ± 0.51 | 1.5a ± 0.76 | 1.65ab ± 1.03 | 1.55ab ± 0.99 | 0.8b ± 1.00 | 1.6a ± 0.99 | 1.55a ± 0.51 | 0.55b ± 0.51 | 0.55b ± 0.51 |
Liver | 1.3a ± 0.80 | 1.1a ± 0.78 | 0b ± 0.00 | 0.1b ± 0.44 | 0.55 ± 0.82 | 0.9 ± 0.91 | 0.9 ± 1.02 | 0.35 ± 0.67 | 0.95a ± 0.82 | 0.6a ± 0.68 | 0b ± 0.00 | 0.1b ± 0.30 |
Spleen | 1 ± 0.00 | 0.95 ± 0.22 | 1 ± 0.00 | 1 ± 0.00 | 0.95a ± 0.22 | 0.8ab ± 0.41 | 0.9a ± 0.30 | 0.5b ± 0.51 | 1a ± 0.00 | 1a ± 0.00 | 0.6b ± 0.50 | 0.6b ± 0.50 |
Air sacs | 1.75ab ± 0.78 | 2a ± 0.72 | 1.2b ± 0.61 | 1.25b ± 0.85 | 1.75a ± 0.78 | 1.55a ± 0.75 | 1.6a ± 0.94 | 0.55b ± 0.75 | 1.4a ± 0.59 | 1.6a ± 0.50 | 0.75b ± 0.55 | 0.6b ± 0.50 |
Lungs | 2.15a ± 1.42 | 1.6ab ± 1.23 | 1b ± 0.79 | 1.3ab ± 0.80 | 1.6 ± 0.75 | 1.2 ± 0.89 | 1.1 ± 1.02 | 1.1 ± 1.16 | 1.3 ± 1.38 | 0.7 ± 0.73 | 0.9 ± 0.85 | 0.65 ± 0.74 |
Peritonitis | 1.1a ± 0.55 | 1a ± 0.64 | 0.2b ± 041 | 0.4b ± 0.50 | 0.6ab ± 0.82 | 0.95a ± 0.88 | 0.95a ± 0.88 | 0.2b ± 0.52 | 0.95a ± 0.68 | 0.8a ± 0.52 | 0b ± 0.00 | 0.1b ± 0.30 |
Total | 9.3a ± 2.57 | 8.65a ± 3.24 | 4.4b ± 1.35 | 5.1b ± 2.04 | 6.95a ± 2.99 | 7.05a ± 3.96 | 7a ± 4.02 | 3.5b ± 3.00 | 7.2a ± 2.74 | 6.25a ± 1.80 | 2.8b ± 1.36 | 2.6b ± 1.72 |
Total w/o spleen* | 8.3a ± 2.57 | 7.7a ± 3.14 | 3.4b ± 1.35 | 4.1b ± 2.04 | 6a ± 2.97 | 6.25a ± 3.72 | 6.1a ± 4.87 | 3b ± 2.86 | 6.2a ± 2.74 | 5.25a ± 1.80 | 2.2b ± 1.28 | 2b ± 1.41 |
Vaccination Protocol | Nature of Sample | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Bone Marrow | Pooled Organs | Birds* | ||||||||||
Challenge strain | Challenge strain | Challenge strain | ||||||||||
O78 | O18 | O111 | Total | O78 | O18 | O111 | Total | O78 | O18 | O111 | Total | |
A: No vaccination | 11a/20 | 3/20 | 4a/20 | 18/60 | 15a/20 | 8/20 | 12a/20 | 35/60 | 16a/20 | 9/20 | 12a/20 | 37/60 |
B: Live O78 vaccine (×3) | 13a/20 | 5/20 | 1ab/20 | 19/60 | 15a/20 | 8/20 | 4ab/20 | 27/60 | 16a/20 | 10/20 | 4ab/20 | 30/60 |
C: Autogenous vaccine (×2) | 0b/20 | 4/20 | 0b/20 | 4/60 | 1b/20 | 9/20 | 0b/20 | 10/60 | 1b/20 | 9/20 | 0b/20 | 10/60 |
D: Live O78 (×2) + autogenous vaccine (×1) | 2b/20 | 1/20 | 0b/20 | 3/60 | 4b/20 | 3/20 | 0b/20 | 7/60 | 4b/20 | 3/20 | 0b/20 | 7/60 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Koutsianos, D.; Gantelet, H.; Franzo, G.; Lecoupeur, M.; Thibault, E.; Cecchinato, M.; Koutoulis, K.C. An Assessment of the Level of Protection Against Colibacillosis Conferred by Several Autogenous and/or Commercial Vaccination Programs in Conventional Pullets upon Experimental Challenge. Vet. Sci. 2020, 7, 80. https://doi.org/10.3390/vetsci7030080
Koutsianos D, Gantelet H, Franzo G, Lecoupeur M, Thibault E, Cecchinato M, Koutoulis KC. An Assessment of the Level of Protection Against Colibacillosis Conferred by Several Autogenous and/or Commercial Vaccination Programs in Conventional Pullets upon Experimental Challenge. Veterinary Sciences. 2020; 7(3):80. https://doi.org/10.3390/vetsci7030080
Chicago/Turabian StyleKoutsianos, Dimitris, Hubert Gantelet, Giovanni Franzo, Mathilde Lecoupeur, Eric Thibault, Mattia Cecchinato, and Konstantinos C. Koutoulis. 2020. "An Assessment of the Level of Protection Against Colibacillosis Conferred by Several Autogenous and/or Commercial Vaccination Programs in Conventional Pullets upon Experimental Challenge" Veterinary Sciences 7, no. 3: 80. https://doi.org/10.3390/vetsci7030080