Increased Antimicrobial Resistance of MRSA Strains Isolated from Pigs in Spain between 2009 and 2018
Abstract
:1. Introduction
2. Materials and Methods
2.1. Collection of Samples
2.2. Isolation and Identification of Bacteria
2.3. Molecular Typing of MRSA
2.4. Antimicrobial Susceptibility Testing
2.5. Statistical Analysis
3. Results
4. Discussion
Author Contributions
Funding
Conflicts of Interest
References
- WHO. Guidelines on Use of Medically Important Antimicrobials in Food-Producing Animals. World Health Organization: Geneva, Switzerland, 2017. Available online: https://www.ncbi.nlm.nih.gov/books/NBK487966/ (accessed on 22 March 2018).
- Timmerman, T.; Dewulf, J.; Catry, B.; Feyen, B.; Opsomer, G.; de Kruif, A.; Maes, D. Quantification and evaluation of antimicrobial drug use in group treatments for fattening pigs in Belgium. Prev. Vet. Med. 2006, 74, 251–263. [Google Scholar] [CrossRef] [PubMed]
- De Neeling, A.J.; van den Broek, M.J.; Spalburg, E.C.; van Santen-Verheuvel, M.G.; Dam-Deisz, W.D.; Boshuizen, H.C.; van de Giessen, A.W.; van Duijkeren, E.; Huijsdens, X.W. High prevalence of methicillin resistant Staphylococcus aureus in swines. Vet. Microbiol. 2007, 122, 366–372. [Google Scholar] [CrossRef] [PubMed]
- Graveland, H.; Wagenaar, J.A.; Heesterbeek, H.; Heesterbeek, H.; Mevius, D.; van Duijkeren, E.; Heederik, D. Methicillin resistant Staphylococcus aureus ST398 in veal calf farming, human MRSA carriage related with animal antimicrobial usage and farm hygiene. PLoS ONE 2010, 5, e10990. [Google Scholar] [CrossRef] [PubMed]
- Ferber, D. Infectious disease. From pigs to people, the emergence of a new superbug. Science 2010, 27, 1010–1011. [Google Scholar] [CrossRef] [PubMed]
- Morcillo, A.; Castro, B.; Rodríguez-Álvarez, C.; González, J.C.; Sierra, A.; Montesinos, M.I.; Abreu, R.; Arias, Á. Prevalence and characteristics of methicillin-resistant Staphylococcus aureus in pigs and pig workers in Tenerife, Spain. Foodborne Pathog. Dis. 2012, 9, 207–210. [Google Scholar] [CrossRef]
- Verhegghe, M.; Pletinckx, L.J.; Crombé, F.; Vandersmissen, T.; Haesebrouck, F.; Butaye, P.; Heyndrickx, M.; Rasschaert, G. Methicillin-resistant Staphylococcus aureus (MRSA) ST398 in pig farms and multispecies farms. Zoonoses Public Health 2013, 60, 366–374. [Google Scholar] [CrossRef] [PubMed]
- Igbinosa, E.O.; Beshiru, A.; Akporehe, L.U.; Ogofure, A.G. Detection of Methicillin-Resistant Staphylococci Isolated from Food Producing Animals: A Public Health Implication. Vet. Sci. 2016, 3, 14. [Google Scholar] [CrossRef] [PubMed]
- Reynaga, E.; Navarro, M.; Vilamala, A.; Roure, P.; Quintana, M.; Garcia-Nuñez, M.; Figueras, R.; Torres, C.; Lucchetti, G.; Sabrià, M. Prevalence of colonization by methicillin-resistant Staphylococcus aureus ST398 in pigs and pig farm workers in an area of Catalonia, Spain. BMC Infect. Dis. 2016, 16, 716. [Google Scholar] [CrossRef] [PubMed]
- Pereira, V.; Lopes, C.; Castro, A.; Silva, J.; Gibbs, P.; Teixeira, P. Characterization for enterotoxin production, virulence factors, and antibiotic susceptibility of Staphylococcus aureus isolates from various foods in Portugal. Food Microbiol. 2009, 26, 278–282. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fessler, A.T.; OldeRiekerink, R.G.; Rothkamp, A.; Kadlec, K.; Sampimon, O.C.; Lam, T.J.; Schwarz, S. Characterization of methicillin-resistant Staphylococcus aureus CC398 obtained from humans and animals on dairy farms. Vet. Microbiol. 2012, 9, 77–84. [Google Scholar] [CrossRef] [PubMed]
- Cortimiglia, C.; Bianchini, V.; Franco, A. Short communication: Prevalence of Staphylococcus aureus and methicillin-resistant S. aureus in bulk tank milk from dairy goat farms in Northern Italy. J. Dairy Sci. 2015, 98, 2307–2311. [Google Scholar] [CrossRef] [PubMed]
- Johler, S.; Macori, G.; Bellio, A.; Acutis, P.L.; Gallina, S.; Decastelli, L. Short communication: Characterization of Staphylococcus aureus isolated along the raw milk cheese production process in artisan dairies in Italy. J. Dairy Sci. 2018, 101, 2915–2920. [Google Scholar] [CrossRef] [PubMed]
- Obaidat, M.M.; Salman, A.E.B.; Roess, A.A. High prevalence and antimicrobial resistance of mecA Staphylococcus aureus in dairy cattle, sheep, and goat bulk tank milk in Jordan. Trop. Anim. Health Prod. 2018, 50, 405–412. [Google Scholar] [CrossRef] [PubMed]
- Hammad, A.M.; Watanabe, W.; Fujii, T.; Shimamoto, T. Occurrence and characteristics of methicillin-resistant and susceptible Staphylococcus aureus and methicillin-resistant coagulase-negative staphylococci from Japanese retail ready-to-eat raw fish. Int. J. Food Microbiol. 2012, 156, 156,286–289. [Google Scholar] [CrossRef] [PubMed]
- Locatelli, C.; Cremonesi, P.; Caprioli, A.; Carfora, V.; Ianzano, A.; Barberio, A.; Morandi, S.; Casula, A.; Castiglioni, B.; Bronzo, V.; et al. Occurrence of methicillin-resistant Staphylococcus aureus in dairy cattle herds, related swine farms, and humans in contact with herds. Dairy Sci. 2017, 100, 608–619. [Google Scholar] [CrossRef]
- Feld, L.; Bay, H.; Angen, Ø.; Larsen, A.R.; Madsen, A.M. Survival of LA-MRSA in Dust from Swine Farms. Ann. Work Expo. Health 2018, 62, 147–156. [Google Scholar] [CrossRef] [Green Version]
- Wagenaar, J.A. Lifestock associated MRSA, epidemiology in animal production, transmission to humans and characterization of the strain. Tijdschr. Diergeneeskd. 2009, 134, 1032–1035. [Google Scholar]
- Larsen, J.; Petersen, A.; Sørum, M.; Stegger, M.; van Alphen, L.; Valentiner-Branth, P.; Knudsen, L.K.; Larsen, L.S.; et al. Meticillin-resistant Staphylococcus aureus CC398 is an increasing cause of disease in people with no livestock contact in Denmark, 1999 to 2011. Euro Surveill 2015, 20. [Google Scholar] [CrossRef]
- Rodrigues, A.C.; Belas, A.; Marques, C.; Cruz, L.; Gama, L.T.; Pomba, C. Risk Factors for Nasal Colonization by Methicillin-Resistant Staphylococci in Healthy Humans in Professional Daily Contact with Companion Animals in Portugal. Microb. Drug Resist. 2017, 24, 434–446. [Google Scholar] [CrossRef]
- Anker, J.C.H.; Koch, A.; Ethelberg, S.; Mølbak, K.; Larsen, J.; Jepsen, M.R. Distance to pig farms as risk factor for community-onset livestock-associated MRSA CC398 infection in persons without known contact to pig farms. A nationwide study. Zoonoses Public Health 2018, 65, 352–360. [Google Scholar] [CrossRef]
- Eurostat: Agriculture, Forestry and Fishery Statistics. 2017. Available online: http://ec.europa.eu/eurostat/statistics-explained/index.php/Agricultural_production_-_animals#Livestock_population (accessed on 22 March 2019).
- Enright, M.C.; Day, N.P.J.; Davies, C.E. Multilocus sequence typing for characterization of methicillin-resistant and methicillin-susceptible clones of Staphylococcus aureus. J. Clin. Microbiol. 2000, 38, 1008–1015. [Google Scholar] [PubMed]
- Milheirico, C.; Oliveira, D.; de Lencastre, H. Update to the multiplex PCR strategy assignment of mec element types in Staphylococcus aureus. Antimicrob. Agents Chemother. 2007, 51, 3374–3377. [Google Scholar] [CrossRef] [PubMed]
- Tenover, F.C.; Arbeit, R.D.; Goering, R.V.; Mickelsen, P.A.; Murray, B.E.; Persing, D.H.; Swaminathan, B. Interpreting chromosomal DNA restriction patterns produced by pulsed-field gel electrophoresis: Criteria for bacterial strain typing. J. Clin. Microbiol. 1995, 33, 2233–2239. [Google Scholar]
- Smith, C.L.; Klco, S.R.; Cantor, C.R. Pulsed-field gel electrophoresis and the technology of large DNA molecules. In Genome Analysis: A Practical Approach; Davis, K.E., Ed.; IRL Press: Oxford, UK, 1988; pp. 41–72. [Google Scholar]
- Clinical and Laboratory Standards Institute (CLSI). Performance Standards for Antimicrobial Susceptibility Testing; Twenty-Sixth Informational Supplement M100-S26 CLSI (Wayne, PA). 2016. Available online: http://www.clsi.org/ (accessed on 26 November 2017).
- Gómez-Sanz, E.; Torres, C.; Lozano, C.; Fernández-Pérez, R.; Aspiroz, C.; Ruiz-Larrea, F.; Zarazaga, M. Detection, molecular characterization, and clonal diversity of methicillin-resistant Staphylococcus aureus CC398 and CC97 in Spanish slaughter pigs of different age groups. Foodborne Pathog. Dis. 2010, 7, 1269–1277. [Google Scholar] [CrossRef] [PubMed]
- European Food Safety Authority. The European Union Summary Report on Antimicrobial Resistance in Zoonotic and Indicator Bacteria from Humans, Animals and Food in 2017. Available online: https://www.efsa.europa.eu/en/efsajournal/pub/5598./ (accessed on 22 March 2019).
- Chuang, Y.Y.; Huang, Y.C. Livestock-associated meticillin-resistant Staphylococcus aureus in Asia: An emerging issue? Int. J. Antimicrob. Agents 2015, 45, 334–340. [Google Scholar] [CrossRef] [PubMed]
- Sahibzada, S.; Abraham, S.; Coombs, G.W.; Thomson, P.C.; Heller, J. Transmission of highly virulent community-associated MRSA ST93 and livestock-associated MRSA ST398 between humans and pigs in Australia. Sci. Rep. 2017, 7, 5273. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morcillo, A.; Castro, B.; Rodríguez-Álvarez, C.; Abreu, R.; Aguirre-Jaime, A.; Arias, Á. Descriptive Analysis of Antibiotic-Resistant Patterns of Methicillin-Resistant Staphylococcus aureus (MRSA) ST398. Isolated from Healthy Swine. Int. J. Environ. Res. Public Health 2015, 12, 611–622. [Google Scholar] [CrossRef]
- Cuny, C.; Köck, R.; Witte, W. Livestock associated MRSA (LA-MRSA) and its relevance for humans in Germany. Int. J. Med. Microbiol. 2013, 303, 331–337. [Google Scholar] [CrossRef]
- Wang, X.; Li, G.; Xia, X.; Yang, B.; Xi, M.; Meng, J. Antimicrobial susceptibility and molecular typing of methicillin-resistant Staphylococcus aureus in retail foods in Shaanxi, China. Foodborne Pathog. Dis. 2014, 11, 281–286. [Google Scholar] [CrossRef]
- European Medicines Agency. Sales of Veterinary Antimicrobial Agents in 30 European Countries in 2016. Trends from 2010 to 2016. Eighth ESVAC Report. Available online: https://www.ema.europa.eu/en/documents/report/sales-veterinary-antimicrobial-agents-30-european-countries-2016-trends-2010-2016-eighth-esvac_en.pdf./ (accessed on 22 March 2019).
- Agencia Española de Medicamentos y Productos Sanitarios (AEMPS). Plan Estratégico y de Acción Para Reducir el Riesgo de Selección y Diseminacion de la Resistencia a los Antibióticos, 1ª Ed. edAgencia Española de Medicamentos y Productos Sanitarios (AEMPS), 2014. Available online: https://www.aemps.gob.es/publicaciones/publica/plan-estrategico-antibioticos/v1/docs/plan-estrategico-antimicrobianos-AEMPS.pdf (accessed on 18 April 2018).
- Dierikx, C.M.; Hengeveld, P.D.; Veldman, K.T.; Haan, A.; van der Voorde, S.; Dop, P.Y.; Bosch, T.; van Duijkeren, E. Ten years later: Still a high prevalence of MRSA in slaughter pigs despite a significant reduction in antimicrobial usage in pigs the Netherlands. J. Antimicrob. Chemother. 2016, 71, 2414–2418. [Google Scholar] [CrossRef] [PubMed]
Antimicrobial | Number and Percentages of Resistant Isolates | Significance (p) | |
---|---|---|---|
Period Studied | |||
2009–2010 | 2017–2018 | ||
Gentamicin | 98 (38.3) | 69 (61.6) | <0.001 |
Tobramycin | 101 (39.5) | 74 (66.1) | <0.001 |
Trimethoprim-sulfomethoxazole | 99 (38.7) | 69 (61.6) | <0.001 |
Levofloxacin | 34 (13.3) | 11 (9.8) | Non-significant |
Erythromycin | 86 (33.6) | 18 (16.1) | <0.001 |
Clindamycin | 129 (50.4) | 86 (76.8) | <0.001 |
Fosfomycin | 1 (0.4) | 33 (29.5) | <0.001 |
Tigecycline | 0 (0) | 14 (12.5) | <0.001 |
Resistance Pattern | 2011 | 2017 | ||
---|---|---|---|---|
Number | % | Number | % | |
PG + OXA | 50 | 19.5 | 0 | 0 |
PG + OXA + E + CC | 44 | 17.2 | 0 | 0 |
PG + OXA + GM + TM + SXT | 41 | 16.0 | 6 | 5.3 |
PG + OXA + GM + TM + E + CC + SXT | 34 | 13.3 | 0 | 0 |
PG + OXA + LVX + CC | 19 | 7.4 | 0 | 0 |
PG + OXA + LVX | 13 | 5.1 | 0 | 0 |
PG + OXA + CC | 13 | 5.1 | 0 | 0 |
PG + OXA + SXT | 11 | 4.3 | 0 | 0 |
PG + OXA + GM + TM | 8 | 3.1 | 1 | 0.9 |
PG + OXA + GM + TM + CC + SXT | 8 | 3.1 | 54 | 48.2 |
PG + OXA + E + CC + SXT | 3 | 1.2 | 0 | 0 |
PG + OXA + GM + TM + CC | 3 | 1.2 | 7 | 6.2 |
PG + OXA + TM + LVX + SXT | 2 | 0.8 | 0 | 0 |
PG + OXA + GM | 1 | 0.4 | 0 | 0 |
PG + OXA + TM | 1 | 0.4 | 0 | 0 |
PG + OXA + GM + TM + E + CC + FM + SXT | 1 | 0.4 | 0 | 0 |
PG + OXA + LVX + E + CC | 1 | 0.4 | 0 | 0 |
PG + OXA + GM + TM + E + CC + NI | 1 | 0.4 | 0 | 0 |
PG + OXA + TM + E + CC | 1 | 0.4 | 0 | 0 |
PG + OXA + GM + TM + E + CC | 1 | 0.4 | 0 | 0 |
PG + OXA + CC + FM + NI | - | - | 20 | 17.8 |
PG + OXA + E + LVX + TGC | - | - | 6 | 5.3 |
PG + OXA + E + TGC + FM | - | - | 5 | 4.5 |
PG + OXA + E + TGC + FM + SXT | - | - | 3 | 2.7 |
PG + OXA + E + CC + FM + SXT | - | - | 3 | 2.7 |
PG + OXA + GM + LVX + STX | - | - | 3 | 2.7 |
PG + OXA + TM + LVX | - | - | 2 | 1.8 |
PG + OXA + E + CC + FM | - | - | 1 | 0.9 |
PG + OXA + GM + TM + CC + FM | - | - | 1 | 0.9 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abreu, R.; Rodríguez-Álvarez, C.; Lecuona, M.; Castro, B.; González, J.C.; Aguirre-Jaime, A.; Arias, Á. Increased Antimicrobial Resistance of MRSA Strains Isolated from Pigs in Spain between 2009 and 2018. Vet. Sci. 2019, 6, 38. https://doi.org/10.3390/vetsci6020038
Abreu R, Rodríguez-Álvarez C, Lecuona M, Castro B, González JC, Aguirre-Jaime A, Arias Á. Increased Antimicrobial Resistance of MRSA Strains Isolated from Pigs in Spain between 2009 and 2018. Veterinary Sciences. 2019; 6(2):38. https://doi.org/10.3390/vetsci6020038
Chicago/Turabian StyleAbreu, Rossana, Cristobalina Rodríguez-Álvarez, María Lecuona, Beatriz Castro, Juan Carlos González, Armando Aguirre-Jaime, and Ángeles Arias. 2019. "Increased Antimicrobial Resistance of MRSA Strains Isolated from Pigs in Spain between 2009 and 2018" Veterinary Sciences 6, no. 2: 38. https://doi.org/10.3390/vetsci6020038