Next Article in Journal / Special Issue
Coronary Artery Anomalies in Animals
Previous Article in Journal
Effect of Oral Alpha Lipoic Acid in Preventing the Genesis of Canine Diabetic Cataract: A Preliminary Study
Previous Article in Special Issue
Exercise-Induced Cardiac Remodeling: Lessons from Humans, Horses, and Dogs
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Review

Genomic Insights into Cardiomyopathies: A Comparative Cross-Species Review

1
Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, The University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK
2
Great Ormond Street Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, UK
*
Author to whom correspondence should be addressed.
Vet. Sci. 2017, 4(1), 19; https://doi.org/10.3390/vetsci4010019
Submission received: 27 December 2016 / Revised: 15 March 2017 / Accepted: 15 March 2017 / Published: 21 March 2017
(This article belongs to the Special Issue Comparison of Cardiovascular Systems and Diseases Across Species)

Abstract

:
In the global human population, the leading cause of non-communicable death is cardiovascular disease. It is predicted that by 2030, deaths attributable to cardiovascular disease will have risen to over 20 million per year. This review compares the cardiomyopathies in both human and non-human animals and identifies the genetic associations for each disorder in each species/taxonomic group. Despite differences between species, advances in human medicine can be gained by utilising animal models of cardiac disease; likewise, gains can be made in animal medicine from human genomic insights. Advances could include undertaking regular clinical checks in individuals susceptible to cardiomyopathy, genetic testing prior to breeding, and careful administration of breeding programmes (in non-human animals), further development of treatment regimes, and drugs and diagnostic techniques.

1. Introduction

The cardiomyopathies (CMs) are a diverse group of cardiac disorders of the myocardium first described in the 1950s, usually exhibiting clinically unexplained hypertrophy or dilation of the ventricular walls and/or septum which can be either solely confined to the heart, or one part of a more generalised systemic disorder [1,2,3,4]. Cardiomyopathies are present in all populations and age groups and can lead to heart failure and death. Types of cardiomyopathy include: hypertrophic cardiomyopathy (HCM); dilated cardiomyopathy (DCM); restrictive cardiomyopathy (RCM); arrhythmogenic right ventricular cardiomyopathy (ARVC); and unclassified cardiomyopathies [5]. There is a range of mammalian species that can also develop the same cardiomyopathies either naturally or via induced disease processes. In addition, there are cardiomyopathies that are unique to a species/taxonomic group, such as great ape cardiomyopathy [6]. Although no genetic links have been published to date in relation to the great ape cardiomyopathy, collaborative work is presently underway throughout Europe under “The Ape Heart Project” [7]. Both natural and induced disease can act as models for other species, including humans, but naturally occurring cardiomyopathy (CM) in agricultural, working, and companion animals is also of clinical and financial concern in its own right.
The aetiology of the cardiomyopathies is complex, as causation can be both acquired and genetic in origin and often unknown. HCM is usually genetically inherited, with a prevalence of about 1:500 [5]. DCM is genetic in about one-third of cases [8] and can also be caused by external factors such as alcohol, toxins, drug abuse, viral infections, and pregnancy. Many (25%) of the mutations associated with this form are in the large titin gene [9]. RCM is rare genetically and can be caused as a result of connective tissue disorders, sarcoidosis, amyloidosis and haemochromatosis, eosinophilic heart disease, or as a result of radiation treatment [10], but has also been linked to several genetic mutations [11,12]. ARVC has been linked to several genes, but mutations in genes affecting the desmosomes occur most frequently within this disorder. Linkage of CM to a genetic locus was first reported in 1989 [13], and in 1990 the first causative gene mutation (in cardiac beta (β)-myosin heavy chain; MYH7/βMHC) was reported [14]. The genetics of the CMs is complex due to both phenotype and genotype heterogeneity over a wide range of severities. Symptoms can vary from none to very extreme, and risk of death may vary from almost zero with a normal lifespan to early infant death and clinical progression, and from no measurable progression to rapid and early symptoms. To complicate matters further, the transmission is often autosomally dominant but with variable penetrance, and there are affected genes on the X chromosome (recessive inheritance) and also within the mitochondrial genome which are maternally inherited. This review gives an oversight into what has been published for human and non-human animals to date. The search terms throughout included cardiomyopathy alongside a species name using both the Latin and common names.

2. Hypertrophic Cardiomyopathy (HCM)

In the 2014 European Society of Cardiology (ESC) guidelines on diagnosis and management of hypertrophic cardiomyopathy [15], the disorder is defined by “the presence of increased left ventricular wall thickness that is not solely explained by abnormal loading conditions”. It is characterised by left ventricular hypertrophy (without dilation) and abnormally large and misaligned myocytes localised to the interventricular septum; many patients develop dynamic obstruction to left ventricular outflow and increased fibrosis which leads to diastolic heart failure [5,16]. HCM is the most common form of CM, which has a reported prevalence of 0.02%–0.23% in adults [15,16]. There have been HCM-associated mutations in over 20 genes associated with the sarcomere, myofilament, Z-discs, and calcium handling in humans [17].
Most of the HCM mutations (up to 80% [18]) come from the beta myosin heavy chain (MYH7 25%–40%) and cardiac myosin binding protein C genes (MYBPC3, 25%–40%), which are genes of the sarcomere/myofilament proteins that generate the force for myocyte contraction. The cardiac troponin T genes TNNT2 and TNNi3 contribute a further 10% more cases and it is well established that genes of the Z-disc and calcium-handling genes, amongst many others, contribute less commonly to the causes of CM [16,18].
In addition to its occurrence in people, HCM occurs naturally in both cats [19] and dogs [20,21]. It is more common in cats than dogs, accounting for <1% of canine cardiovascular diagnoses [20], but it has been diagnosed in up to 14.6% of apparently healthy cats [22]. Feline hypertrophic cardiomyopathy appears to have a breed predisposition, as does canine DCM and is, reportedly, the most common cardiac disorder in cats and has shown remarkable similarities to human HCM [19]. The familial predisposition is most obvious in Maine Coon, Ragdoll, and British and American Shorthair breeds [23,24,25]. Separate genetic mutations have been identified as causal of HCM in the Maine Coon and Ragdoll breeds within the MYBPC3 gene [24,26] but there are also affected individuals within the Maine Coon breed lacking the mutation, indicating that there are additional causes of the disease to be established [27]. MYBPC3 is a gene with mutations associated with human HCM [28]; thus, in these cases, feline and human HCM may act as relevant models for each other. This is important, considering that an estimated 35% of human cases are caused by MYBPC3 mutations [16]. Higher concentrations of cTnI have also been observed in some breeds of cats with HCM [25,29], but no mutations have been observed in that gene in Maine Coons or British Shorthairs [25], whereas mutations in this gene have been observed in humans. Pigs also appear to have a heritable form of HCM, but no specific genetic associations have been discovered to date [30].
There are fewer available induced models of HCM compared to DCM. The primary model type being transgenic models, generally based on genes associated with human HCM in order to create the HCM phenotype. Transgenic and naturally occurring strains of mice [31], rabbits [32], and hamsters [33] have been used as models of HCM. Some strains of hamsters—including BIO14.6 and TO-2—develop HCM and DCM showing mutations in the delta-sarcoglycan gene, however, the phenotype differs a little from humans in that it shows augmented necrosis [34,35].

3. Dilated Cardiomyopathy (DCM)

Dilated cardiomyopathy is defined by left ventricular chamber enlargement and systolic dysfunction. Enlargement of the cavity and thinning and weakening of the walls of the left ventricle generally progresses to the right ventricle over time. The inability to pump properly leads to heart failure and clot formation in the heart in some species [36]. DCM is estimated to have a prevalence of 0.036% in humans but this is thought to be an underestimate and, in common with the other cardiomyopathies, the incidence is increasing with better testing and recognition [37,38,39]. To date, there have been mutations in over 50 genes associated with human DCM [40].
Naturally occurring spontaneous DCM exists in several species including dogs [41], cats [42], cattle [43,44,45], turkeys [46,47], and chickens [48]. Feline DCM is frequently associated with a lack of dietary taurine, and since this discovery commercial pet foods are now supplemented with taurine. Feline DCM is now rare [49,50]. Despite this, there are instances of feline DCM that are not related to taurine deficiency [42,50]. These instances are currently unexplained, but it is possible that, as with other species, the underlying cause of these cases is genetic. No genetic loci have been associated with feline DCM, but evidence for a genetic involvement in the development of feline DCM has been demonstrated [51].
Naturally occurring canine DCM is common—10% of dogs that died from cardiac disease within the insured Swedish dog population had a diagnosis of DCM [20]. Whilst canine DCM is common, there are some breeds that are particularly susceptible to developing the disease [20]. There are thought to be several sub-types of canine DCM which may reflect those seen in human DCM [52]. An example of this is juvenile DCM that occurs in Portuguese water dogs, which may reflect childhood DCM in humans [53,54]. Despite similarities with human DCM, and many studies testing for genetic associations with canine DCM, there have only been 10 loci associated with adult-onset canine DCM [55,56,57,58,59], and recently reviewed by Simpson et al. [52]. There has been an additional locus identified as associated with juvenile-onset canine DCM [60].
DCM in cattle is reported to particularly affect Red Holstein and Simmentaler X Red Holstein individuals [43,44]. It is possible that individuals from other breeds of cattle develop DCM, but within the commercial dairy and beef industries any such disease is likely to be rapidly selected against as it would have an impact on production. DCM in cattle was demonstrated to be inherited in an autosomal recessive pattern [61]. A nonsense mutation in the outer mitochondrial membrane lipid metabolism regulator (OPA3) gene has subsequently been demonstrated to be responsible for these incidences of bovine DCM [44].
DCM in turkeys has been associated with unusually low molecular weight cardiac troponin T due to the splicing out of exon 8 [46]. Exon 8 is not normally spliced out of avian and mammalian cardiac troponin T, thus it is considered to be abnormal with probable functional implications contributing to the development of turkey DCM [46]. Exon 8 is also spliced out of cardiac troponin T in wild turkeys [46] and thus likely contributed to the death of the wild turkey [47]. It is of interest that cardiac troponin T is also implicated in humans [62,63] and a mouse model [31]. Chicken DCM has been reported as a naturally occurring disease [48], but also of interest are the in ovo chicken models showing that knockdown of the myosins—specifically, embryonic myosin heavy chain (eMHC)—results in DCM [64], as does alpha myosin heavy chain (αMHC/MYH6) [65] which also affects humans [66,67].
DCM-induced animal models are frequently used in order to understand not only the genetic factors but also the structural and functional aspects of the disease. Several inbred strains of hamster develop DCM [35] and a number of methods are used in different species to induce disease using chemical and mechanical induction, including pacing [68,69,70,71].

4. Restrictive Cardiomyopathy (RCM)

Restrictive cardiomyopathy results in dilated atria and stiffening of the ventricles, which leads to restrictive filling and reduced diastolic volume, inefficient pumping, and heart and valve failure. Hypertrophy is typically absent and systolic function is usually unaffected [71]. RCM in children is rare: it accounts for only 2%–5% of childhood cardiomyopathies [72]. Although the incidence of RC is rare, it has a poor prognosis, with 30% of affected patients dying within 5 years of diagnosis [5]. Although RCM is much rarer than DCM, HCM, and ARVC, mutations in several genes have been associated with RCM, including beta myosin heavy chain (MYH7) and troponin I [12,73,74]. The RCM-causing mutation was identified in 19 patients (60%). Mutated genes have also been implicated in a number of idiopathic RCM cases. In a recent large cohort, the number of affected individuals showing a genetic change numbered between one and four patients for each gene investigated, MYH7 (four patients), desmin and filamin C (DES and FLNC; three patients each), MYBPC3 and lamin A (LMNA; two patients each), titin-cap, troponin I3 cardiac type, troponin T2 cardiac type, tropomyosin 1 (alpha), and lysosomal associated membrane protein 2 (TCAP, TNNI3, TNNT2, TPM1, and LAMP2; one patient each) [75,76].
RCM has recently been shown to naturally affect cats [77,78]. There have not been any loci associated with feline RCM and from the initial report it may be difficult to identify genetic loci as there does not appear to be familial inheritance because, in this study, individuals were from a range of breeds and were not known to have been related [77]. A mouse model expressing a missense mutation (R193H) in troponin I3 cardiac type (CTnI) has been developed [79]. Mice affected by sickle cell anaemia have recently shown symptoms of RCM [80] and this link has also been confirmed in humans [81]. There is some discussion as to whether this is a unique form of cardiomyopathy or RCM, as it is characterised by diastolic dysfunction, left atrial dilation, and normal systolic function [81].

5. Arrhythmogenic Right Ventricular Cardiomyopathy (ARVC)

Arrhythmogenic right ventricular cardiomyopathy (ARVC also called ARVD) is characterised by fibro fatty replacement of the right ventricular myocardium [82]. As the proteins forming the heart scaffolding become defective, muscle cell death occurs and muscle tissue is replaced with fatty and fibrous tissue. The heart walls become thinner and pumping efficiency and cardiac rhythm are affected, leading to heart failure [82]. In humans, ARVC has a reported prevalence of 0.02%–0.10% in the general population and is associated with other disorders such as amyloidosis [18,83]. There have been mutations in several genes identified as associated with human ARVC, in particular, mutations in the five desmosomal genes—desmoplakin, plakophilin 2, desmoglein 2, desmocollin 2, and junction plakoglobin (DSP, PKP2, DSG2, DSC2, and JUP) [84]. It is thought that around 50% of symptomatic humans have a mutation in one of these five cardiac desmosome genes. Other non-desmosomal genes have also been implicated including transforming growth factor beta 3, transmembrane protein 43, desmin, lamin A, titin, phospholamban, and catenin alpha 3 (TGFB3, TMEM43, DES, LMNA, TTN, PLN, and CTNNA3) [85]. In addition, ryanodine receptor 2 (RYR2) has been implicated in both human ARVC [86] and in a chronic anthracycline-induced cardiomyopathy in mice [87]. Numerous mutations have been described in relation to causing ARVC including the arrhythmogenic right ventricular dysplasia genes ARVD3 (14q12– q22) [88], ARVD4 (2q32.1– q32.3) [89], ARVD6 (10p14– p12) [90,91], and ARVD7/ARVC7 (10q22.3) [92].
ARVC naturally affects dogs but has only been widely reported in the Boxer breed [93] and has been suggested as a model of human ARVC. There has been a mutation in the striatin (STRN) gene associated with ARVC in the Boxer dog [94]; it is of interest that the same gene has also been associated with DCM in the Boxer [57]. Striatin has not yet been implicated in human ARVC, but could be an area of interest to investigate. There is a syndrome in cattle that has a cardiac element to it that resembles that observed in humans where the cardiac element is ARVC. A mutation in the nuclear factor kappa B subunit 1 (NFKB1) gene is associated with this syndrome [95]. It is of interest that a functional polymorphism of NFKB1 has also been linked to human DCM [96]. Despite identifying ARVC in cats over 15 years ago [97], and more recently in horses [98,99], there are no reports of genetic associations with feline or equine ARVC in the literature to our knowledge.

6. Mitochondrial, X Linked, and Peripartum Cardiomyopathies

It has been suggested that ~5% of DCMs are X-linked [100]. The X-linked cardiomyopathies are often associated with systemic general disorders such as Fabry’s disease, Barth syndrome, and Duchenne and Becker muscular dystrophy, and are most commonly associated with DCM and HCM [5,101,102,103,104]. Most of the work is presently in humans and very frequently on families, but the main proteins mutated are tafazzin (G4.5), emerin, lysosome-associated membrane protein 2, XK membrane transport protein, and dystrophin [104,105,106,107,108].
It is likely that mitochondrial genes are often associated with HCM and DCM because the heart is a high user of cellular energy provided by mitochondria. tRNA genes are associated with myoclonic epilepsy with ragged red fibres (MELAS) and mitochondrial encephalopathy with lactic acidosis and stroke-like episodes (MERRF) syndromes, and inheritance is maternally inherited [109]. This category often includes cardiomyopathy caused as a result of general systemic disorders where symptoms are not wholly associated with the heart [5]. HLA-DRB1*0901 allele has also been associated with a number of DCM patients, which suggested that mitochondrial ADP/ATP plays a large role in appropriate functionality of the heart [110]. It has also been shown that mitochondrial mutations are associated with changes in cardiomyopathy forms. The Mt8348A→G mutation in the mitochondrial tRNA(Lys) gene has shown a phenotypic alteration from hypertrophic to severe dilated cardiomyopathy [111], but so far only one case has been shown and therefore more patients need to be analysed. The role of mitochondria in the heart is essential, and drug-induced murine models causing mitochondrial damage result in cardiovascular arrhythmias and cardiomyopathy [112]. Humans are not the only species to have mitochondrial gene mutations associated with CM. Mutations in PDK4, a mitochondrial gene, are associated with Doberman pinscher DCM in the dog [58], therefore, it is essential that new studies also investigate mitochondrial genes.
Peri- or postpartum cardiomyopathy (PPCM) has been described under a number of conditions, but is defined by the European Society of Cardiology as the “development of heart failure toward the end of pregnancy or in the months following delivery” [113]. This has been observed in many species including human, canine, and bovine cases [113,114,115]. Much of the literature indicates that peripartum cardiomyopathy might be better referred to as DCM that is initiated during pregnancy or soon thereafter, but discussions are still ongoing as to whether this is an accurate portrayal [116]. In the case of peripartum CM, it has been shown that oxidative stress and prolactin play roles in the disease in humans and mouse models [116,117]. Of particular interest are the few human genetic studies that have been carried out to date, all of which associate PPCM with DCM causing mutations in TNNC1 and TTN in humans [118,119,120]. The complex nature of this cardiomyopathy, potential overlaps and links to DCM, and the frequently observed hypertension, preeclampsia, and altered hormone levels make this a difficult CM to investigate, and more work needs to be undertaken, not only in humans but in other species too.

7. Conclusions

Common genetic pathways could exist among cardiomyopathies and among species. As discussed above, there are multiple genes where differing mutations within each gene can cause different CMs in humans. Equally, there are many examples where genes have been implied in humans but not non-human animals—and vice versa—such as the striatin gene mutations, which are associated with both ARVC and DCM in Boxer dogs [57]. It is also clear that different mutations in the same gene can cause different types of CM. Both DCM and HCM in humans have been linked to TTN, MYH6, MYH7, MYBPC3, TNNT2, TNNI3, TPM1, ACTC/ACTC1, TNNC1, ACTN2, ANKDR1, CSRP3, LDB3, TCAP, VCL, PLN, and RYR2 [17,52]; likewise, mutations in MYH7 and TNNI3 can cause RCM, DCM, and HCM [40,121]. RYR2 has been implicated in ARVC, DCM, and HCM [86,121], and the ARVC genes DSP, PKP2, DSG2, DSC2, and JUP have all been associated to DCM [17]. Upon tabulation of 50 genes causing HCM, DCM, and ARVC, it was shown that the degree of heterogeneity in contributing genes is considerable [18]. In their review of 50 genes causing HCM, DCM, and ARVC, only 7 genes had changes unique to HCM and 15 genes had changes unique to DCM, while changes in 33 other genes contributed to both disorders. Similarly, ARVC currently has 3 genes contributing solely to ARVC and a further 7 genes associated with DCM, HCM, and ARVC. Most of the mutations causing ARVC are found in the genes PKP2 and in the desmosomal cadherins, and these genes are also associated with DCM. Many of the CM-associated mutations are present in the structural genes, which are phylogenetically highly conserved; therefore, the frequent similarities in mutations/genes affected between humans and animals are not surprising. This further supports the use of multiple species investigations when looking at the differing genotypes in order to understand the cardiomyopathies. A summary of all genes associated with naturally occurring CMs in each species has been compiled in Table A1.
With both genotype and phenotype overlapping greatly between the different cardiomyopathies, it is likely that, in the future, diagnosis will rely greatly on next-generation sequencing (NGS) technology and genome-wide association studies. Lessons may be learned about the genetic causes of CMs using information from these studies, also. Many of the studies, both human and animal, have previously relied on familial studies or cohorts with relatively small numbers. Over the years, study sizes have increased. As more advanced technology is more readily available, and at a lower cost, the candidate gene approach is being replaced with larger sequencing studies on larger cohorts. Examples of this are already observed throughout the literature in this review, but national and international endeavours such as the 100,000 genome project [122] are utilising the power of mutation and disorder detection, not only in common disorders but also in rare CMs. Large-scale studies such as these will frequently have to be supported by cohort studies. A number of papers have suggested that mutations in specific genes are not exclusively involved with particular CMs in individual species or breeds or animals, rather that different mutations in the same genes could well cause differing CMs [123,124,125]. Critical analysis of the sample sizes should be carried out before genes and/or mutations are ruled out. The genetic heterogeneity of CM genes can be indicated with the knowledge that a recent diagnostic NGS panel for CM diagnosis has 104 genes and candidate genes designed from research papers in the field [126]. Testing not only humans, but animals too, will not only aid in diagnosis and prognosis, but potentially assist with understanding epidemiology of the disorder. Genetic testing will also assist with healthcare options and treatment plans even prior to clinical symptoms of the CM, and aid in the reduction of affected animals within breeds. Although many of the cardiomyopathies characterised to date are single gene disorders, there is increasing evidence that multiple gene associations can contribute towards this disease. This has been evidenced in dogs [124,125], but more research needs to be undertaken in order to understand the situation for each CM type in each species.
Cardiomyopathies are complex cardiovascular disorders, but advances in genetic detection are important not only to humans but also in animals, as models of the human condition, but also in order to advance non-human healthcare and breeding programmes. Targeted healthcare, diagnosis and prognosis are essential for cardiomyopathy patients, and further insights into the genetic causes are essential.

Acknowledgments

The authors gratefully acknowledge generous funding from the Biotechnology and Biological Sciences Research Council (BBSRC) University of Nottingham Doctoral Training Programme BB/J014508/1 and the School of Veterinary Medicine and Science, awarded to Catrin Sian Rutland to fund Siobhan Simpson.

Author Contributions

All authors contributed towards the design and writing of this review.

Conflicts of Interest

The authors declare no conflict of interest.

Appendix A

Table A1. Genes associated with naturally occurring cardiomyopathies in human, canine, feline, bovine, and turkey.
Table A1. Genes associated with naturally occurring cardiomyopathies in human, canine, feline, bovine, and turkey.
GeneDCMHCMARVCRCMReferences
HumanCanineBovineTurkeyHumanFelineHumanCanineBovineHuman
ABCC9Y [127]
ATP Binding Cassette Subfamily C Member 9
ACTC1Y Y [128,129]
Actin, Alpha, Cardiac Muscle 1
ACTN2Y Y [130,131]
Actinin Alpha 2
ANKRD1Y Y [132,133]
Ankyrin Repeat Domain 1
ARGHAP8 Y [58]
Member of the RhoA activating protein family
ARVD3 Y [88]
Arrhythmogenic Right Ventricular Dysplasia 3
ARVD4 Y [89]
Arrhythmogenic Right Ventricular Dysplasia 4
ARVD6 Y [90,91]
Arrhythmogenic Right Ventricular Dysplasia 6
BAG3Y [134,135,136]
BCL2 Associated Athanogene 3
CALR3 Y [137]
Calreticulin 3
CASQ2 Y [137]
Calsequestrin 2
CAV3Y [138]
Caveolin 3
CHRM2Y [139]
Cholinergic Receptor Muscarinic 2
CRYABY [140]
Crystallin Alpha B
CSRP3Y Y [131,141]
Cysteine and Glycine Rich Protein 3
CTF1Y [142]
Cardiotrophin 1
CTNNA3 Y [143]
Catenin Alpha 3
DESY Y Y[75,144,145,146,147]
Desmin
DMDYY [59,148,149]
Dystrophin
DNAJC19Y [150]
DnaJ Heat Shock Protein Family (Hsp40) Member C19
DOLKY [151]
Dolichol Kinase
DSC2Y Y [84,152]
Desmocollin 2
DSG2Y Y [153,154,155]
Desmoglein 2
DSPY Y [156,157]
Desmoplakin
EMDY [158]
Emerin
EYA4Y [159]
EYA Transcriptional Coactivator and Phosphatase 4
FBXO32Y [160]
F-Box Protein 32
FHL2Y [161]
Four and a Half LIM Domains 2
FKTNY [162]
Fukutin
FKRPY [163]
Fukutin Related Protein
FLNC Y[75]
Filamin C
FOXD4Y [164]
Forkhead Box D4
FSTL5 Y [58]
Follistatin Like 5
GATAD1Y [165]
GATA Zinc Finger Domain Containing 1
HAND1Y [166]
Heart and Neural Crest Derivatives Expressed 1
HCG22Y [167]
HLA Complex Group 22
HLA-DQB1Y [167]
Major Histocompatibility Complex, Class II, DQ Beta 1
HSPB7Y [168]
Heat Shock Protein Family B (Small) Member 7
ILKY [169]
Integrin Linked Kinase
JPH2 Y [170]
Junctophilin 2
JUP Y [171]
Junction Plakoglobin
LAMA2Y [172]
Laminin Subunit Alpha 2
LAMA4Y [169]
Laminin Subunit Alpha 4
LAMP2Y Y[75,173]
Lysosomal Associated Membrane Protein 2
LDB3Y Y [174,175]
LIM Domain Binding 3
LMNAY Y Y[75,176,177]
Lamin A
LRRC10Y [178]
Leucine Rich Repeat Containing 10
MURCY [179]
Muscle Related Coiled-Coil Protein
MYBPC3Y YY Y[24,28,75,180,181,182]
Myosin Binding Protein C, Cardiac
MYH6Y Y [67,183,184]
Myosin Heavy Chain 6
MYH7Y Y Y[75,185,186]
Myosin Heavy Chain 7
MYL2 Y [187]
Myosin Light Chain 2
MYL3 Y [188]
Myosin Light Chain 3
MYOZ2 Y [189]
Myozenin 2
MYPNY [190]
Myopalladin
NEBLY [191]
Nebulette
NEXNY [192]
Nexilin F-Actin Binding Protein
NFKB1Y Y [95,96]
Nuclear Factor Kappa B Subunit 1
NOS3Y [193]
Nitric Oxide Synthase 3
OPA3 Y [44]
Outer Mitochondrial Membrane Lipid Metabolism Regulator
PDE3B Y [58,124]
Phosphodiesterase 3B
PDK4 Y [56]
Pyruvate Dehydrogenase Kinase 4
PKP2Y Y [84,194]
Plakophilin 2
PLEKHM2Y [195]
Pleckstrin Homology and RUN Domain Containing M2
PLNY Y Y [196,197,198]
Phospholamban
POLGY [199]
DNA Polymerase Gamma, Catalytic Subunit
PRDM16Y [200]
PR/SET Domain 16
PRKAG2 Y [201]
Protein Kinase AMP-Activated Non-Catalytic Subunit Gamma 2
PSEN1Y [201]
Presenilin 1
PSEN2Y [202]
Presenilin 2
RBM20Y [203]
RNA Binding Motif Protein 20
RETNY [204]
Resistin
RMND1Y [205]
Required for Meiotic Nuclear Division 1 Homolog
RRAGCY [206]
Ras Related GTP Binding C
RYR2Y Y Y [207,208,209]
Ryanodine Receptor 2
SCN5AY [210]
Sodium Voltage-Gated Channel Alpha Subunit 5
SDHAY [211]
Succinate Dehydrogenase Complex Flavoprotein Subunit A
SGCDY [212]
Sarcoglycan Delta
STRN Y Y [57,94]
Striatin
SYNE1Y [213]
Spectrin Repeat Containing Nuclear Envelope Protein 1
TAZY [104]
Tafazzin
TBX20Y [214]
T-Box 20
TBX5Y [215]
T-Box 5
TCAPY Y Y[75,216]
Titin-Cap
TGFB3 Y [217]
Transforming Growth Factor Beta 3
TMEM43 Y [218]
Transmembrane Protein 43
TMPOY [219]
Thymopoietin
TNNC1Y Y [118,220]
Troponin C1, Slow Skeletal and Cardiac Type
TNNI3Y Y Y[75,79,220,221]
Troponin I3, Cardiac Type
TNNT2Y YY Y[46,75,222,223]
Troponin T2, Cardiac Type
TPM1Y Y Y[75,183,223]
Tropomyosin 1 (Alpha)
TXNRD2Y [224]
Thioredoxin Reductase 2
TTNY Y Y [220,225,226]
Titin
VCLY Y [227,228]
Vinculin
ZBTB17Y [229]
Zinc Finger and BTB Domain Containing 17

References

  1. Mathers, C.D.; Loncar, D. Projections of global mortality and burden of disease from 2002 to 2030. PLoS Med. 2006, 3, e442. [Google Scholar] [CrossRef] [PubMed]
  2. Cheng, Y.; Hogarth, K.A.; O’Sullivan, M.L.; Regnier, M.; Pyle, W.G. 2-deoxyadenosine triphosphate restores the contractile function of cardiac myofibril from adult dogs with naturally occurring dilated cardiomyopathy. Am. J. Physiol. Heart Circ. Physiol. 2016, 310, H80–H91. [Google Scholar] [CrossRef] [PubMed]
  3. Houser, S.R.; Margulies, K.B.; Murphy, A.M.; Spinale, F.G.; Francis, G.S.; Prabhu, S.D.; Rockman, H.A.; Kass, D.A.; Molkentin, J.D.; Sussman, M.A.; et al. Animal models of heart failure: A scientific statement from the american heart association. Circ. Res. 2012, 111, 131–150. [Google Scholar] [CrossRef] [PubMed]
  4. Elliott, P.; Andersson, B.; Arbustini, E.; Bilinska, Z.; Cecchi, F.; Charron, P.; Dubourg, O.; Kuhl, U.; Maisch, B.; McKenna, W.J.; et al. Classification of the cardiomyopathies: A position statement from the european society of cardiology working group on myocardial and pericardial diseases. Eur. Heart J. 2008, 29, 270–276. [Google Scholar] [CrossRef] [PubMed]
  5. Maron, B.J.; Towbin, J.A.; Thiene, G.; Antzelevitch, C.; Corrado, D.; Arnett, D.; Moss, A.J.; Seidman, C.E.; Young, J.B. Contemporary definitions and classification of the cardiomyopathies: An american heart association scientific statement from the council on clinical cardiology, heart failure and transplantation committee; quality of care and outcomes research and functional genomics and translational biology interdisciplinary working groups; and council on epidemiology and prevention. Circulation 2006, 113, 1807–1816. [Google Scholar] [PubMed]
  6. Strong, V.J.; Grindlay, D.; Redrobe, S.; Cobb, M.; White, K. A systematic review of the literature relating to captive great ape morbidity and mortality. J. Zoo Wildl. Med. 2016, 47, 697–710. [Google Scholar] [CrossRef] [PubMed]
  7. Twycross. Ape heart project. Available online: https://twycrosszoo.org/conservation/research-at-twycross-zoo/current-research/ape-heart-project/ (accessed on 28 December 2016).
  8. Fatkin, D. Guidelines for the diagnosis and management of familial dilated cardiomyopathy. Heart Lung Circ. 2007, 16, 19–21. [Google Scholar] [CrossRef] [PubMed]
  9. Herman, D.S.; Lam, L.; Taylor, M.R.; Wang, L.; Teekakirikul, P.; Christodoulou, D.; Conner, L.; DePalma, S.R.; McDonough, B.; Sparks, E.; et al. Truncations of titin causing dilated cardiomyopathy. N. Engl. J. Med. 2012, 366, 619–628. [Google Scholar] [CrossRef] [PubMed]
  10. Nihoyannopoulos, P.; Dawson, D. Restrictive cardiomyopathies. Eur. J. Echocardiogr. 2009, 10, iii23–iii33. [Google Scholar] [CrossRef] [PubMed]
  11. Garcia-Castro, M.; Reguero, J.R.; Alvarez, V.; Batalla, A.; Soto, M.I.; Albaladejo, V.; Coto, E. Hypertrophic cardiomyopathy linked to homozygosity for a new mutation in the myosin-binding protein c gene (a627v) suggests a dosage effect. Int. J. Cardiol. 2005, 102, 501–507. [Google Scholar] [CrossRef] [PubMed]
  12. Hoedemaekers, Y.M.; Caliskan, K.; Majoor-Krakauer, D.; van de Laar, I.; Michels, M.; Witsenburg, M.; ten Cate, F.J.; Simoons, M.L.; Dooijes, D. Cardiac beta-myosin heavy chain defects in two families with non-compaction cardiomyopathy: Linking non-compaction to hypertrophic, restrictive, and dilated cardiomyopathies. Eur. Heart J. 2007, 28, 2732–2737. [Google Scholar] [CrossRef] [PubMed]
  13. Jarcho, J.A.; McKenna, W.; Pare, J.A.; Solomon, S.D.; Holcombe, R.F.; Dickie, S.; Levi, T.; Donis-Keller, H.; Seidman, J.G.; Seidman, C.E. Mapping a gene for familial hypertrophic cardiomyopathy to chromosome 14q1. N. Engl. J. Med. 1989, 321, 1372–1378. [Google Scholar] [CrossRef] [PubMed]
  14. Geisterfer-Lowrance, A.A.; Kass, S.; Tanigawa, G.; Vosberg, H.P.; McKenna, W.; Seidman, C.E.; Seidman, J.G. A molecular basis for familial hypertrophic cardiomyopathy: A beta cardiac myosin heavy chain gene missense mutation. Cell 1990, 62, 999–1006. [Google Scholar] [CrossRef]
  15. Elliott, P.M.; Anastasakis, A.; Borger, M.A.; Borggrefe, M.; Cecchi, F.; Charron, P.; Hagege, A.A.; Lafont, A.; Limongelli, G.; Mahrholdt, H.; et al. 2014 ESC Guidelines on diagnosis and management of hypertrophic cardiomyopathy. The Task Force for the Diagnosis and Management of Hypertrophic Cardiomyopathy of the European Society of Cardiology (ESC). Eur. Heart J. 2014, 35, 2733–2779. [Google Scholar] [PubMed]
  16. Maron, B.J.; Maron, M.S.; Semsarian, C. Genetics of hypertrophic cardiomyopathy after 20 years: Clinical perspectives. J. Am. Coll. Cardiol. 2012, 60, 705–715. [Google Scholar] [CrossRef] [PubMed]
  17. Landstrom, A.P.; Ackerman, M.J. Mutation type is not clinically useful in predicting prognosis in hypertrophic cardiomyopathy. Circulation 2010, 122, 2441–2449; discussion 2450. [Google Scholar] [CrossRef] [PubMed]
  18. McNally, E.M.; Golbus, J.R.; Puckelwartz, M.J. Genetic mutations and mechanisms in dilated cardiomyopathy. J. Clin. Investig. 2013, 123, 19–26. [Google Scholar] [CrossRef] [PubMed]
  19. Fox, P.R.; Liu, S.-K.; Maron, B.J. Echocardiographic assessment of spontaneously occurring feline hypertrophic cardiomyopathy. An Animal Model of Human Disease. Circulation 1995, 92, 2645–2651. [Google Scholar] [PubMed]
  20. Egenvall, A.; Bonnett, B.N.; Häggström, J. Heart disease as a cause of death in insured swedish dogs younger than 10 years of age. J. Vet. Intern. Med. 2006, 20, 894–903. [Google Scholar] [CrossRef] [PubMed]
  21. Washizu, M.; Takemura, N.; Machida, N.; Nawa, H.; Yamamoto, T.; Mitake, H.; Washizu, T. Hypertrophic cardiomyopathy in an aged dog. J. Vet. Med. Sci. 2003, 65, 753–756. [Google Scholar] [CrossRef] [PubMed]
  22. Paige, C.F.; Abbott, J.A.; Elvinger, F.; Pyle, R.L. Prevalence of cardiomyopathy in apparently healthy cats. J. Am. Vet. Med. Assoc. 2009, 234, 1398–1403. [Google Scholar] [CrossRef] [PubMed]
  23. Kittleson, M.D.; Meurs, K.M.; Munro, M.J.; Kittleson, J.A.; Liu, S.K.; Pion, P.D.; Towbin, J.A. Familial hypertrophic cardiomyopathy in maine coon cats: An animal model of human disease. Circulation 1999, 99, 3172–3180. [Google Scholar] [CrossRef] [PubMed]
  24. Meurs, K.M.; Norgard, M.M.; Ederer, M.M.; Hendrix, K.P.; Kittleson, M.D. A substitution mutation in the myosin binding protein c gene in ragdoll hypertrophic cardiomyopathy. Genomics 2007, 90, 261–264. [Google Scholar] [CrossRef] [PubMed]
  25. Langhorn, R.; Willesen, J.L.; Tarnow, I.; Kjelgaard-Hansen, M.; Koch, J. Cardiac troponin i in three cat breeds with hypertrophic cardiomyopathy. Vet. Record 2016, 178, 532. [Google Scholar] [CrossRef] [PubMed]
  26. Meurs, K.M.; Sanchez, X.; David, R.M.; Bowles, N.E.; Towbin, J.A.; Reiser, P.J.; Kittleson, J.A.; Munro, M.J.; Dryburgh, K.; Macdonald, K.A.; et al. A cardiac myosin binding protein c mutation in the maine coon cat with familial hypertrophic cardiomyopathy. Hum. Mol. Genet. 2005, 14, 3587–3593. [Google Scholar] [CrossRef] [PubMed]
  27. Wess, G.; Schinner, C.; Weber, K.; Kuchenhoff, H.; Hartmann, K. Association of a31p and a74t polymorphisms in the myosin binding protein c3 gene and hypertrophic cardiomyopathy in maine coon and other breed cats. J. Vet Intern Med. 2010, 24, 527–532. [Google Scholar] [CrossRef] [PubMed]
  28. Watkins, H.; Conner, D.; Thierfelder, L.; Jarcho, J.A.; MacRae, C.; McKenna, W.J.; Maron, B.J.; Seidman, J.G.; Seidman, C.E. Mutations in the cardiac myosin binding protein-c gene on chromosome 11 cause familial hypertrophic cardiomyopathy. Nat. Genet. 1995, 11, 434–437. [Google Scholar] [CrossRef] [PubMed]
  29. Borgeat, K.; Sherwood, K.; Payne, J.R.; Luis Fuentes, V.; Connolly, D.J. Plasma cardiac troponin i concentration and cardiac death in cats with hypertrophic cardiomyopathy. J. Vet Intern. Med. 2014, 28, 1731–1737. [Google Scholar] [CrossRef] [PubMed]
  30. Huang, S.Y.; Tsou, H.L.; Chiu, Y.T.; Shyu, J.J.; Wu, J.J.; Lin, J.H.; Liu, S.K. Heritability estimate of hypertrophic cardiomyopathy in pigs (sus scrofa domestica). Lab. Anim. Sci. 1996, 46, 310–314. [Google Scholar] [PubMed]
  31. Tardiff, J.C.; Hewett, T.E.; Palmer, B.M.; Olsson, C.; Factor, S.M.; Moore, R.L.; Robbins, J.; Leinwand, L.A. Cardiac troponin t mutations result in allele-specific phenotypes in a mouse model for hypertrophic cardiomyopathy. J. Clin. Investig. 1999, 104, 469–481. [Google Scholar] [CrossRef] [PubMed]
  32. Marian, A.J.; Wu, Y.; Lim, D.-S.; McCluggage, M.; Youker, K.; Yu, Q.-t.; Brugada, R.; DeMayo, F.; Quinones, M.; Roberts, R. A transgenic rabbit model for human hypertrophic cardiomyopathy. The J. Clin. Investig. 1999, 104, 1683–1692. [Google Scholar] [CrossRef] [PubMed]
  33. Maekawa, K.; Hirayama, A.; Iwata, Y.; Tajima, Y.; Nishimaki-Mogami, T.; Sugawara, S.; Ueno, N.; Abe, H.; Ishikawa, M.; Murayama, M.; et al. Global metabolomic analysis of heart tissue in a hamster model for dilated cardiomyopathy. J. Mol. Cell. Cardiol. 2013, 59, 76–85. [Google Scholar]
  34. Sakamoto, A. Molecular pathogenesis of severe cardiomyopathy in the to-2 hamster. Exp. Clin. Cardiol. 2003, 8, 143–146. [Google Scholar] [PubMed]
  35. Sakamoto, A.; Ono, K.; Abe, M.; Jasmin, G.; Eki, T.; Murakami, Y.; Masaki, T.; Toyooka, T.; Hanaoka, F. Both hypertrophic and dilated cardiomyopathies are caused by mutation of the same gene, delta-sarcoglycan, in hamster: An animal model of disrupted dystrophin-associated glycoprotein complex. Proc. Natl. Acad. Sci. USA 1997, 94, 13873–13878. [Google Scholar] [CrossRef] [PubMed]
  36. Guttmann, O.P.; Mohiddin, S.A.; Elliott, P.M. Almanac 2014: Cardiomyopathies. Heart 2014, 100, 756–764. [Google Scholar] [CrossRef] [PubMed]
  37. Raju, H.; Alberg, C.; Sagoo, G.S.; Burton, H.; Behr, E.R. Inherited cardiomyopathies. Br. Med. J. 2011, 343, d6966. [Google Scholar] [CrossRef] [PubMed]
  38. Hershberger, R.E.; Morales, A.; Siegfried, J.D. Clinical and genetic issues in dilated cardiomyopathy: A review for genetics professionals. Genet. Med. 2010, 12, 655–667. [Google Scholar] [CrossRef] [PubMed]
  39. Codd, M.B.; Sugrue, D.D.; Gersh, B.J.; Melton, L.J. Epidemiology of idiopathic dilated and hypertrophic cardiomyopathy. A population-based study in olmsted county, minnesota, 1975–1984. Circulation 1989, 80, 564–572. [Google Scholar] [CrossRef] [PubMed]
  40. Posafalvi, A.; Herkert, J.C.; Sinke, R.J.; van den Berg, M.P.; Mogensen, J.; Jongbloed, J.D.; van Tintelen, J.P. Clinical utility gene card for: Dilated cardiomyopathy (cmd). Eur. J. Hum. Genet. 2013, 21. [Google Scholar] [CrossRef] [PubMed]
  41. Dukes-McEwan, J.; Borgarelli, M.; Tidholm, A.; Vollmar, A.C.; Haggstrom, J. Proposed guidelines for the diagnosis of canine idiopathic dilated cardiomyopathy. J. Vet. Cardiol. 2003, 5, 7–19. [Google Scholar] [CrossRef]
  42. Hambrook, L.E.; Bennett, P.F. Effect of pimobendan on the clinical outcome and survival of cats with non-taurine responsive dilated cardiomyopathy. J. Feline Med. Surg. 2012, 14, 233–239. [Google Scholar] [CrossRef] [PubMed]
  43. Weekes, J.; Wheeler, C.H.; Yan, J.X.; Weil, J.; Eschenhagen, T.; Scholtysik, G.; Dunn, M.J. Bovine dilated cardiomyopathy: Proteomic analysis of an animal model of human dilated cardiomyopathy. Electrophoresis 1999, 20, 898–906. [Google Scholar] [CrossRef]
  44. Owczarek-Lipska, M.; Plattet, P.; Zipperle, L.; Drogemuller, C.; Posthaus, H.; Dolf, G.; Braunschweig, M.H. A nonsense mutation in the optic atrophy 3 gene (opa3) causes dilated cardiomyopathy in red holstein cattle. Genomics 2011, 97, 51–57. [Google Scholar] [CrossRef] [PubMed]
  45. Nart, P.; Thompson, H.; Barrett, D.C.; Armstrong, S.C.; McPhaden, A.R. Clinical and pathological features of dilated cardiomyopathy in holstein-friesian cattle. Vet. Record 2004, 155, 355–361. [Google Scholar] [CrossRef]
  46. Biesiadecki, B.J.; Jin, J.-P. Exon skipping in cardiac troponin t of turkeys with inherited dilated cardiomyopathy. J. Biol. Chem. 2002, 277, 18459–18468. [Google Scholar] [CrossRef] [PubMed]
  47. Frame, D.D.; Kelly, E.J.; Van Wettere, A. Dilated cardiomyopathy in a rio grande wild turkey (meleagris gallopavo intermedia) in southern Utah, USA, 2013. J. Wildl. Dis. 2015, 51, 790–792. [Google Scholar] [CrossRef] [PubMed]
  48. Wilson, F.D.; Magee, D.L.; Jones, K.H.; Baravik-Munsell, E.; Cummings, T.S.; Wills, R.W.; Pace, L.W. Morphometric documentation of a high prevalence of left ventricular dilated cardiomyopathy in both clinically normal and cyanotic mature commercial broiler breeder roosters with comparisons to market-age broilers. Avian Dis. 2016, 60, 589–595. [Google Scholar] [CrossRef] [PubMed]
  49. Pion, P.D.; Kittleson, M.D.; Rogers, Q.R.; Morris, J.G. Myocardial failure in cats associated with low plasma taurine: A reversible cardiomyopathy. Science 1987, 237, 764–768. [Google Scholar] [CrossRef] [PubMed]
  50. Ferasin, L.; Sturgess, C.P.; Cannon, M.J.; Caney, S.M.; Gruffydd-Jones, T.J.; Wotton, P.R. Feline idiopathic cardiomyopathy: A retrospective study of 106 cats (1994-2001). J. Feline Med. Surg. 2003, 5, 151–159. [Google Scholar] [CrossRef]
  51. Lawler, D.F.; Templeton, A.J.; Monti, K.L. Evidence for genetic involvement in feline dilated cardiomyopathy. J. Vet Intern Med. 1993, 7, 383–387. [Google Scholar] [CrossRef] [PubMed]
  52. Simpson, S.; Edwards, J.; Ferguson-Mignan, T.F.N.; Cobb, M.; Mongan, N.P.; Rutland, C.S. Genetics of human and canine dilated cardiomyopathy. Int. J. Genom. 2015. [Google Scholar] [CrossRef] [PubMed]
  53. Towbin, J.A.; Lowe, A.M.; Colan, S.D.; Sleeper, L.A.; Orav, E.J.; Clunie, S.; Messere, J.; Cox, G.F.; Lurie, P.R.; Hsu, D.; et al. Incidence, causes, and outcomes of dilated cardiomyopathy in children. J. Am. Med. Assoc. 2006, 296, 1867–1876. [Google Scholar] [CrossRef] [PubMed]
  54. Dambach, D.M.; Lannon, A.; Sleeper, M.M.; Buchanan, J. Familial dilated cardiomyopathy of young portuguese water dogs. J. Vet. Intern. Med. 1999, 13, 65–71. [Google Scholar] [CrossRef] [PubMed]
  55. Mausberg, T.B.; Wess, G.; Simak, J.; Keller, L.; Drogemuller, M.; Drogemuller, C.; Webster, M.T.; Stephenson, H.; Dukes-McEwan, J.; Leeb, T. A locus on chromosome 5 is associated with dilated cardiomyopathy in doberman pinschers. PloS ONE 2011, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  56. Meurs, K.M.; Lahmers, S.; Keene, B.W.; White, S.N.; Oyama, M.A.; Mauceli, E.; Lindblad-Toh, K. A splice site mutation in a gene encoding for pdk4, a mitochondrial protein, is associated with the development of dilated cardiomyopathy in the Doberman pinscher. Hum. Genet. 2012, 131, 1319–1325. [Google Scholar] [CrossRef] [PubMed]
  57. Meurs, K.M.; Stern, J.A.; Sisson, D.D.; Kittleson, M.D.; Cunningham, S.M.; Ames, M.K.; Atkins, C.E.; DeFrancesco, T.; Hodge, T.E.; Keene, B.W.; et al. Association of dilated cardiomyopathy with the striatin mutation genotype in boxer dogs. J. Vet Intern Med. 2013, 27, 1437–1440. [Google Scholar] [PubMed]
  58. Philipp, U.; Vollmar, A.; Haggstrom, J.; Thomas, A.; Distl, O. Multiple loci are associated with dilated cardiomyopathy in Irish wolfhounds. PLos ONE 2012, 7. [Google Scholar] [CrossRef] [PubMed]
  59. Schatzberg, S.J.; Olby, N.J.; Breen, M.; Anderson, L.V.B.; Langford, C.F.; Dickens, H.F.; Wilton, S.D.; Zeiss, C.J.; Binns, M.M.; Kornegay, J.N.; et al. Molecular analysis of a spontaneous dystrophin 'knockout' dog. Neuromuscular Disord. 1999, 9, 289–295. [Google Scholar] [CrossRef]
  60. Werner, P.; Raducha, M.G.; Prociuk, U.; Sleeper, M.M.; Van Winkle, T.J.; Henthorn, P.S. A novel locus for dilated cardiomyopathy maps to canine chromosome 8. Genomics 2008, 91, 517–521. [Google Scholar] [CrossRef] [PubMed]
  61. Dolf, G.; Stricker, C.; Tontis, A.; Martig, J.; Gaillard, C. Evidence for autosomal recessive inheritance of a major gene for bovine dilated cardiomyopathy. J. Anim. Sci. 1998, 76, 1824–1829. [Google Scholar] [CrossRef] [PubMed]
  62. Pinto, J.R.; Yang, S.W.; Hitz, M.P.; Parvatiyar, M.S.; Jones, M.A.; Liang, J.; Kokta, V.; Talajic, M.; Tremblay, N.; Jaeggi, M.; et al. Fetal cardiac troponin isoforms rescue the increased ca2+ sensitivity produced by a novel double deletion in cardiac troponin t linked to restrictive cardiomyopathy: A clinical, genetic, and functional approach. J. Biol. Chem. 2011, 286, 20901–20912. [Google Scholar] [CrossRef] [PubMed]
  63. Manning, E.P.; Guinto, P.J.; Tardiff, J.C. Correlation of molecular and functional effects of mutations in cardiac troponin t linked to familial hypertrophic cardiomyopathy: An integrative in silico/in vitro approach. J. Biol. Chem. 2012, 287, 14515–14523. [Google Scholar] [CrossRef] [PubMed]
  64. Rutland, C.S.; Polo-Parada, L.; Ehler, E.; Alibhai, A.; Thorpe, A.; Suren, S.; Emes, R.D.; Patel, B.; Loughna, S. Knockdown of embryonic myosin heavy chain reveals an essential role in the morphology and function of the developing heart. Development 2011, 138, 3955–3966. [Google Scholar] [CrossRef] [PubMed]
  65. Rutland, C.; Warner, L.; Thorpe, A.; Alibhai, A.; Robinson, T.; Shaw, B.; Layfield, R.; Brook, J.D.; Loughna, S. Knockdown of alpha myosin heavy chain disrupts the cytoskeleton and leads to multiple defects during chick cardiogenesis. J. Anat. 2009, 214, 905–915. [Google Scholar] [CrossRef] [PubMed]
  66. Granados-Riveron, J.T.; Ghosh, T.K.; Pope, M.; Bu’Lock, F.; Thornborough, C.; Eason, J.; Kirk, E.P.; Fatkin, D.; Feneley, M.P.; Harvey, R.P.; et al. Alpha-cardiac myosin heavy chain (myh6) mutations affecting myofibril formation are associated with congenital heart defects. Hum. Mol. Genet. 2010, 19, 4007–4016. [Google Scholar] [CrossRef] [PubMed]
  67. Carniel, E.; Taylor, M.R.; Sinagra, G.; Di Lenarda, A.; Ku, L.; Fain, P.R.; Boucek, M.M.; Cavanaugh, J.; Miocic, S.; Slavov, D.; et al. Alpha-myosin heavy chain: A sarcomeric gene associated with dilated and hypertrophic phenotypes of cardiomyopathy. Circulation 2005, 112, 54–59. [Google Scholar] [CrossRef] [PubMed]
  68. Toyoda, Y.; Okada, M.; Kashem, M.A. A canine model of dilated cardiomyopathy induced by repetitive intracoronary doxorubicin administration. J. Thorac. Cardiovasc. Surg. 1998, 115, 1367–1373. [Google Scholar] [CrossRef]
  69. Christiansen, S.; Redmann, K.; Scheld, H.H.; Jahn, U.R.; Stypmann, J.; Fobker, M.; Gruber, A.D.; Hammel, D. Adriamycin-induced cardiomyopathy in the dog—An appropriate model for research on partial left ventriculectomy? J. Heart Lung Transplant. 2002, 21, 783–790. [Google Scholar] [CrossRef]
  70. Nikolaidis, L.A.; Elahi, D.; Hentosz, T.; Doverspike, A.; Huerbin, R.; Zourelias, L.; Stolarski, C.; Shen, Y.T.; Shannon, R.P. Recombinant glucagon-like peptide-1 increases myocardial glucose uptake and improves left ventricular performance in conscious dogs with pacing-induced dilated cardiomyopathy. Circulation 2004, 110, 955–961. [Google Scholar] [CrossRef] [PubMed]
  71. Brodehl, A.; Ferrier, R.A.; Hamilton, S.J.; Greenway, S.C.; Brundler, M.-A.; Yu, W.; Gibson, W.T.; McKinnon, M.L.; McGillivray, B.; Alvarez, N.; et al. Mutations in flnc are associated with familial restrictive cardiomyopathy. Hum. Mutat. 2016, 37, 269–279. [Google Scholar] [CrossRef] [PubMed]
  72. Sasaki, N.; Garcia, M.; Ko, H.H.; Sharma, S.; Parness, I.A.; Srivastava, S. Applicability of published guidelines for assessment of left ventricular diastolic function in adults to children with restrictive cardiomyopathy: An observational study. Pediatr. Cardiol. 2015, 36, 386–392. [Google Scholar] [CrossRef] [PubMed]
  73. Kubo, T.; Gimeno, J.R.; Bahl, A.; Steffensen, U.; Steffensen, M.; Osman, E.; Thaman, R.; Mogensen, J.; Elliott, P.M.; Doi, Y.; et al. Prevalence, clinical significance, and genetic basis of hypertrophic cardiomyopathy with restrictive phenotype. J. Am. Coll. Cardiol. 2007, 49, 2419–2426. [Google Scholar] [CrossRef] [PubMed]
  74. Mogensen, J.; Kubo, T.; Duque, M.; Uribe, W.; Shaw, A.; Murphy, R.; Gimeno, J.R.; Elliott, P.; McKenna, W.J. Idiopathic restrictive cardiomyopathy is part of the clinical expression of cardiac troponin i mutations. J. Clin. Investig. 2003, 111, 209–216. [Google Scholar] [CrossRef] [PubMed]
  75. Gallego-Delgado, M.; Delgado, J.F.; Brossa-Loidi, V.; Palomo, J.; Marzoa-Rivas, R.; Perez-Villa, F.; Salazar-Mendiguchia, J.; Ruiz-Cano, M.J.; Gonzalez-Lopez, E.; Padron-Barthe, L.; et al. Idiopathic restrictive cardiomyopathy is primarily a genetic disease. J. Am. Coll. Cardiol. 2016, 67, 3021–3023. [Google Scholar] [PubMed]
  76. Mouton, J.M.; Pellizzon, A.S.; Goosen, A.; Kinnear, C.J.; Herbst, P.G.; Brink, P.A.; Moolman-Smook, J.C. Diagnostic disparity and identification of two tnni3 gene mutations, one novel and one arising de novo, in south african patients with restrictive cardiomyopathy and focal ventricular hypertrophy. Cardiovasc. J. Afr. 2015, 26, 63–69. [Google Scholar] [CrossRef] [PubMed]
  77. Fox, P.R.; Basso, C.; Thiene, G.; Maron, B.J. Spontaneously occurring restrictive nonhypertrophied cardiomyopathy in domestic cats: A new animal model of human disease. Cardiovasc. Pathol. 2014, 23, 28–34. [Google Scholar] [CrossRef] [PubMed]
  78. Kimura, Y.; Karakama, S.; Hirakawa, A.; Tsuchiaka, S.; Kobayashi, M.; Machida, N. Pathological features and pathogenesis of the endomyocardial form of restrictive cardiomyopathy in cats. J. Comp. Pathol. 2016, 155, 190–198. [Google Scholar] [CrossRef] [PubMed]
  79. Davis, J.; Yasuda, S.; Palpant, N.J.; Martindale, J.; Stevenson, T.; Converso, K.; Metzger, J.M. Diastolic dysfunction and thin filament dysregulation resulting from excitation-contraction uncoupling in a mouse model of restrictive cardiomyopathy. J. Mol. Cell. Cardiol. 2012, 53, 446–457. [Google Scholar] [CrossRef] [PubMed]
  80. Bakeer, N.; James, J.; Roy, S.; Wansapura, J.; Shanmukhappa, S.K.; Lorenz, J.N.; Osinska, H.; Backer, K.; Huby, A.C.; Shrestha, A.; et al. Sickle cell anemia mice develop a unique cardiomyopathy with restrictive physiology. Proc. Natl. Acad. Sci. USA 2016, 113, E5182–5191. [Google Scholar] [CrossRef] [PubMed]
  81. Niss, O.; Quinn, C.T.; Lane, A.; Daily, J.; Khoury, P.R.; Bakeer, N.; Kimball, T.R.; Towbin, J.A.; Malik, P.; Taylor, M.D. Cardiomyopathy with restrictive physiology in sickle cell disease. JACC Cardiovasc. Imaging 2016, 9, 243–252. [Google Scholar]
  82. Basso, C.; Corrado, D.; Marcus, F.I.; Nava, A.; Thiene, G. Arrhythmogenic right ventricular cardiomyopathy. Lancet 2009, 373, 1289–1300. [Google Scholar] [CrossRef]
  83. Ruwald, A.-C.; Marcus, F.; Estes, N.A.M.; Link, M.; McNitt, S.; Polonsky, B.; Calkins, H.; Towbin, J.A.; Moss, A.J.; Zareba, W. Association of competitive and recreational sport participation with cardiac events in patients with arrhythmogenic right ventricular cardiomyopathy: Results from the north american multidisciplinary study of arrhythmogenic right ventricular cardiomyopathy. Eur. Heart J. 2015, 36, 1735–1743. [Google Scholar] [CrossRef] [PubMed]
  84. Elliott, P.; O’Mahony, C.; Syrris, P.; Evans, A.; Rivera Sorensen, C.; Sheppard, M.N.; Carr-White, G.; Pantazis, A.; McKenna, W.J. Prevalence of desmosomal protein gene mutations in patients with dilated cardiomyopathy. Circ. Cardiovasc. Genet. 2010, 3, 314–322. [Google Scholar] [CrossRef] [PubMed]
  85. Lazzarini, E.; Jongbloed, J.D.; Pilichou, K.; Thiene, G.; Basso, C.; Bikker, H.; Charbon, B.; Swertz, M.; van Tintelen, J.P.; van der Zwaag, P.A. The arvd/c genetic variants database: 2014 update. Hum. Mutat. 2015, 36, 403–410. [Google Scholar] [CrossRef] [PubMed]
  86. Patel, H.; Shah, P.; Rampal, U.; Shamoon, F.; Tiyyagura, S. Arrythmogenic right ventricular dysplasia/cardiomyopathy (arvd/c) and cathecholaminergic polymorphic ventricular tachycardia (cpvt): A phenotypic spectrum seen in same patient. J. Electrocardiol. 2015, 48, 874–878. [Google Scholar] [CrossRef] [PubMed]
  87. Kucerova, D.; Doka, G.; Kruzliak, P.; Turcekova, K.; Kmecova, J.; Brnoliakova, Z.; Kyselovic, J.; Kirchhefer, U.; Muller, F.U.; Krenek, P.; et al. Unbalanced upregulation of ryanodine receptor 2 plays a particular role in early development of daunorubicin cardiomyopathy. Am. J. Transl. Res. 2015, 7, 1280–1294. [Google Scholar] [PubMed]
  88. Severini, G.M.; Krajinovic, M.; Pinamonti, B.; Sinagra, G.; Fioretti, P.; Brunazzi, M.C.; Falaschi, A.; Camerini, F.; Giacca, M.; Mestroni, L. A new locus for arrhythmogenic right ventricular dysplasia on the long arm of chromosome 14. Genomics 1996, 31, 193–200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  89. Rampazzo, A.; Nava, A.; Miorin, M.; Fonderico, P.; Pope, B.; Tiso, N.; Livolsi, B.; Zimbello, R.; Thiene, G.; Danieli, G.A. Arvd4, a new locus for arrhythmogenic right ventricular cardiomyopathy, maps to chromosome 2 long arm. Genomics 1997, 45, 259–263. [Google Scholar] [CrossRef] [PubMed]
  90. Li, D.; Ahmad, F.; Gardner, M.J.; Weilbaecher, D.; Hill, R.; Karibe, A.; Gonzalez, O.; Tapscott, T.; Sharratt, G.P.; Bachinski, L.L.; et al. The locus of a novel gene responsible for arrhythmogenic right-ventricular dysplasia characterized by early onset and high penetrance maps to chromosome 10p12-p14. Am. J. Hum. Genet. 2000, 66, 148–156. [Google Scholar] [CrossRef] [PubMed]
  91. Matolweni, L.O.; Bardien, S.; Rebello, G.; Oppon, E.; Munclinger, M.; Ramesar, R.; Watkins, H.; Mayosi, B.M. Arrhythmogenic right ventricular cardiomyopathy type 6 (arvc6): Support for the locus assignment, narrowing of the critical region and mutation screening of three candidate genes. BMC Med. Genet. 2006, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  92. Melberg, A.; Oldfors, A.; Blomstrom-Lundqvist, C.; Stalberg, E.; Carlsson, B.; Larrson, E.; Lidell, C.; Eeg-Olofsson, K.E.; Wikstrom, G.; Henriksson, G.; et al. Autosomal dominant myofibrillar myopathy with arrhythmogenic right ventricular cardiomyopathy linked to chromosome 10q. Ann. Neurol. 1999, 46, 684–692. [Google Scholar] [CrossRef]
  93. Basso, C.; Fox, P.R.; Meurs, K.M.; Towbin, J.A.; Spier, A.W.; Calabrese, F.; Maron, B.J.; Thiene, G. Arrhythmogenic right ventricular cardiomyopathy causing sudden cardiac death in boxer dogs: A new animal model of human disease. Circulation 2004, 109, 1180–1185. [Google Scholar] [CrossRef] [PubMed]
  94. Meurs, K.M.; Mauceli, E.; Lahmers, S.; Acland, G.M.; White, S.N.; Lindblad-Toh, K. Genome-wide association identifies a deletion in the 3' untranslated region of striatin in a canine model of arrhythmogenic right ventricular cardiomyopathy. Hum. Genet. 2010, 128, 315–324. [Google Scholar] [CrossRef] [PubMed]
  95. Simpson, M.A.; Cook, R.W.; Solanki, P.; Patton, M.A.; Dennis, J.A.; Crosby, A.H. A mutation in nfκb interacting protein 1 causes cardiomyopathy and woolly haircoat syndrome of poll hereford cattle. Anim. Genet. 2009, 40, 42–46. [Google Scholar] [CrossRef] [PubMed]
  96. Zhou, B.; Rao, L.; Peng, Y.; Wang, Y.; Li, Y.; Gao, L.; Chen, Y.; Xue, H.; Song, Y.; Liao, M.; et al. Functional polymorphism of the nfkb1 gene promoter is related to the risk of dilated cardiomyopathy. BMC Med. Genet. 2009, 10. [Google Scholar] [CrossRef] [PubMed]
  97. Fox, P.R.; Maron, B.J.; Basso, C.; Liu, S.-K.; Thiene, G. Spontaneously occurring arrhythmogenic right ventricular cardiomyopathy in the domestic cat. New Anim. Model Similar Hum. Dis. 2000, 102, 1863–1870. [Google Scholar]
  98. Freel, K.M.; Morrison, L.R.; Thompson, H.; Else, R.W. Arrhythmogenic right ventricular cardiomyopathy as a cause of unexpected cardiac death in two horses. Vet. Record 2010, 166, 718–722. [Google Scholar] [CrossRef] [PubMed]
  99. Raftery, A.G.; Garcia, N.C.; Thompson, H.; Sutton, D.G.M. Arrhythmogenic right ventricular cardiomyopathy secondary to adipose infiltration as a cause of episodic collapse in a horse. Ir. Vet J. 2015, 68. [Google Scholar] [CrossRef]
  100. Cohen, N.; Muntoni, F. Multiple pathogenetic mechanisms in x linked dilated cardiomyopathy. Heart 2004, 90, 835–841. [Google Scholar] [CrossRef] [PubMed]
  101. Chamberlain, R.C.; Smith, E.C.; Campbell, M.J. Novel rod domain duplication in dystrophin resulting in x-linked dilated cardiomyopathy. Pediatr. Neurol. 2015, 53, 439–441. [Google Scholar] [CrossRef] [PubMed]
  102. Nakamura, A. X-linked dilated cardiomyopathy: A cardiospecific phenotype of dystrophinopathy. Pharmaceuticals 2015, 8, 303–320. [Google Scholar] [CrossRef] [PubMed]
  103. D’Arcy, C.; Kanellakis, V.; Forbes, R.; Wilding, B.; McGrath, M.; Howell, K.; Ryan, M.; McLean, C. X-linked recessive distal myopathy with hypertrophic cardiomyopathy caused by a novel mutation in the fhl1 gene. J. Child. Neurol. 2015, 30, 1211–1217. [Google Scholar] [CrossRef] [PubMed]
  104. Bione, S.; DAdamo, P.; Maestrini, E.; Gedeon, A.K.; Bolhuis, P.A.; Toniolo, D. A novel x-linked gene, g4.5. Is responsible for barth syndrome. Nat. Genet. 1996, 12, 385–389. [Google Scholar] [CrossRef] [PubMed]
  105. Bione, S.; Maestrini, E.; Rivella, S.; Mancini, M.; Regis, S.; Romeo, G.; Toniolo, D. Identification of a novel x-linked gene responsible for emery-dreifuss muscular-dystrophy. Nat. Genet. 1994, 8, 323–327. [Google Scholar] [CrossRef] [PubMed]
  106. Nishino, I.; Fu, J.; Tanji, K.; Yamada, T.; Shimojo, S.; Koori, T.; Mora, M.; Riggs, J.E.; Oh, S.J.; Koga, Y.; et al. Primary lamp-2 deficiency causes x-linked vacuolar cardiomyopathy and myopathy (danon disease). Nature 2000, 406, 906–910. [Google Scholar] [CrossRef] [PubMed]
  107. Ho, M.F.; Chelly, J.; Carter, N.; Danek, A.; Crocker, P.; Monaco, A.P. Isolation of the gene for mcleod syndrome that encodes a novel membrane-transport protein. Cell 1994, 77, 869–880. [Google Scholar] [CrossRef]
  108. Hoffman, E.P.; Brown, R.H.; Kunkel, L.M. Dystrophin - the protein product of the duchenne muscular-dystrophy locus. Cell 1987, 51, 919–928. [Google Scholar] [CrossRef]
  109. Zeviani, M.; Taroni, F. Mitochondrial diseases. Baillieres Clin. Neurol. 1994, 3, 315–334. [Google Scholar] [PubMed]
  110. Wang, Q.; Liao, Y.; Gong, F.; Mao, H.; Zhang, J. Possible association of hla-drb1 gene with the autoantibody against myocardial mitochondria adp/atp carrier in dilated cardiomyopathy. J. Huazhong Univ. Sci. Technol. Med. Sci. 2002, 22, 231–232, 245. [Google Scholar]
  111. Terasaki, F.; Tanaka, M.; Kawamura, K.; Kanzaki, Y.; Okabe, M.; Hayashi, T.; Shimomura, H.; Ito, T.; Suwa, M.; Gong, J.S.; et al. A case of cardiomyopathy showing progression from the hypertrophic to the dilated form: Association of mt8348A-->G mutation in the mitochondrial trna(lys) gene with severe ultrastructural alterations of mitochondria in cardiomyocytes. Jpn. Circ. J. 2001, 65, 691–694. [Google Scholar] [CrossRef] [PubMed]
  112. Papadopoulou, L.C.; Theophilidis, G.; Thomopoulos, G.N.; Tsiftsoglou, A.S. Structural and functional impairment of mitochondria in adriamycin-induced cardiomyopathy in mice: Suppression of cytochrome c oxidase ii gene expression. Biochem. Pharmacol. 1999, 57, 481–489. [Google Scholar] [CrossRef]
  113. Sliwa, K.; Hilfiker-Kleiner, D.; Petrie, M.C.; Mebazaa, A.; Pieske, B.; Buchmann, E.; Regitz-Zagrosek, V.; Schaufelberger, M.; Tavazzi, L.; van Veldhuisen, D.J.; et al. Current state of knowledge on aetiology, diagnosis, management, and therapy of peripartum cardiomyopathy: A position statement from the heart failure association of the european society of cardiology working group on peripartum cardiomyopathy. Eur. J. Heart Fail. 2010, 12, 767–778. [Google Scholar] [CrossRef] [PubMed]
  114. Lacuata, A.Q.; Yamada, H.; Hirose, T. Atrial-fibrillation (af) in a cow with postpartum cardiomyopathy (ppcm) - case-report. Philipp J. Vet Med. 1980, 19, 97. [Google Scholar]
  115. Sandusky, G.E.; Cho, D.Y. Congestive cardiomyopathy in a dog associated with pregnancy. Cornell Vet. 1984, 74, 60–64. [Google Scholar] [PubMed]
  116. Bollen, I.A.E.; Van Deel, E.D.; Kuster, D.W.D.; Van Der Velden, J. Peripartum cardiomyopathy and dilated cardiomyopathy: Different at heart. Front. Physiol. 2015, 5. [Google Scholar] [CrossRef] [PubMed]
  117. Hilfiker-Kleiner, D.; Struman, I.; Luchtefeld, M.; Forster, O.; Sliwa, K.; Drexler, H. A cathepsin d-cleaved 16kda form of prolactin mediates postpartum cardiomyopathy: Inhibition of prolactin as a novel therapy option. Circulation 2006, 114, 89. [Google Scholar]
  118. van Spaendonck-Zwarts, K.Y.; van Tintelen, J.P.; van Veldhuisen, D.J.; van der Werf, R.; Jongbloed, J.D.H.; Paulus, W.J.; Dooijes, D.; van den Berg, M.P. Peripartum cardiomyopathy as a part of familial dilated cardiomyopathy. Circulation 2010, 121, 2169–2175. [Google Scholar] [CrossRef] [PubMed]
  119. Ware, J.S.; Li, J.; Mazaika, E.; Yasso, C.M.; DeSouza, T.; Cappola, T.P.; Tsai, E.J.; Hilfiker-Kleiner, D.; Kamiya, C.A.; Mazzarotto, F.; et al. Shared genetic predisposition in peripartum and dilated cardiomyopathies. New Engl. J. Med. 2016, 374, 233–241. [Google Scholar] [CrossRef] [PubMed]
  120. Hershberger, R.E.; Siegfried, J.D. Update 2011: Clinical and genetic issues in familial dilated cardiomyopathy. J. Am. Coll. Cardiol. 2011, 57, 1641–1649. [Google Scholar] [CrossRef] [PubMed]
  121. Amador, F.J.; Kimlicka, L.; Stathopulos, P.B.; Gasmi-Seabrook, G.M.; Maclennan, D.H.; Van Petegem, F.; Ikura, M. Type 2 ryanodine receptor domain a contains a unique and dynamic alpha-helix that transitions to a beta-strand in a mutant linked with a heritable cardiomyopathy. J. Mol. Biol. 2013, 425, 4034–4046. [Google Scholar] [CrossRef] [PubMed]
  122. GenomicsEngland. The 100,000 genome project. Available online: https://www.genomicsengland.co.uk/the-100000-genomes-project/ (accessed on 28 December 2016).
  123. Stedmand, N.L.; Brow, T.P. Cardiomyopathy in broiler chickens congenitally infected with avian leukosis virus subgroup. J. Vet. Pathol. 2002, 39, 161–164. [Google Scholar] [CrossRef] [PubMed]
  124. Simpson, S.; Dunning, M.D.; Brownlie, S.; Patel, J.; Godden, M.; Cobb, M.; Mongan, N.P.; Rutland, C.S. Multiple genetic associations with Irish wolfhound dilated cardiomyopathy. BioMed Res. Int. 2016, 3. [Google Scholar] [CrossRef] [PubMed]
  125. Simpson, S.; Edwards, J.; Emes, R.D.; Cobb, M.A.; Mongan, N.P.; Rutland, C.S. A predictive model for canine dilated cardiomyopathy-a meta-analysis of doberman pinscher data. Peerj 2015, 3. [Google Scholar] [CrossRef] [PubMed]
  126. HealthInCode. Medical genetics. Available online: www.healthincode.com (accessed on 28 December 2016).
  127. Bienengraeber, M.; Olson, T.M.; Selivanov, V.A.; Kathmann, E.C.; O’Cochlain, F.; Gao, F.; Karger, A.B.; Ballew, J.D.; Hodgson, D.M.; Zingman, L.V.; et al. Abcc9 mutations identified in human dilated cardiomyopathy disrupt catalytic katp channel gating. Nat. Genet. 2004, 36, 382–387. [Google Scholar] [CrossRef] [PubMed]
  128. Olson, T.M.; Michels, V.V.; Thibodeau, S.N.; Tai, Y.S.; Keating, M.T. Actin mutations in dilated cardiomyopathy, a heritable form of heart failure. Science 1998, 280, 750–752. [Google Scholar] [CrossRef] [PubMed]
  129. Mogensen, J.; Klausen, I.C.; Pedersen, A.K.; Egeblad, H.; Bross, P.; Kruse, T.A.; Gregersen, N.; Hansen, P.S.; Baandrup, U.; Borglum, A.D. Alpha-cardiac actin is a novel disease gene in familial hypertrophic cardiomyopathy. J. Clin. Investig. 1999, 103, R39–R43. [Google Scholar] [CrossRef] [PubMed]
  130. Chiu, C.; Bagnall, R.D.; Ingles, J.; Yeates, L.; Kennerson, M.; Donald, J.A.; Jormakka, M.; Lind, J.M.; Semsarian, C. Mutations in alpha-actinin-2 cause hypertrophic cardiomyopathy a genome-wide analysis. J. Am. Coll. Cardiol. 2010, 55, 1127–1135. [Google Scholar] [CrossRef] [PubMed]
  131. Mohapatra, B.; Jimenez, S.; Lin, J.H.; Bowles, K.R.; Coveler, K.J.; Marx, J.G.; Chrisco, M.A.; Murphy, R.T.; Lurie, P.R.; Schwartz, R.J.; et al. Mutations in the muscle lim protein and alpha-actinin-2 genes in dilated cardiomyopathy and endocardial fibroelastosis. Mol. Genet. Metab. 2003, 80, 207–215. [Google Scholar] [CrossRef]
  132. Moulik, M.; Vatta, M.; Witt, S.H.; Arola, A.M.; Murphy, R.T.; McKenna, W.J.; Boriek, A.M.; Oka, K.; Labeit, S.; Bowles, N.E.; et al. Ankrd1, the gene encoding cardiac ankyrin repeat protein, is a novel dilated cardiomyopathy gene. J. Am. Coll. Cardiol. 2009, 54, 325–333. [Google Scholar] [CrossRef] [PubMed]
  133. Arimura, T.; Bos, J.M.; Sato, A.; Kubo, T.; Okamoto, H.; Nishi, H.; Harada, H.; Koga, Y.; Moulik, M.; Doi, Y.L.; et al. Cardiac ankyrin repeat protein gene (ankrd1) mutations in hypertrophic cardiomyopathy. Hum. Mutat. 2011, 32, 1481–1491. [Google Scholar] [CrossRef] [PubMed]
  134. Norton, N.; Li, D.X.; Rieder, M.J.; Siegfried, J.D.; Rampersaud, E.; Zuchner, S.; Mangos, S.; Gonzalez-Quintana, J.; Wang, L.B.; McGee, S.; et al. Genome-wide studies of copy number variation and exome sequencing identify rare variants in bag3 as a cause of dilated cardiomyopathy. Am. J. Hum. Genet. 2011, 88, 273–282. [Google Scholar] [CrossRef] [PubMed]
  135. Villard, E.; Perret, C.; Gary, F.; Proust, C.; Dilanian, G.; Isnard, R.; Komajda, M.; Charron, P.; Cambien, F. A genome-wide association study identifies two loci associated with heart failure due to dilated cardiomyopathy. Eur. Heart J. 2011, 32, 1065–1076. [Google Scholar] [CrossRef] [PubMed]
  136. Arimura, T.; Ishikawa, T.; Nunoda, S.; Kawai, S.; Kimura, A. Dilated cardiomyopathy-associated bag3 mutations impair z-disc assembly and enhance sensitivity to apoptosis in cardiomyocytes. Hum. Mutat. 2011, 32, 1481–1491. [Google Scholar] [CrossRef] [PubMed]
  137. Chiu, C.; Tebo, M.; Ingles, J.; Yeates, L.; Arthur, J.W.; Lind, J.M.; Semsarian, C. Genetic screening of calcium regulation genes in familial hypertrophic cardiomyopathy. J. Mol. Cell. Cardiol. 2007, 43, 337–343. [Google Scholar] [CrossRef] [PubMed]
  138. Catteruccia, M.; Sanna, T.; Santorelli, F.M.; Tessa, A.; Di Giacopo, R.; Sauchelli, D.; Verbo, A.; Lo Monaco, M.; Servidei, S. Rippling muscle disease and cardiomyopathy associated with a mutation in the cav3 gene. Neuromuscul. Disord. 2009, 19, 779–783. [Google Scholar] [CrossRef] [PubMed]
  139. Zhang, L.; Hu, A.H.; Yuan, H.X.; Cui, L.; Miao, G.B.; Yang, X.C.; Wang, L.F.; Liu, J.C.; Liu, X.L.; Wang, S.Y.; et al. A missense mutation in the chrm2 gene is associated with familial dilated cardiomyopathy. Circ. Res. 2008, 102, 1426–1432. [Google Scholar] [CrossRef] [PubMed]
  140. Inagaki, N.; Hayashi, T.; Arimura, T.; Koga, Y.; Takahashi, M.; Shibata, H.; Teraoka, K.; Chikamori, T.; Yamashina, A.; Kimura, A. Alpha b-crystallin mutation in dilated cardiomyopathy. Biochem. Biophys. Res. Commun. 2006, 342, 379–386. [Google Scholar] [PubMed]
  141. Bos, J.M.; Poley, R.N.; Ny, M.; Tester, D.J.; Xu, X.L.; Vatta, M.; Towbin, J.A.; Gersh, B.J.; Ommen, S.R.; Ackerman, M.J. Genotype-phenotype relationships involving hypertrophic cardiomyopathy-associated mutations in titin, muscle lim protein, and telethonin. Mol. Genet. Metab. 2006, 88, 78–85. [Google Scholar] [CrossRef] [PubMed]
  142. Erdmann, J.; Hassfeld, S.; Kallisch, H.; Fleck, E.; Regitz-Zagrose, V. Genetic variants in the promoter (g983g>t) and coding region (a92t) of the human cardiotrophin-1 gene (ctf1) in patients with dilated cardiomyopathy. Hum. Mutat. 2000, 16, 448. [Google Scholar] [CrossRef]
  143. van Hengel, J.; Calore, M.; Bauce, B.; Dazzo, E.; Mazzotti, E.; De Bortoli, M.; Lorenzon, A.; Li Mura, I.E.A.; Beffagna, G.; Rigato, I.; et al. Mutations in the area composita protein t-catenin are associated with arrhythmogenic right ventricular cardiomyopathy. Eur. Heart J. 2013, 34, 201–210. [Google Scholar] [CrossRef] [PubMed]
  144. Schaper, J.; Froede, R.; Sthein; Buck, A.; Hashizume, H.; Speiser, B.; Friedl, A.; Bleese, N. Impairment of the myocardial ultrastructure and changes of the cytoskeleton in dilated cardiomyopathy. Circulation 1991, 83, 504–514. [Google Scholar] [CrossRef] [PubMed]
  145. Li, D.X.; Tapscoft, T.; Gonzalez, O.; Burch, P.E.; Quinones, M.A.; Zoghbi, W.A.; Hill, R.; Bachinski, L.L.; Mann, D.L.; Roberts, R. Desmin mutation responsible for idiopathic dilated cardiomyopathy. Circulation 1999, 100, 461–464. [Google Scholar] [CrossRef] [PubMed]
  146. Lorenzon, A.; Beffagna, G.; Bauce, B.; De Bortoli, M.; Mura, I.E.A.L.; Calore, M.; Dazzo, E.; Basso, C.; Nava, A.; Thiene, G.; et al. Desmin mutations and arrhythmogenic right ventricular cardiomyopathy. Am. J. Cardiol. 2013, 111, 400–405. [Google Scholar] [CrossRef] [PubMed]
  147. Klauke, B.; Kossmann, S.; Gaertner, A.; Brand, K.; Stork, I.; Brodehl, A.; Dieding, M.; Walhorn, V.; Anselmetti, D.; Gerdes, D.; et al. De novo desmin-mutation n116s is associated with arrhythmogenic right ventricular cardiomyopathy. Hum. Mol. Genet. 2010, 19, 4595–4607. [Google Scholar] [CrossRef] [PubMed]
  148. Muntoni, F.; Cau, M.; Ganau, A.; Congiu, R.; Arvedi, G.; Mateddu, A.; Marrosu, M.G.; Cianchetti, C.; Realdi, G.; Cao, A.; et al. Brief report - deletion of the dystrophin muscle-promoter region associated with x-linked dilated cardiomyopathy. N. Engl. J. Med. 1993, 329, 921–925. [Google Scholar] [CrossRef] [PubMed]
  149. OrtizLopez, R.; Li, H.; Su, J.; Goytia, V.; Towbin, J.A. Evidence for a dystrophin missense mutation as a cause of x-linked dilated cardiomyopathy. Circulation 1997, 95, 2434–2440. [Google Scholar] [CrossRef]
  150. Davey, K.M.; Parboosingh, J.S.; McLeod, D.R.; Chan, A.; Casey, R.; Ferreira, P.; Snyder, F.F.; Bridge, P.J.; Bernier, F.P. Mutation of dnajc19, a human homologue of yeast inner mitochondrial membrane co-chaperones, causes dcma syndrome, a novel autosomal recessive barth syndrome-like condition. J. Med. Genet. 2006, 43, 385–393. [Google Scholar] [CrossRef] [PubMed]
  151. Lefeber, D.J.; de Brouwer, A.P.M.; Morava, E.; Riemersma, M.; Schuurs-Hoeijmakers, J.H.M.; Absmanner, B.; Verrijp, K.; van den Akker, W.M.R.; Huijben, K.; Steenbergen, G.; et al. Autosomal recessive dilated cardiomyopathy due to dolk mutations results from abnormal dystroglycan o-mannosylation. PloS Genet. 2011, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  152. Beffagna, G.; De Bortoli, M.; Nava, A.; Salamon, M.; Lorenzon, A.; Zaccolo, M.; Mancuso, L.; Sigalotti, L.; Bauce, B.; Occhi, G.; et al. Missense mutations in desmocollin-2 n-terminus, associated with arrhythmogenic right ventricular cardiomyopathy, affect intracellular localization of desmocollin-2 in vitro. BMC Med. Genet. 2007, 8. [Google Scholar] [CrossRef] [PubMed]
  153. Posch, M.G.; Posch, M.J.; Geier, C.; Erdmann, B.; Mueller, W.; Richter, A.; Ruppert, V.; Pankuweit, S.; Maisch, B.; Perrot, A.; et al. A missense variant in desmoglein-2 predisposes to dilated cardiomyopathy. Mol. Genet. Metab. 2008, 95, 74–80. [Google Scholar] [CrossRef] [PubMed]
  154. Pilichou, K.; Nava, A.; Basso, C.; Beffagna, G.; Bauce, B.; Lorenzon, A.; Frigo, G.; Vettori, A.; Valente, M.; Towbin, J.; et al. Mutations in desmoglein-2 gene are associated with arrhythmogenic right ventricular cardiomyopathy. Circulation 2006, 113, 1171–1179. [Google Scholar] [CrossRef] [PubMed]
  155. Awad, M.M.; Dalal, D.; Cho, E.; Amat-Alarcon, N.; James, C.; Tichnell, C.; Tucker, A.; Russell, S.D.; Bluemke, D.A.; Dietz, H.C.; et al. Dsg2 mutations contribute to arrhythmogenic right ventricular dysplasia/cardiomyopathy. Am. J. Hum. Genet. 2006, 79, 136–142. [Google Scholar] [CrossRef] [PubMed]
  156. Norgett, E.E.; Hatsell, S.J.; Carvajal-Huerta, L.; Cabezas, J.C.R.; Common, J.; Purkis, P.E.; Whittock, N.; Leigh, I.M.; Stevens, H.P.; Kelsell, D.P. Recessive mutation in desmoplakin disrupts desmoplakin-intermediate filament interactions and causes dilated cardiomyopathy, woolly hair and keratoderma. Hum. Mol. Genet. 2000, 9, 2761–2766. [Google Scholar] [CrossRef] [PubMed]
  157. Rampazzo, A.; Nava, A.; Malacrida, S.; Beffagna, G.; Bauce, B.; Rossi, V.; Zimbello, R.; Simionati, B.; Basso, C.; Thiene, G.; et al. Mutation in human desmoplakin domain binding to plakoglobin causes a dominant form of arrhythmogenic right ventricular cardiomyopathy. Am. J. Hum. Genet. 2002, 71, 1200–1206. [Google Scholar] [CrossRef] [PubMed]
  158. Zhang, M.Q.; Chen, J.; Si, D.Y.; Zheng, Y.; Jiao, H.X.; Feng, Z.H.; Hu, Z.M.; Duan, R.H. Whole exome sequencing identifies a novel emd mutation in a chinese family with dilated cardiomyopathy. BMC Med. Genet. 2014, 15. [Google Scholar] [CrossRef] [PubMed]
  159. Schonberger, J.; Wang, L.; Shin, T.J.; Kim, S.D.; Depreux, F.F.S.; Zhu, H.; Zon, L.; Pizard, A.; Kim, J.B.; MacRae, C.A.; et al. Mutation in the transcriptional coactivator eya4 causes dilated cardiomyopathy and sensorineural hearing loss. Nat. Genet. 2005, 37, 418–422. [Google Scholar] [CrossRef] [PubMed]
  160. Al-Yacoub, N.; Shaheen, R.; Awad, S.M.; Kunhi, M.; Dzimiri, N.; Nguyen, H.C.; Xiong, Y.; Al-Buraiki, J.; Al-Habeeb, W.; Alkuraya, F.S.; et al. Fbxo32, encoding a member of the scf complex, is mutated in dilated cardiomyopathy. Genome Biol. 2016, 17. [Google Scholar] [CrossRef] [PubMed]
  161. Arimura, T.; Hayashi, T.; Matsumoto, Y.; Shibata, H.; Hiroi, S.; Nakamura, T.; Inagaki, N.; Hinohara, K.; Takahashi, M.; Manatsu, S.I.; et al. Structural analysis of four and half lim protein-2 in dilated cardiomyopathy. Biochem. Biophs. Res. Commun. 2007, 357, 162–167. [Google Scholar] [CrossRef] [PubMed]
  162. Murakami, T.; Hayashi, Y.K.; Noguchi, S.; Ogawa, M.; Nonaka, I.; Tanabe, Y.; Ogino, M.; Takada, F.; Eriguchi, M.; Kotooka, N.; et al. Fukutin gene mutations cause dilated cardiomyopathy with minimal muscle weakness. Ann. Neurol. 2006, 60, 597–602. [Google Scholar] [CrossRef] [PubMed]
  163. Muller, T.; Krasnianski, M.; Witthaut, R.; Deschauer, M.; Zierz, S. Dilated cardiomyopathy may be an early sign of the c826a fukutin-related protein mutation. Neuromusc. Disord. 2005, 15, 372–376. [Google Scholar] [CrossRef] [PubMed]
  164. Minoretti, P.; Arra, M.; Emanuele, E.; Olivieri, V.; Aldeghi, A.; Politi, P.; Martinelli, V.; Pesenti, S.; Falcone, C. A w148r mutation in the human foxd4 gene segregating with dilated cardiomyopathy, obsessive-compulsive disorder, and suicidality. Int. J. Mol. Med. 2007, 19, 369–372. [Google Scholar] [CrossRef] [PubMed]
  165. Theis, J.L.; Sharpe, K.M.; Matsumoto, M.E.; Chai, H.S.; Nair, A.A.; Theis, J.D.; de Andrade, M.; Wieben, E.D.; Michels, V.V.; Olson, T.M. Homozygosity mapping and exome sequencing reveal gatad1 mutation in autosomal recessive dilated cardiomyopathy. Circ. Cardiovasc. Genet. 2011, 4, 585–644. [Google Scholar] [CrossRef] [PubMed]
  166. Zhou, Y.M.; Dai, X.Y.; Qiu, X.B.; Yuan, F.; Li, R.G.; Xu, Y.J.; Qu, X.K.; Huang, R.T.; Xue, S.; Yang, Y.Q. Hand1 loss-of-function mutation associated with familial dilated cardiomyopathy. Clin. Chem. Lab. Med. 2016, 54, 1161–1167. [Google Scholar] [CrossRef] [PubMed]
  167. Pankuweit, S.; Ruppert, V.; Jonsdottir, P.; Muller, H.H.; Meyer, T.; Heart, G.C.N. The hla class ii allele dqb1*0309 is associated with dilated cardiomyopathy. Gene 2013, 531, 180–183. [Google Scholar] [CrossRef] [PubMed]
  168. Stark, K.; Esslinger, U.B.; Reinhard, W.; Petrov, G.; Winkler, T.; Komajda, M.; Isnard, R.; Charron, P.; Villard, E.; Cambien, F.; et al. Genetic association study identifies hspb7 as a risk gene for idiopathic dilated cardiomyopathy. PLoS Genet. 2010, 6. [Google Scholar] [CrossRef] [PubMed]
  169. Knoll, R.; Postel, R.; Wang, J.; Kratzner, R.; Hennecke, G.; Vacaru, A.M.; Vakeel, P.; Schubert, C.; Murthy, K.; Rana, B.K.; et al. Laminin-alpha4 and integrin-linked kinase mutations cause human cardiomyopathy via simultaneous defects in cardiomyocytes and endothelial cells. Circulation 2007, 116, 515–525. [Google Scholar] [CrossRef] [PubMed]
  170. Landstrom, A.P.; Weisleder, N.; Batalden, K.B.; Bos, J.M.; Tester, D.J.; Ommen, S.R.; Wehrens, X.H.; Claycomb, W.C.; Ko, J.K.; Hwang, M.; et al. Mutations in jph2-encoded junctophilin-2 associated with hypertrophic cardiomyopathy in humans. J. Mol. Cell. Cardiol. 2007, 42, 1026–1035. [Google Scholar] [CrossRef] [PubMed]
  171. McKoy, G.; Protonotarios, N.; Crosby, A.; Tsatsopoulou, A.; Anastasakis, A.; Coonar, A.; Norman, M.; Baboonian, C.; Jeffery, S.; McKenna, W.J. Identification of a deletion in plakoglobin in arrhythmogenic right ventricular cardiomyopathy with palmoplantar keratoderma and woolly hair (naxos disease). Lancet 2000, 355, 2119–2124. [Google Scholar] [CrossRef]
  172. Carboni, N.; Marrosu, G.; Porcu, M.; Mateddu, A.; Solla, E.; Cocco, E.; Maioli, M.A.; Oppo, V.; Piras, R.; Marrosu, M.G. Dilated cardiomyopathy with conduction defects in a patient with partial merosin deficiency due to mutations in the laminin-alpha 2-chain gene: A chance association or a novel phenotype? Muscle Nerve 2011, 44, 826–828. [Google Scholar] [CrossRef] [PubMed]
  173. Maron, B.J.; Roberts, W.C.; Arad, M.; Haas, T.S.; Spirito, P.; Wright, G.B.; Almquist, A.K.; Baffa, J.M.; Saul, J.P.; Ho, C.Y.; et al. Clinical outcome and phenotypic expression in lamp2 cardiomyopathy. JAMA 2009, 301, 1253–1259. [Google Scholar] [CrossRef] [PubMed]
  174. Arimura, T.; Hayashi, T.; Terada, H.; Lee, S.Y.; Zhou, Q.; Takahashi, M.; Ueda, K.; Nouchi, T.; Hohda, S.; Shibutani, M.; et al. A cypher/zasp mutation associated with dilated cardiomyopathy alters the binding affinity to protein kinase c. J. Biol. Chem. 2004, 279, 6746–6752. [Google Scholar] [CrossRef] [PubMed]
  175. Garcia-Pavia, P.; Vazquez, M.E.; Segovia, J.; Salas, C.; Avellana, P.; Gomez-Bueno, M.; Vilches, C.; Gallardo, M.E.; Garesse, R.; Molano, J.; et al. Genetic basis of end-stage hypertrophic cardiomyopathy. Eur. J. Heart Fail. 2011, 13, 1193–1201. [Google Scholar] [CrossRef] [PubMed]
  176. Fatkin, D.; MacRae, C.; Sasaki, T.; Wolff, M.R.; Porcu, M.; Frenneaux, M.; Atherton, J.; Vidaillet, H.J.; Spudich, S.; De Girolami, U.; et al. Missense mutations in the rod domain of the lamin a/c gene as causes of dilated cardiomyopathy and conduction-system disease. N. Engl. J. Med. 1999, 341, 1715–1724. [Google Scholar] [CrossRef] [PubMed]
  177. Quarta, G.; Syrris, P.; Ashworth, M.; Jenkins, S.; Alapi, K.Z.; Morgan, J.; Muir, A.; Pantazis, A.; McKenna, W.J.; Elliott, P.M. Mutations in the lamin a/c gene mimic arrhythmogenic right ventricular cardiomyopathy. Eur. Heart J. 2012, 33, 1128–1149. [Google Scholar] [CrossRef] [PubMed]
  178. Qu, X.K.; Yuan, F.; Li, R.G.; Xu, L.; Jing, W.F.; Liu, H.; Xu, Y.J.; Zhang, M.; Liu, X.; Fang, W.Y.; et al. Prevalence and spectrum of lrrc10 mutations associated with idiopathic dilated cardiomyopathy. Mol. Med. Rep. 2015, 12, 3718–3724. [Google Scholar] [PubMed]
  179. Rodriguez, G.; Ueyama, T.; Ogata, T.; Czernuszewicz, G.; Tan, Y.L.; Dorn, G.W.; Bogaev, R.; Amano, K.; Oh, H.; Matsubara, H.; et al. Molecular genetic and functional characterization implicate muscle-restricted coiled-coil gene (murc) as a causal gene for familial dilated cardiomyopathy. Circ. Cardiovasc. Genet. 2011, 4, 349–357. [Google Scholar] [CrossRef] [PubMed]
  180. Daehmlow, S.; Erdmann, J.; Knueppel, T.; Gille, C.; Froemmel, C.; Hummel, M.; Hetzer, R.; Regitz-Zagrosek, V. Novel mutations in sarcomeric protein genes in dilated cardiomyopathy. Biochem. Biophys. Res. Commun. 2002, 298, 116–120. [Google Scholar] [CrossRef]
  181. Carrier, L.; Bonne, G.; Bahrend, E.; Yu, B.; Richard, P.; Niel, F.; Hainque, B.; Cruaud, C.; Gary, F.; Labeit, S.; et al. Organization and sequence of human cardiac myosin binding protein c gene (mybpc3) and identification of mutations predicted to produce truncated proteins in familial hypertrophic cardiomyopathy. Circ. Res. 1997, 80, 427–434. [Google Scholar] [PubMed]
  182. Bonne, G.; Carrier, L.; Bercovici, J.; Cruaud, C.; Richard, P.; Hainque, B.; Gautel, M.; Labeit, S.; James, M.; Beckmann, J.; et al. Cardiac myosin binding protein-c gene splice acceptor site mutation is associated with familial hypertrophic cardiomyopathy. Nat. Genet. 1995, 11, 438–440. [Google Scholar] [CrossRef] [PubMed]
  183. Hershberger, R.E.; Norton, N.; Morales, A.; Li, D.X.; Siegfried, J.D.; Gonzalez-Quintana, J. Coding sequence rare variants identified in mybpc3, myh6, tpm1, tnnc1, and tnni3 from 312 patients with familial or idiopathic dilated cardiomyopathy. Circ. Cardiovasc. Genet. 2010, 3, 155–161. [Google Scholar] [CrossRef] [PubMed]
  184. Niimura, H.; Patton, K.K.; McKenna, W.J.; Soults, J.; Maron, B.J.; Seidman, J.G.; Seidman, C.E. Sarcomere protein gene mutations in hypertrophic cardiomyopathy of the elderly. Circulation 2002, 105, 446–451. [Google Scholar] [CrossRef] [PubMed]
  185. Fananapazir, L.; Dalakas, M.C.; Cyran, F.; Cohn, G.; Epstein, N.D. Missense mutations in the beta-myosin heavy-chain gene cause central core disease in hypertrophic cardiomyopathy. Proc. Natl. Acad. Sci. USA 1993, 90, 3993–3997. [Google Scholar] [CrossRef] [PubMed]
  186. Karkkainen, S.; Helio, T.; Jaaskelainen, P.; Miettinen, R.; Tuomainen, P.; Ylitalo, K.; Kaartinen, M.; Reissell, E.; Toivonen, L.; Nieminen, M.S.; et al. Two novel mutations in the beta-myosin heavy chain gene associated with dilated cardiomyopathy. Eur. J. Heart Fail. 2004, 6, 861–868. [Google Scholar] [CrossRef] [PubMed]
  187. Flavigny, J.; Richard, P.; Isnard, R.; Carrier, L.; Charron, P.; Bonne, G.; Forissier, J.F.; Desnos, M.; Dubourg, O.; Komajda, M.; et al. Identification of two novel mutations in the ventricular regulatory myosin light chain gene (myl2) associated with familial and classical forms of hypertrophic cardiomyopathy. J. Mol. Med. 1998, 76, 208–214. [Google Scholar] [CrossRef] [PubMed]
  188. Ingles, J.; Doolan, A.; Chiu, C.; Seidman, J.; Seidman, C.; Semsarian, C. Compound and double mutations in patients with hypertrophic cardiomyopathy: Implications for genetic testing and counselling. J. Med. Genet. 2005, 42. [Google Scholar] [CrossRef] [PubMed]
  189. Osio, A.; Tan, L.; Chen, S.N.; Lombardi, R.; Nagueh, S.F.; Shete, S.; Roberts, R.; Willerson, J.T.; Marian, A.J. Myozenin 2 is a novel gene for human hypertrophic cardiomyopathy. Circ. Res. 2007, 100, 766–768. [Google Scholar] [CrossRef] [PubMed]
  190. Duboscq-Bidot, L.; Xu, P.; Charron, P.; Neyroud, N.; Dilanian, G.; Millaire, A.; Bors, V.; Komajda, M.; Villard, E. Mutations in the z-band protein myopalladin gene and idiopathic dilated cardiomyopathy. Cardiovasc. Res. 2008, 77, 118–125. [Google Scholar] [CrossRef] [PubMed]
  191. Purevjav, E.; Varela, J.; Morgado, M.; Kearney, D.L.; Li, H.; Taylor, M.D.; Arimura, T.; Moncman, C.L.; McKenna, W.; Murphy, R.T.; et al. Nebulette mutations are associated with dilated cardiomyopathy and endocardial fibroelastosis. J. Am. Coll. Cardiol. 2010, 56, 1493–1502. [Google Scholar] [CrossRef] [PubMed]
  192. Hassel, D.; Dahme, T.; Erdmann, J.; Meder, B.; Huge, A.; Stoll, M.; Just, S.; Hess, A.; Ehlermann, P.; Weichenhan, D.; et al. Nexilin mutations destabilize cardiac z-disks and lead to dilated cardiomyopathy. Nature Med. 2009, 15. [Google Scholar] [CrossRef] [PubMed]
  193. Matsa, L.S.; Rangaraju, A.; Vengaldas, V.; Latifi, M.; Jahromi, H.M.; Ananthapur, V.; Nallari, P. Haplotypes of nos3 gene polymorphisms in dilated cardiomyopathy. PLoS ONE 2013, 8. [Google Scholar] [CrossRef] [PubMed]
  194. Cruz, F.M.; Sanz-Rosa, D.; Roche-Molina, M.; Garcia-Prieto, J.; Garcia-Ruiz, J.M.; Pizarro, G.; Jimenez-Borreguero, L.J.; Torres, M.; Bernad, A.; Ruiz-Cabello, J.; et al. Exercise triggers arvc phenotype in mice expressing a disease-causing mutated version of human plakophilin-2. J. Am. Coll. Cardiol. 2015, 65, 1438–1450. [Google Scholar] [PubMed]
  195. Muhammad, E.; Levitas, A.; Singh, S.R.; Braiman, A.; Ofir, R.; Etzion, S.; Sheffield, V.C.; Etzion, Y.; Carrier, L.; Parvari, R. Plekhm2 mutation leads to abnormal localization of lysosomes, impaired autophagy flux and associates with recessive dilated cardiomyopathy and left ventricular noncompaction. Hum. Mol. Genet. 2015, 24, 7227–7240. [Google Scholar] [CrossRef] [PubMed]
  196. Haghighi, K.; Kolokathis, F.; Pater, L.; Lynch, R.A.; Asahi, M.; Gramolini, A.O.; Fan, G.C.; Tsiapras, D.; Hahn, H.S.; Adamopoulos, S.; et al. Human phospholamban null results in lethal dilated cardiomyopathy revealing a critical difference between mouse and human. J. Clin. Investig. 2003, 111, 869–876. [Google Scholar] [CrossRef] [PubMed]
  197. Minamisawa, S.; Sato, Y.; Tatsuguchi, Y.; Fujino, T.; Imamura, S.; Uetsuka, Y.; Nakazawa, M.; Matsuoka, R. Mutation of the phospholamban promoter associated with hypertrophic cardiomyopathy. Biochem. Biophys. Res. Commun. 2003, 304, 1–4. [Google Scholar] [CrossRef]
  198. van der Zwaag, P.A.; van Rijsingen, I.A.W.; Asimaki, A.; Jongbloed, J.D.H.; van Veldhuisen, D.J.; Wiesfeld, A.C.P.; Cox, M.G.P.J.; van Lochem, L.T.; de Boer, R.A.; Hofstra, R.M.W.; et al. Phospholamban r14del mutation in patients diagnosed with dilated cardiomyopathy or arrhythmogenic right ventricular cardiomyopathy: Evidence supporting the concept of arrhythmogenic cardiomyopathy. Eur. J. Heart Fail. 2012, 14, 1199–1207. [Google Scholar] [CrossRef] [PubMed]
  199. Verhoeven, W.M.; Egger, J.I.; Kremer, B.P.; de Pont, B.J.; Marcelis, C.L. Recurrent major depression, ataxia, and cardiomyopathy: Association with a novel polg mutation? Neuropsychiatr. Dis. Treat. 2011, 7, 293–296. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  200. Arndt, A.K.; Schafer, S.; Drenckhahn, J.D.; Sabeh, M.K.; Plovie, E.R.; Caliebe, A.; Klopocki, E.; Musso, G.; Werdich, A.A.; Kalwa, H.; et al. Fine mapping of the 1p36 deletion syndrome identifies mutation of prdm16 as a cause of cardiomyopathy. Am. J. Hum. Genet. 2013, 93, 67–77. [Google Scholar] [CrossRef] [PubMed]
  201. Zhao, Y.; Cao, H.; Song, Y.D.; Feng, Y.; Ding, X.X.; Pang, M.J.; Zhang, Y.M.; Zhang, H.; Ding, J.H.; Xia, X.S. Identification of novel mutations including a double mutation in patients with inherited cardiomyopathy by a targeted sequencing approach using the ion torrent pgm system. Int. J. Mol. Med. 2016, 37, 1511–1520. [Google Scholar] [CrossRef] [PubMed]
  202. Li, D.X.; Parks, S.B.; Kushner, J.D.; Nauman, D.; Burgess, D.; Ludwigsen, S.; Partain, J.; Nixon, R.R.; Allen, C.N.; Irwin, R.P.; et al. Mutations of presenilin genes in dilated cardiomyopathy and heart failure. Am. J. Hum. Genet. 2006, 79, 1030–1039. [Google Scholar] [CrossRef] [PubMed]
  203. Brauch, K.M.; Karst, M.L.; Herron, K.J.; de Andrade, M.; Pellikka, P.A.; Rodeheffer, R.J.; Michels, V.V.; Olson, T.M. Mutations in ribonucleic acid binding protein gene cause familial dilated cardiomyopathy. J. Am. Coll. Cardiol. 2009, 54, 930–941. [Google Scholar] [CrossRef] [PubMed]
  204. Hussain, S.; Haroon, J.; Ejaz, S.; Javed, Q. Variants of resistin gene and the risk of idiopathic dilated cardiomyopathy in pakistan. Meta Gene 2016, 9, 37–41. [Google Scholar] [CrossRef] [PubMed]
  205. Gupta, A.; Colmenero, I.; Ragge, N.K.; Blakely, E.L.; He, L.; McFarland, R.; Taylor, R.W.; Vogt, J.; Milford, D.V. Compound heterozygous rmnd1 gene variants associated with chronic kidney disease, dilated cardiomyopathy and neurological involvement: A case report. BMC Res. Notes 2016, 9, 325. [Google Scholar] [CrossRef] [PubMed]
  206. Long, P.A.; Zimmermann, M.T.; Kim, M.; Evans, J.M.; Xu, X.; Olson, T.M. De novo rragc mutation activates mtorc1 signaling in syndromic fetal dilated cardiomyopathy. Hum. Genet. 2016, 135, 909–917. [Google Scholar] [CrossRef] [PubMed]
  207. Bhuiyan, Z.A.; van den Berg, M.P.; van Tintelen, J.P.; Bink-Boelkens, M.T.; Wiesfeld, A.C.; Alders, M.; Postma, A.V.; van Langen, I.; Mannens, M.M.; Wilde, A.A. Expanding spectrum of human ryr2-related disease: New electrocardiographic, structural, and genetic features. Circulation 2007, 116, 1569–1576. [Google Scholar] [CrossRef] [PubMed]
  208. Tiso, N.; Stephan, D.A.; Nava, A.; Bagattin, A.; Devaney, J.M.; Stanchi, F.; Larderet, G.; Brahmbhatt, B.; Brown, K.; Bauce, B.; et al. Identification of mutations in the cardiac ryanodine receptor gene in families affected with arrhythmogenic right ventricular cardiomyopathy type 2 (arvd2). Hum. Mol. Genet. 2001, 10, 189–194. [Google Scholar] [CrossRef] [PubMed]
  209. Roux-Buisson, N.; Gandjbakhch, E.; Donal, E.; Probst, V.; Deharo, J.C.; Chevalier, P.; Klug, D.; Mansencal, N.; Delacretaz, E.; Cosnay, P.; et al. Prevalence and significance of rare ryr2 variants in arrhythmogenic right ventricular cardiomyopathy/dysplasia: Results of a systematic screening. Heart Rhythm 2014, 11, 1999–2009. [Google Scholar] [CrossRef] [PubMed]
  210. McNair, W.P.; Ku, L.; Taylor, M.R.; Fain, P.R.; Dao, D.; Wolfel, E.; Mestroni, L.; Familial Cardiomyopathy Registry Research Group. Scn5a mutation associated with dilated cardiomyopathy, conduction disorder, and arrhythmia. Circulation 2004, 110, 2163–2167. [Google Scholar] [CrossRef] [PubMed]
  211. Levitas, A.; Muhammad, E.; Harel, G.; Saada, A.; Caspi, V.C.; Manor, E.; Beck, J.C.; Sheffield, V.; Parvari, R. Familial neonatal isolated cardiomyopathy caused by a mutation in the flavoprotein subunit of succinate dehydrogenase. Eur. J. Hum. Genet. 2010, 18, 1160–1165. [Google Scholar] [CrossRef] [PubMed]
  212. Tsubata, S.; Bowles, K.R.; Vatta, M.; Zintz, C.; Titus, J.; Muhonen, L.; Bowles, N.E.; Towbin, J.A. Mutations in the human delta-sarcoglycan gene in familial and sporadic dilated cardiomyopathy. J. Clin. Investig. 2000, 106, 655–662. [Google Scholar] [CrossRef] [PubMed]
  213. Zhang, Q.P.; Bethmann, C.; Worth, N.F.; Davies, J.D.; Wasner, C.; Feuer, A.; Ragnauth, C.D.; Yi, Q.J.; Mellad, J.A.; Warren, D.T.; et al. Nesprin-1 and -2 are involved in the pathogenesis of emery-dreifuss muscular dystrophy and are critical for nuclear envelope integrity. Hum. Mol. Genet. 2007, 16, 2816–2833. [Google Scholar] [CrossRef] [PubMed]
  214. Kirk, E.P.; Sunde, M.; Costa, M.W.; Rankin, S.A.; Wolstein, O.; Castro, M.L.; Butler, T.L.; Hyun, C.; Guo, G.; Otway, R.; et al. Mutations in cardiac t-box factor gene tbx20 are associated with diverse cardiac pathologies, including defects of septation and valvulogenesis and cardiomyopathy. Am. J. Hum. Genet. 2007, 81, 280–291. [Google Scholar] [CrossRef] [PubMed]
  215. Zhou, W.; Zhao, L.; Jiang, J.Q.; Jiang, W.F.; Yang, Y.Q.; Qiu, X.B. A novel tbx5 loss-of-function mutation associated with sporadic dilated cardiomyopathy. Int. J. Mol. Med. 2015, 36, 282–288. [Google Scholar] [CrossRef] [PubMed]
  216. Hayashi, T.; Arimura, T.; Itoh-Satoh, M.; Ueda, K.; Hohda, S.; Inagaki, N.; Takahashi, M.; Hori, H.; Yasunami, M.; Nishi, H.; et al. Tcap gene mutations in hypertrophic cardiomyopathy and dilated cardiomyopathy. J. Am. Coll. Cardiol. 2004, 44, 2192–2201. [Google Scholar] [CrossRef] [PubMed]
  217. Beffagna, G.; Occhi, G.; Nava, A.; Vitiello, L.; Ditadi, A.; Basso, C.; Bauce, B.; Carraro, G.; Thiene, G.; Towbin, J.A.; et al. Regulatory mutations in transforming growth factor-beta3 gene cause arrhythmogenic right ventricular cardiomyopathy type 1. Cardiovasc. Res. 2005, 65, 366–373. [Google Scholar]
  218. Merner, N.D.; Hodgkinson, K.A.; Haywood, A.F.M.; Connors, S.; French, V.M.; Drenckhahn, J.D.; Kupprion, C.; Ramadanova, K.; Thierfelder, L.; McKenna, W.; et al. Arrhythmogenic right ventricular cardiomyopathy type 5 is a fully penetrant, lethal arrhythmic disorder caused by a missense mutation in the tmem43 gene. Am. J. Hum. Genet. 2008, 82, 809–821. [Google Scholar] [CrossRef] [PubMed]
  219. Taylor, M.R.G.; Slavov, D.; Gajewski, A.; Vlcek, S.; Ku, L.; Fain, P.R.; Carniel, E.; Di Lenarda, A.; Sinagra, G.; Boucek, M.M.; et al. Thymopoietin (lamina-associated polypeptide 2) gene mutation associated with dilated cardiomyopathy. Hum. Mutat. 2005, 26, 566–574. [Google Scholar] [CrossRef] [PubMed]
  220. Kimura, A.; Harada, H.; Park, J.E.; Nishi, H.; Satoh, M.; Takahashi, M.; Hiroi, S.; Sasaoka, T.; Ohbuchi, N.; Nakamura, T.; et al. Mutations in the cardiac troponin i gene associated with hypertrophic cardiomyopathy. Nat. Genet. 1997, 16, 379–382. [Google Scholar] [PubMed]
  221. Murphy, R.T.; Mogensen, J.; Shaw, A.; Kubo, T.; Hughes, S.; McKenna, W.J. Novel mutation in cardiac troponin i in recessive idiopathic dilated cardiomyopathy. Lancet 2004, 363, 371–372. [Google Scholar] [CrossRef]
  222. Kamisago, M.; Sharma, S.D.; DePalma, S.R.; Solomon, S.; Sharma, P.; McDonough, B.; Smoot, L.; Mullen, M.P.; Woolf, P.K.; Wigle, E.D.; et al. Mutations in sarcomere protein genes as a cause of dilated cardiomyopathy. N. Engl. J. Med. 2000, 343, 1688–1696. [Google Scholar] [CrossRef] [PubMed]
  223. Thierfelder, L.; Watkins, H.; Macrae, C.; Lamas, R.; Mckenna, W.; Vosberg, H.P.; Seidman, J.G.; Seidman, C.E. Alpha-tropomyosin and cardiac troponin-t mutations cause familial hypertrophic cardiomyopathy - a disease of the sarcomere. Cell 1994, 77, 701–712. [Google Scholar] [CrossRef]
  224. Sibbing, D.; Pfeufer, A.; Perisic, T.; Mannes, A.M.; Fritz-Wolf, K.; Unwin, S.; Sinner, M.F.; Gieger, C.; Gloeckner, C.J.; Wichmann, H.E.; et al. Mutations in the mitochondrial thioredoxin reductase gene txnrd2 cause dilated cardiomyopathy. Eur. Heart J. 2011, 32, 1121–1133. [Google Scholar] [CrossRef] [PubMed]
  225. Gerull, B.; Gramlich, M.; Atherton, J.; McNabb, M.; Trombitas, K.; Sasse-Klaassen, S.; Seidman, J.G.; Seidman, C.; Granzier, H.; Labeit, S.; et al. Mutations of ttn, encoding the giant muscle filament titin, cause familial dilated cardiomyopathy. Nat. Genet. 2002, 30, 201–204. [Google Scholar] [CrossRef] [PubMed]
  226. Taylor, M.; Graw, S.; Sinagra, G.; Barnes, C.; Slavov, D.; Brun, F.; Pinamonti, B.; Salcedo, E.E.; Sauer, W.; Pyxaras, S.; et al. Genetic variation in titin in arrhythmogenic right ventricular cardiomyopathy-overlap syndromes. Circulation 2011, 124, 876–885. [Google Scholar] [CrossRef] [PubMed]
  227. Olson, T.M.; Illenberger, S.; Kishimoto, N.Y.; Huttelmaier, S.; Keating, M.T.; Jockusch, B.M. Metavinculin mutations alter actin interaction in dilated cardiomyopathy. Circulation 2002, 105, 431–437. [Google Scholar] [CrossRef] [PubMed]
  228. Vasile, V.C.; Ommen, S.R.; Edwards, W.D.; Ackerman, M.J. A missense mutation in a ubiquitously expressed protein, vinculin, confers susceptibility to hypertrophic cardiomyopathy. Biochem. Biophys. Res. Commun. 2006, 345, 998–1003. [Google Scholar] [CrossRef] [PubMed]
  229. Li, X.P.; Luo, R.; Mo, X.Y.; Jiang, R.J.; Kong, H.; Hua, W.; Wu, X.S. Polymorphism of zbtb17 gene is associated with idiopathic dilated cardiomyopathy: A case control study in a han chinese population. Eur. J. Med. Res. 2013, 18. [Google Scholar] [CrossRef] [PubMed]

Share and Cite

MDPI and ACS Style

Simpson, S.; Rutland, P.; Rutland, C.S. Genomic Insights into Cardiomyopathies: A Comparative Cross-Species Review. Vet. Sci. 2017, 4, 19. https://doi.org/10.3390/vetsci4010019

AMA Style

Simpson S, Rutland P, Rutland CS. Genomic Insights into Cardiomyopathies: A Comparative Cross-Species Review. Veterinary Sciences. 2017; 4(1):19. https://doi.org/10.3390/vetsci4010019

Chicago/Turabian Style

Simpson, Siobhan, Paul Rutland, and Catrin Sian Rutland. 2017. "Genomic Insights into Cardiomyopathies: A Comparative Cross-Species Review" Veterinary Sciences 4, no. 1: 19. https://doi.org/10.3390/vetsci4010019

APA Style

Simpson, S., Rutland, P., & Rutland, C. S. (2017). Genomic Insights into Cardiomyopathies: A Comparative Cross-Species Review. Veterinary Sciences, 4(1), 19. https://doi.org/10.3390/vetsci4010019

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop