Genomic Insights into Cardiomyopathies: A Comparative Cross-Species Review
Abstract
:1. Introduction
2. Hypertrophic Cardiomyopathy (HCM)
3. Dilated Cardiomyopathy (DCM)
4. Restrictive Cardiomyopathy (RCM)
5. Arrhythmogenic Right Ventricular Cardiomyopathy (ARVC)
6. Mitochondrial, X Linked, and Peripartum Cardiomyopathies
7. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Appendix A
Gene | DCM | HCM | ARVC | RCM | References | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Human | Canine | Bovine | Turkey | Human | Feline | Human | Canine | Bovine | Human | ||
ABCC9 | Y | [127] | |||||||||
ATP Binding Cassette Subfamily C Member 9 | |||||||||||
ACTC1 | Y | Y | [128,129] | ||||||||
Actin, Alpha, Cardiac Muscle 1 | |||||||||||
ACTN2 | Y | Y | [130,131] | ||||||||
Actinin Alpha 2 | |||||||||||
ANKRD1 | Y | Y | [132,133] | ||||||||
Ankyrin Repeat Domain 1 | |||||||||||
ARGHAP8 | Y | [58] | |||||||||
Member of the RhoA activating protein family | |||||||||||
ARVD3 | Y | [88] | |||||||||
Arrhythmogenic Right Ventricular Dysplasia 3 | |||||||||||
ARVD4 | Y | [89] | |||||||||
Arrhythmogenic Right Ventricular Dysplasia 4 | |||||||||||
ARVD6 | Y | [90,91] | |||||||||
Arrhythmogenic Right Ventricular Dysplasia 6 | |||||||||||
BAG3 | Y | [134,135,136] | |||||||||
BCL2 Associated Athanogene 3 | |||||||||||
CALR3 | Y | [137] | |||||||||
Calreticulin 3 | |||||||||||
CASQ2 | Y | [137] | |||||||||
Calsequestrin 2 | |||||||||||
CAV3 | Y | [138] | |||||||||
Caveolin 3 | |||||||||||
CHRM2 | Y | [139] | |||||||||
Cholinergic Receptor Muscarinic 2 | |||||||||||
CRYAB | Y | [140] | |||||||||
Crystallin Alpha B | |||||||||||
CSRP3 | Y | Y | [131,141] | ||||||||
Cysteine and Glycine Rich Protein 3 | |||||||||||
CTF1 | Y | [142] | |||||||||
Cardiotrophin 1 | |||||||||||
CTNNA3 | Y | [143] | |||||||||
Catenin Alpha 3 | |||||||||||
DES | Y | Y | Y | [75,144,145,146,147] | |||||||
Desmin | |||||||||||
DMD | Y | Y | [59,148,149] | ||||||||
Dystrophin | |||||||||||
DNAJC19 | Y | [150] | |||||||||
DnaJ Heat Shock Protein Family (Hsp40) Member C19 | |||||||||||
DOLK | Y | [151] | |||||||||
Dolichol Kinase | |||||||||||
DSC2 | Y | Y | [84,152] | ||||||||
Desmocollin 2 | |||||||||||
DSG2 | Y | Y | [153,154,155] | ||||||||
Desmoglein 2 | |||||||||||
DSP | Y | Y | [156,157] | ||||||||
Desmoplakin | |||||||||||
EMD | Y | [158] | |||||||||
Emerin | |||||||||||
EYA4 | Y | [159] | |||||||||
EYA Transcriptional Coactivator and Phosphatase 4 | |||||||||||
FBXO32 | Y | [160] | |||||||||
F-Box Protein 32 | |||||||||||
FHL2 | Y | [161] | |||||||||
Four and a Half LIM Domains 2 | |||||||||||
FKTN | Y | [162] | |||||||||
Fukutin | |||||||||||
FKRP | Y | [163] | |||||||||
Fukutin Related Protein | |||||||||||
FLNC | Y | [75] | |||||||||
Filamin C | |||||||||||
FOXD4 | Y | [164] | |||||||||
Forkhead Box D4 | |||||||||||
FSTL5 | Y | [58] | |||||||||
Follistatin Like 5 | |||||||||||
GATAD1 | Y | [165] | |||||||||
GATA Zinc Finger Domain Containing 1 | |||||||||||
HAND1 | Y | [166] | |||||||||
Heart and Neural Crest Derivatives Expressed 1 | |||||||||||
HCG22 | Y | [167] | |||||||||
HLA Complex Group 22 | |||||||||||
HLA-DQB1 | Y | [167] | |||||||||
Major Histocompatibility Complex, Class II, DQ Beta 1 | |||||||||||
HSPB7 | Y | [168] | |||||||||
Heat Shock Protein Family B (Small) Member 7 | |||||||||||
ILK | Y | [169] | |||||||||
Integrin Linked Kinase | |||||||||||
JPH2 | Y | [170] | |||||||||
Junctophilin 2 | |||||||||||
JUP | Y | [171] | |||||||||
Junction Plakoglobin | |||||||||||
LAMA2 | Y | [172] | |||||||||
Laminin Subunit Alpha 2 | |||||||||||
LAMA4 | Y | [169] | |||||||||
Laminin Subunit Alpha 4 | |||||||||||
LAMP2 | Y | Y | [75,173] | ||||||||
Lysosomal Associated Membrane Protein 2 | |||||||||||
LDB3 | Y | Y | [174,175] | ||||||||
LIM Domain Binding 3 | |||||||||||
LMNA | Y | Y | Y | [75,176,177] | |||||||
Lamin A | |||||||||||
LRRC10 | Y | [178] | |||||||||
Leucine Rich Repeat Containing 10 | |||||||||||
MURC | Y | [179] | |||||||||
Muscle Related Coiled-Coil Protein | |||||||||||
MYBPC3 | Y | Y | Y | Y | [24,28,75,180,181,182] | ||||||
Myosin Binding Protein C, Cardiac | |||||||||||
MYH6 | Y | Y | [67,183,184] | ||||||||
Myosin Heavy Chain 6 | |||||||||||
MYH7 | Y | Y | Y | [75,185,186] | |||||||
Myosin Heavy Chain 7 | |||||||||||
MYL2 | Y | [187] | |||||||||
Myosin Light Chain 2 | |||||||||||
MYL3 | Y | [188] | |||||||||
Myosin Light Chain 3 | |||||||||||
MYOZ2 | Y | [189] | |||||||||
Myozenin 2 | |||||||||||
MYPN | Y | [190] | |||||||||
Myopalladin | |||||||||||
NEBL | Y | [191] | |||||||||
Nebulette | |||||||||||
NEXN | Y | [192] | |||||||||
Nexilin F-Actin Binding Protein | |||||||||||
NFKB1 | Y | Y | [95,96] | ||||||||
Nuclear Factor Kappa B Subunit 1 | |||||||||||
NOS3 | Y | [193] | |||||||||
Nitric Oxide Synthase 3 | |||||||||||
OPA3 | Y | [44] | |||||||||
Outer Mitochondrial Membrane Lipid Metabolism Regulator | |||||||||||
PDE3B | Y | [58,124] | |||||||||
Phosphodiesterase 3B | |||||||||||
PDK4 | Y | [56] | |||||||||
Pyruvate Dehydrogenase Kinase 4 | |||||||||||
PKP2 | Y | Y | [84,194] | ||||||||
Plakophilin 2 | |||||||||||
PLEKHM2 | Y | [195] | |||||||||
Pleckstrin Homology and RUN Domain Containing M2 | |||||||||||
PLN | Y | Y | Y | [196,197,198] | |||||||
Phospholamban | |||||||||||
POLG | Y | [199] | |||||||||
DNA Polymerase Gamma, Catalytic Subunit | |||||||||||
PRDM16 | Y | [200] | |||||||||
PR/SET Domain 16 | |||||||||||
PRKAG2 | Y | [201] | |||||||||
Protein Kinase AMP-Activated Non-Catalytic Subunit Gamma 2 | |||||||||||
PSEN1 | Y | [201] | |||||||||
Presenilin 1 | |||||||||||
PSEN2 | Y | [202] | |||||||||
Presenilin 2 | |||||||||||
RBM20 | Y | [203] | |||||||||
RNA Binding Motif Protein 20 | |||||||||||
RETN | Y | [204] | |||||||||
Resistin | |||||||||||
RMND1 | Y | [205] | |||||||||
Required for Meiotic Nuclear Division 1 Homolog | |||||||||||
RRAGC | Y | [206] | |||||||||
Ras Related GTP Binding C | |||||||||||
RYR2 | Y | Y | Y | [207,208,209] | |||||||
Ryanodine Receptor 2 | |||||||||||
SCN5A | Y | [210] | |||||||||
Sodium Voltage-Gated Channel Alpha Subunit 5 | |||||||||||
SDHA | Y | [211] | |||||||||
Succinate Dehydrogenase Complex Flavoprotein Subunit A | |||||||||||
SGCD | Y | [212] | |||||||||
Sarcoglycan Delta | |||||||||||
STRN | Y | Y | [57,94] | ||||||||
Striatin | |||||||||||
SYNE1 | Y | [213] | |||||||||
Spectrin Repeat Containing Nuclear Envelope Protein 1 | |||||||||||
TAZ | Y | [104] | |||||||||
Tafazzin | |||||||||||
TBX20 | Y | [214] | |||||||||
T-Box 20 | |||||||||||
TBX5 | Y | [215] | |||||||||
T-Box 5 | |||||||||||
TCAP | Y | Y | Y | [75,216] | |||||||
Titin-Cap | |||||||||||
TGFB3 | Y | [217] | |||||||||
Transforming Growth Factor Beta 3 | |||||||||||
TMEM43 | Y | [218] | |||||||||
Transmembrane Protein 43 | |||||||||||
TMPO | Y | [219] | |||||||||
Thymopoietin | |||||||||||
TNNC1 | Y | Y | [118,220] | ||||||||
Troponin C1, Slow Skeletal and Cardiac Type | |||||||||||
TNNI3 | Y | Y | Y | [75,79,220,221] | |||||||
Troponin I3, Cardiac Type | |||||||||||
TNNT2 | Y | Y | Y | Y | [46,75,222,223] | ||||||
Troponin T2, Cardiac Type | |||||||||||
TPM1 | Y | Y | Y | [75,183,223] | |||||||
Tropomyosin 1 (Alpha) | |||||||||||
TXNRD2 | Y | [224] | |||||||||
Thioredoxin Reductase 2 | |||||||||||
TTN | Y | Y | Y | [220,225,226] | |||||||
Titin | |||||||||||
VCL | Y | Y | [227,228] | ||||||||
Vinculin | |||||||||||
ZBTB17 | Y | [229] | |||||||||
Zinc Finger and BTB Domain Containing 17 |
References
- Mathers, C.D.; Loncar, D. Projections of global mortality and burden of disease from 2002 to 2030. PLoS Med. 2006, 3, e442. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.; Hogarth, K.A.; O’Sullivan, M.L.; Regnier, M.; Pyle, W.G. 2-deoxyadenosine triphosphate restores the contractile function of cardiac myofibril from adult dogs with naturally occurring dilated cardiomyopathy. Am. J. Physiol. Heart Circ. Physiol. 2016, 310, H80–H91. [Google Scholar] [CrossRef] [PubMed]
- Houser, S.R.; Margulies, K.B.; Murphy, A.M.; Spinale, F.G.; Francis, G.S.; Prabhu, S.D.; Rockman, H.A.; Kass, D.A.; Molkentin, J.D.; Sussman, M.A.; et al. Animal models of heart failure: A scientific statement from the american heart association. Circ. Res. 2012, 111, 131–150. [Google Scholar] [CrossRef] [PubMed]
- Elliott, P.; Andersson, B.; Arbustini, E.; Bilinska, Z.; Cecchi, F.; Charron, P.; Dubourg, O.; Kuhl, U.; Maisch, B.; McKenna, W.J.; et al. Classification of the cardiomyopathies: A position statement from the european society of cardiology working group on myocardial and pericardial diseases. Eur. Heart J. 2008, 29, 270–276. [Google Scholar] [CrossRef] [PubMed]
- Maron, B.J.; Towbin, J.A.; Thiene, G.; Antzelevitch, C.; Corrado, D.; Arnett, D.; Moss, A.J.; Seidman, C.E.; Young, J.B. Contemporary definitions and classification of the cardiomyopathies: An american heart association scientific statement from the council on clinical cardiology, heart failure and transplantation committee; quality of care and outcomes research and functional genomics and translational biology interdisciplinary working groups; and council on epidemiology and prevention. Circulation 2006, 113, 1807–1816. [Google Scholar] [PubMed]
- Strong, V.J.; Grindlay, D.; Redrobe, S.; Cobb, M.; White, K. A systematic review of the literature relating to captive great ape morbidity and mortality. J. Zoo Wildl. Med. 2016, 47, 697–710. [Google Scholar] [CrossRef] [PubMed]
- Twycross. Ape heart project. Available online: https://twycrosszoo.org/conservation/research-at-twycross-zoo/current-research/ape-heart-project/ (accessed on 28 December 2016).
- Fatkin, D. Guidelines for the diagnosis and management of familial dilated cardiomyopathy. Heart Lung Circ. 2007, 16, 19–21. [Google Scholar] [CrossRef] [PubMed]
- Herman, D.S.; Lam, L.; Taylor, M.R.; Wang, L.; Teekakirikul, P.; Christodoulou, D.; Conner, L.; DePalma, S.R.; McDonough, B.; Sparks, E.; et al. Truncations of titin causing dilated cardiomyopathy. N. Engl. J. Med. 2012, 366, 619–628. [Google Scholar] [CrossRef] [PubMed]
- Nihoyannopoulos, P.; Dawson, D. Restrictive cardiomyopathies. Eur. J. Echocardiogr. 2009, 10, iii23–iii33. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Castro, M.; Reguero, J.R.; Alvarez, V.; Batalla, A.; Soto, M.I.; Albaladejo, V.; Coto, E. Hypertrophic cardiomyopathy linked to homozygosity for a new mutation in the myosin-binding protein c gene (a627v) suggests a dosage effect. Int. J. Cardiol. 2005, 102, 501–507. [Google Scholar] [CrossRef] [PubMed]
- Hoedemaekers, Y.M.; Caliskan, K.; Majoor-Krakauer, D.; van de Laar, I.; Michels, M.; Witsenburg, M.; ten Cate, F.J.; Simoons, M.L.; Dooijes, D. Cardiac beta-myosin heavy chain defects in two families with non-compaction cardiomyopathy: Linking non-compaction to hypertrophic, restrictive, and dilated cardiomyopathies. Eur. Heart J. 2007, 28, 2732–2737. [Google Scholar] [CrossRef] [PubMed]
- Jarcho, J.A.; McKenna, W.; Pare, J.A.; Solomon, S.D.; Holcombe, R.F.; Dickie, S.; Levi, T.; Donis-Keller, H.; Seidman, J.G.; Seidman, C.E. Mapping a gene for familial hypertrophic cardiomyopathy to chromosome 14q1. N. Engl. J. Med. 1989, 321, 1372–1378. [Google Scholar] [CrossRef] [PubMed]
- Geisterfer-Lowrance, A.A.; Kass, S.; Tanigawa, G.; Vosberg, H.P.; McKenna, W.; Seidman, C.E.; Seidman, J.G. A molecular basis for familial hypertrophic cardiomyopathy: A beta cardiac myosin heavy chain gene missense mutation. Cell 1990, 62, 999–1006. [Google Scholar] [CrossRef]
- Elliott, P.M.; Anastasakis, A.; Borger, M.A.; Borggrefe, M.; Cecchi, F.; Charron, P.; Hagege, A.A.; Lafont, A.; Limongelli, G.; Mahrholdt, H.; et al. 2014 ESC Guidelines on diagnosis and management of hypertrophic cardiomyopathy. The Task Force for the Diagnosis and Management of Hypertrophic Cardiomyopathy of the European Society of Cardiology (ESC). Eur. Heart J. 2014, 35, 2733–2779. [Google Scholar] [PubMed]
- Maron, B.J.; Maron, M.S.; Semsarian, C. Genetics of hypertrophic cardiomyopathy after 20 years: Clinical perspectives. J. Am. Coll. Cardiol. 2012, 60, 705–715. [Google Scholar] [CrossRef] [PubMed]
- Landstrom, A.P.; Ackerman, M.J. Mutation type is not clinically useful in predicting prognosis in hypertrophic cardiomyopathy. Circulation 2010, 122, 2441–2449; discussion 2450. [Google Scholar] [CrossRef] [PubMed]
- McNally, E.M.; Golbus, J.R.; Puckelwartz, M.J. Genetic mutations and mechanisms in dilated cardiomyopathy. J. Clin. Investig. 2013, 123, 19–26. [Google Scholar] [CrossRef] [PubMed]
- Fox, P.R.; Liu, S.-K.; Maron, B.J. Echocardiographic assessment of spontaneously occurring feline hypertrophic cardiomyopathy. An Animal Model of Human Disease. Circulation 1995, 92, 2645–2651. [Google Scholar] [PubMed]
- Egenvall, A.; Bonnett, B.N.; Häggström, J. Heart disease as a cause of death in insured swedish dogs younger than 10 years of age. J. Vet. Intern. Med. 2006, 20, 894–903. [Google Scholar] [CrossRef] [PubMed]
- Washizu, M.; Takemura, N.; Machida, N.; Nawa, H.; Yamamoto, T.; Mitake, H.; Washizu, T. Hypertrophic cardiomyopathy in an aged dog. J. Vet. Med. Sci. 2003, 65, 753–756. [Google Scholar] [CrossRef] [PubMed]
- Paige, C.F.; Abbott, J.A.; Elvinger, F.; Pyle, R.L. Prevalence of cardiomyopathy in apparently healthy cats. J. Am. Vet. Med. Assoc. 2009, 234, 1398–1403. [Google Scholar] [CrossRef] [PubMed]
- Kittleson, M.D.; Meurs, K.M.; Munro, M.J.; Kittleson, J.A.; Liu, S.K.; Pion, P.D.; Towbin, J.A. Familial hypertrophic cardiomyopathy in maine coon cats: An animal model of human disease. Circulation 1999, 99, 3172–3180. [Google Scholar] [CrossRef] [PubMed]
- Meurs, K.M.; Norgard, M.M.; Ederer, M.M.; Hendrix, K.P.; Kittleson, M.D. A substitution mutation in the myosin binding protein c gene in ragdoll hypertrophic cardiomyopathy. Genomics 2007, 90, 261–264. [Google Scholar] [CrossRef] [PubMed]
- Langhorn, R.; Willesen, J.L.; Tarnow, I.; Kjelgaard-Hansen, M.; Koch, J. Cardiac troponin i in three cat breeds with hypertrophic cardiomyopathy. Vet. Record 2016, 178, 532. [Google Scholar] [CrossRef] [PubMed]
- Meurs, K.M.; Sanchez, X.; David, R.M.; Bowles, N.E.; Towbin, J.A.; Reiser, P.J.; Kittleson, J.A.; Munro, M.J.; Dryburgh, K.; Macdonald, K.A.; et al. A cardiac myosin binding protein c mutation in the maine coon cat with familial hypertrophic cardiomyopathy. Hum. Mol. Genet. 2005, 14, 3587–3593. [Google Scholar] [CrossRef] [PubMed]
- Wess, G.; Schinner, C.; Weber, K.; Kuchenhoff, H.; Hartmann, K. Association of a31p and a74t polymorphisms in the myosin binding protein c3 gene and hypertrophic cardiomyopathy in maine coon and other breed cats. J. Vet Intern Med. 2010, 24, 527–532. [Google Scholar] [CrossRef] [PubMed]
- Watkins, H.; Conner, D.; Thierfelder, L.; Jarcho, J.A.; MacRae, C.; McKenna, W.J.; Maron, B.J.; Seidman, J.G.; Seidman, C.E. Mutations in the cardiac myosin binding protein-c gene on chromosome 11 cause familial hypertrophic cardiomyopathy. Nat. Genet. 1995, 11, 434–437. [Google Scholar] [CrossRef] [PubMed]
- Borgeat, K.; Sherwood, K.; Payne, J.R.; Luis Fuentes, V.; Connolly, D.J. Plasma cardiac troponin i concentration and cardiac death in cats with hypertrophic cardiomyopathy. J. Vet Intern. Med. 2014, 28, 1731–1737. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.Y.; Tsou, H.L.; Chiu, Y.T.; Shyu, J.J.; Wu, J.J.; Lin, J.H.; Liu, S.K. Heritability estimate of hypertrophic cardiomyopathy in pigs (sus scrofa domestica). Lab. Anim. Sci. 1996, 46, 310–314. [Google Scholar] [PubMed]
- Tardiff, J.C.; Hewett, T.E.; Palmer, B.M.; Olsson, C.; Factor, S.M.; Moore, R.L.; Robbins, J.; Leinwand, L.A. Cardiac troponin t mutations result in allele-specific phenotypes in a mouse model for hypertrophic cardiomyopathy. J. Clin. Investig. 1999, 104, 469–481. [Google Scholar] [CrossRef] [PubMed]
- Marian, A.J.; Wu, Y.; Lim, D.-S.; McCluggage, M.; Youker, K.; Yu, Q.-t.; Brugada, R.; DeMayo, F.; Quinones, M.; Roberts, R. A transgenic rabbit model for human hypertrophic cardiomyopathy. The J. Clin. Investig. 1999, 104, 1683–1692. [Google Scholar] [CrossRef] [PubMed]
- Maekawa, K.; Hirayama, A.; Iwata, Y.; Tajima, Y.; Nishimaki-Mogami, T.; Sugawara, S.; Ueno, N.; Abe, H.; Ishikawa, M.; Murayama, M.; et al. Global metabolomic analysis of heart tissue in a hamster model for dilated cardiomyopathy. J. Mol. Cell. Cardiol. 2013, 59, 76–85. [Google Scholar]
- Sakamoto, A. Molecular pathogenesis of severe cardiomyopathy in the to-2 hamster. Exp. Clin. Cardiol. 2003, 8, 143–146. [Google Scholar] [PubMed]
- Sakamoto, A.; Ono, K.; Abe, M.; Jasmin, G.; Eki, T.; Murakami, Y.; Masaki, T.; Toyooka, T.; Hanaoka, F. Both hypertrophic and dilated cardiomyopathies are caused by mutation of the same gene, delta-sarcoglycan, in hamster: An animal model of disrupted dystrophin-associated glycoprotein complex. Proc. Natl. Acad. Sci. USA 1997, 94, 13873–13878. [Google Scholar] [CrossRef] [PubMed]
- Guttmann, O.P.; Mohiddin, S.A.; Elliott, P.M. Almanac 2014: Cardiomyopathies. Heart 2014, 100, 756–764. [Google Scholar] [CrossRef] [PubMed]
- Raju, H.; Alberg, C.; Sagoo, G.S.; Burton, H.; Behr, E.R. Inherited cardiomyopathies. Br. Med. J. 2011, 343, d6966. [Google Scholar] [CrossRef] [PubMed]
- Hershberger, R.E.; Morales, A.; Siegfried, J.D. Clinical and genetic issues in dilated cardiomyopathy: A review for genetics professionals. Genet. Med. 2010, 12, 655–667. [Google Scholar] [CrossRef] [PubMed]
- Codd, M.B.; Sugrue, D.D.; Gersh, B.J.; Melton, L.J. Epidemiology of idiopathic dilated and hypertrophic cardiomyopathy. A population-based study in olmsted county, minnesota, 1975–1984. Circulation 1989, 80, 564–572. [Google Scholar] [CrossRef] [PubMed]
- Posafalvi, A.; Herkert, J.C.; Sinke, R.J.; van den Berg, M.P.; Mogensen, J.; Jongbloed, J.D.; van Tintelen, J.P. Clinical utility gene card for: Dilated cardiomyopathy (cmd). Eur. J. Hum. Genet. 2013, 21. [Google Scholar] [CrossRef] [PubMed]
- Dukes-McEwan, J.; Borgarelli, M.; Tidholm, A.; Vollmar, A.C.; Haggstrom, J. Proposed guidelines for the diagnosis of canine idiopathic dilated cardiomyopathy. J. Vet. Cardiol. 2003, 5, 7–19. [Google Scholar] [CrossRef]
- Hambrook, L.E.; Bennett, P.F. Effect of pimobendan on the clinical outcome and survival of cats with non-taurine responsive dilated cardiomyopathy. J. Feline Med. Surg. 2012, 14, 233–239. [Google Scholar] [CrossRef] [PubMed]
- Weekes, J.; Wheeler, C.H.; Yan, J.X.; Weil, J.; Eschenhagen, T.; Scholtysik, G.; Dunn, M.J. Bovine dilated cardiomyopathy: Proteomic analysis of an animal model of human dilated cardiomyopathy. Electrophoresis 1999, 20, 898–906. [Google Scholar] [CrossRef]
- Owczarek-Lipska, M.; Plattet, P.; Zipperle, L.; Drogemuller, C.; Posthaus, H.; Dolf, G.; Braunschweig, M.H. A nonsense mutation in the optic atrophy 3 gene (opa3) causes dilated cardiomyopathy in red holstein cattle. Genomics 2011, 97, 51–57. [Google Scholar] [CrossRef] [PubMed]
- Nart, P.; Thompson, H.; Barrett, D.C.; Armstrong, S.C.; McPhaden, A.R. Clinical and pathological features of dilated cardiomyopathy in holstein-friesian cattle. Vet. Record 2004, 155, 355–361. [Google Scholar] [CrossRef]
- Biesiadecki, B.J.; Jin, J.-P. Exon skipping in cardiac troponin t of turkeys with inherited dilated cardiomyopathy. J. Biol. Chem. 2002, 277, 18459–18468. [Google Scholar] [CrossRef] [PubMed]
- Frame, D.D.; Kelly, E.J.; Van Wettere, A. Dilated cardiomyopathy in a rio grande wild turkey (meleagris gallopavo intermedia) in southern Utah, USA, 2013. J. Wildl. Dis. 2015, 51, 790–792. [Google Scholar] [CrossRef] [PubMed]
- Wilson, F.D.; Magee, D.L.; Jones, K.H.; Baravik-Munsell, E.; Cummings, T.S.; Wills, R.W.; Pace, L.W. Morphometric documentation of a high prevalence of left ventricular dilated cardiomyopathy in both clinically normal and cyanotic mature commercial broiler breeder roosters with comparisons to market-age broilers. Avian Dis. 2016, 60, 589–595. [Google Scholar] [CrossRef] [PubMed]
- Pion, P.D.; Kittleson, M.D.; Rogers, Q.R.; Morris, J.G. Myocardial failure in cats associated with low plasma taurine: A reversible cardiomyopathy. Science 1987, 237, 764–768. [Google Scholar] [CrossRef] [PubMed]
- Ferasin, L.; Sturgess, C.P.; Cannon, M.J.; Caney, S.M.; Gruffydd-Jones, T.J.; Wotton, P.R. Feline idiopathic cardiomyopathy: A retrospective study of 106 cats (1994-2001). J. Feline Med. Surg. 2003, 5, 151–159. [Google Scholar] [CrossRef]
- Lawler, D.F.; Templeton, A.J.; Monti, K.L. Evidence for genetic involvement in feline dilated cardiomyopathy. J. Vet Intern Med. 1993, 7, 383–387. [Google Scholar] [CrossRef] [PubMed]
- Simpson, S.; Edwards, J.; Ferguson-Mignan, T.F.N.; Cobb, M.; Mongan, N.P.; Rutland, C.S. Genetics of human and canine dilated cardiomyopathy. Int. J. Genom. 2015. [Google Scholar] [CrossRef] [PubMed]
- Towbin, J.A.; Lowe, A.M.; Colan, S.D.; Sleeper, L.A.; Orav, E.J.; Clunie, S.; Messere, J.; Cox, G.F.; Lurie, P.R.; Hsu, D.; et al. Incidence, causes, and outcomes of dilated cardiomyopathy in children. J. Am. Med. Assoc. 2006, 296, 1867–1876. [Google Scholar] [CrossRef] [PubMed]
- Dambach, D.M.; Lannon, A.; Sleeper, M.M.; Buchanan, J. Familial dilated cardiomyopathy of young portuguese water dogs. J. Vet. Intern. Med. 1999, 13, 65–71. [Google Scholar] [CrossRef] [PubMed]
- Mausberg, T.B.; Wess, G.; Simak, J.; Keller, L.; Drogemuller, M.; Drogemuller, C.; Webster, M.T.; Stephenson, H.; Dukes-McEwan, J.; Leeb, T. A locus on chromosome 5 is associated with dilated cardiomyopathy in doberman pinschers. PloS ONE 2011, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meurs, K.M.; Lahmers, S.; Keene, B.W.; White, S.N.; Oyama, M.A.; Mauceli, E.; Lindblad-Toh, K. A splice site mutation in a gene encoding for pdk4, a mitochondrial protein, is associated with the development of dilated cardiomyopathy in the Doberman pinscher. Hum. Genet. 2012, 131, 1319–1325. [Google Scholar] [CrossRef] [PubMed]
- Meurs, K.M.; Stern, J.A.; Sisson, D.D.; Kittleson, M.D.; Cunningham, S.M.; Ames, M.K.; Atkins, C.E.; DeFrancesco, T.; Hodge, T.E.; Keene, B.W.; et al. Association of dilated cardiomyopathy with the striatin mutation genotype in boxer dogs. J. Vet Intern Med. 2013, 27, 1437–1440. [Google Scholar] [PubMed]
- Philipp, U.; Vollmar, A.; Haggstrom, J.; Thomas, A.; Distl, O. Multiple loci are associated with dilated cardiomyopathy in Irish wolfhounds. PLos ONE 2012, 7. [Google Scholar] [CrossRef] [PubMed]
- Schatzberg, S.J.; Olby, N.J.; Breen, M.; Anderson, L.V.B.; Langford, C.F.; Dickens, H.F.; Wilton, S.D.; Zeiss, C.J.; Binns, M.M.; Kornegay, J.N.; et al. Molecular analysis of a spontaneous dystrophin 'knockout' dog. Neuromuscular Disord. 1999, 9, 289–295. [Google Scholar] [CrossRef]
- Werner, P.; Raducha, M.G.; Prociuk, U.; Sleeper, M.M.; Van Winkle, T.J.; Henthorn, P.S. A novel locus for dilated cardiomyopathy maps to canine chromosome 8. Genomics 2008, 91, 517–521. [Google Scholar] [CrossRef] [PubMed]
- Dolf, G.; Stricker, C.; Tontis, A.; Martig, J.; Gaillard, C. Evidence for autosomal recessive inheritance of a major gene for bovine dilated cardiomyopathy. J. Anim. Sci. 1998, 76, 1824–1829. [Google Scholar] [CrossRef] [PubMed]
- Pinto, J.R.; Yang, S.W.; Hitz, M.P.; Parvatiyar, M.S.; Jones, M.A.; Liang, J.; Kokta, V.; Talajic, M.; Tremblay, N.; Jaeggi, M.; et al. Fetal cardiac troponin isoforms rescue the increased ca2+ sensitivity produced by a novel double deletion in cardiac troponin t linked to restrictive cardiomyopathy: A clinical, genetic, and functional approach. J. Biol. Chem. 2011, 286, 20901–20912. [Google Scholar] [CrossRef] [PubMed]
- Manning, E.P.; Guinto, P.J.; Tardiff, J.C. Correlation of molecular and functional effects of mutations in cardiac troponin t linked to familial hypertrophic cardiomyopathy: An integrative in silico/in vitro approach. J. Biol. Chem. 2012, 287, 14515–14523. [Google Scholar] [CrossRef] [PubMed]
- Rutland, C.S.; Polo-Parada, L.; Ehler, E.; Alibhai, A.; Thorpe, A.; Suren, S.; Emes, R.D.; Patel, B.; Loughna, S. Knockdown of embryonic myosin heavy chain reveals an essential role in the morphology and function of the developing heart. Development 2011, 138, 3955–3966. [Google Scholar] [CrossRef] [PubMed]
- Rutland, C.; Warner, L.; Thorpe, A.; Alibhai, A.; Robinson, T.; Shaw, B.; Layfield, R.; Brook, J.D.; Loughna, S. Knockdown of alpha myosin heavy chain disrupts the cytoskeleton and leads to multiple defects during chick cardiogenesis. J. Anat. 2009, 214, 905–915. [Google Scholar] [CrossRef] [PubMed]
- Granados-Riveron, J.T.; Ghosh, T.K.; Pope, M.; Bu’Lock, F.; Thornborough, C.; Eason, J.; Kirk, E.P.; Fatkin, D.; Feneley, M.P.; Harvey, R.P.; et al. Alpha-cardiac myosin heavy chain (myh6) mutations affecting myofibril formation are associated with congenital heart defects. Hum. Mol. Genet. 2010, 19, 4007–4016. [Google Scholar] [CrossRef] [PubMed]
- Carniel, E.; Taylor, M.R.; Sinagra, G.; Di Lenarda, A.; Ku, L.; Fain, P.R.; Boucek, M.M.; Cavanaugh, J.; Miocic, S.; Slavov, D.; et al. Alpha-myosin heavy chain: A sarcomeric gene associated with dilated and hypertrophic phenotypes of cardiomyopathy. Circulation 2005, 112, 54–59. [Google Scholar] [CrossRef] [PubMed]
- Toyoda, Y.; Okada, M.; Kashem, M.A. A canine model of dilated cardiomyopathy induced by repetitive intracoronary doxorubicin administration. J. Thorac. Cardiovasc. Surg. 1998, 115, 1367–1373. [Google Scholar] [CrossRef]
- Christiansen, S.; Redmann, K.; Scheld, H.H.; Jahn, U.R.; Stypmann, J.; Fobker, M.; Gruber, A.D.; Hammel, D. Adriamycin-induced cardiomyopathy in the dog—An appropriate model for research on partial left ventriculectomy? J. Heart Lung Transplant. 2002, 21, 783–790. [Google Scholar] [CrossRef]
- Nikolaidis, L.A.; Elahi, D.; Hentosz, T.; Doverspike, A.; Huerbin, R.; Zourelias, L.; Stolarski, C.; Shen, Y.T.; Shannon, R.P. Recombinant glucagon-like peptide-1 increases myocardial glucose uptake and improves left ventricular performance in conscious dogs with pacing-induced dilated cardiomyopathy. Circulation 2004, 110, 955–961. [Google Scholar] [CrossRef] [PubMed]
- Brodehl, A.; Ferrier, R.A.; Hamilton, S.J.; Greenway, S.C.; Brundler, M.-A.; Yu, W.; Gibson, W.T.; McKinnon, M.L.; McGillivray, B.; Alvarez, N.; et al. Mutations in flnc are associated with familial restrictive cardiomyopathy. Hum. Mutat. 2016, 37, 269–279. [Google Scholar] [CrossRef] [PubMed]
- Sasaki, N.; Garcia, M.; Ko, H.H.; Sharma, S.; Parness, I.A.; Srivastava, S. Applicability of published guidelines for assessment of left ventricular diastolic function in adults to children with restrictive cardiomyopathy: An observational study. Pediatr. Cardiol. 2015, 36, 386–392. [Google Scholar] [CrossRef] [PubMed]
- Kubo, T.; Gimeno, J.R.; Bahl, A.; Steffensen, U.; Steffensen, M.; Osman, E.; Thaman, R.; Mogensen, J.; Elliott, P.M.; Doi, Y.; et al. Prevalence, clinical significance, and genetic basis of hypertrophic cardiomyopathy with restrictive phenotype. J. Am. Coll. Cardiol. 2007, 49, 2419–2426. [Google Scholar] [CrossRef] [PubMed]
- Mogensen, J.; Kubo, T.; Duque, M.; Uribe, W.; Shaw, A.; Murphy, R.; Gimeno, J.R.; Elliott, P.; McKenna, W.J. Idiopathic restrictive cardiomyopathy is part of the clinical expression of cardiac troponin i mutations. J. Clin. Investig. 2003, 111, 209–216. [Google Scholar] [CrossRef] [PubMed]
- Gallego-Delgado, M.; Delgado, J.F.; Brossa-Loidi, V.; Palomo, J.; Marzoa-Rivas, R.; Perez-Villa, F.; Salazar-Mendiguchia, J.; Ruiz-Cano, M.J.; Gonzalez-Lopez, E.; Padron-Barthe, L.; et al. Idiopathic restrictive cardiomyopathy is primarily a genetic disease. J. Am. Coll. Cardiol. 2016, 67, 3021–3023. [Google Scholar] [PubMed]
- Mouton, J.M.; Pellizzon, A.S.; Goosen, A.; Kinnear, C.J.; Herbst, P.G.; Brink, P.A.; Moolman-Smook, J.C. Diagnostic disparity and identification of two tnni3 gene mutations, one novel and one arising de novo, in south african patients with restrictive cardiomyopathy and focal ventricular hypertrophy. Cardiovasc. J. Afr. 2015, 26, 63–69. [Google Scholar] [CrossRef] [PubMed]
- Fox, P.R.; Basso, C.; Thiene, G.; Maron, B.J. Spontaneously occurring restrictive nonhypertrophied cardiomyopathy in domestic cats: A new animal model of human disease. Cardiovasc. Pathol. 2014, 23, 28–34. [Google Scholar] [CrossRef] [PubMed]
- Kimura, Y.; Karakama, S.; Hirakawa, A.; Tsuchiaka, S.; Kobayashi, M.; Machida, N. Pathological features and pathogenesis of the endomyocardial form of restrictive cardiomyopathy in cats. J. Comp. Pathol. 2016, 155, 190–198. [Google Scholar] [CrossRef] [PubMed]
- Davis, J.; Yasuda, S.; Palpant, N.J.; Martindale, J.; Stevenson, T.; Converso, K.; Metzger, J.M. Diastolic dysfunction and thin filament dysregulation resulting from excitation-contraction uncoupling in a mouse model of restrictive cardiomyopathy. J. Mol. Cell. Cardiol. 2012, 53, 446–457. [Google Scholar] [CrossRef] [PubMed]
- Bakeer, N.; James, J.; Roy, S.; Wansapura, J.; Shanmukhappa, S.K.; Lorenz, J.N.; Osinska, H.; Backer, K.; Huby, A.C.; Shrestha, A.; et al. Sickle cell anemia mice develop a unique cardiomyopathy with restrictive physiology. Proc. Natl. Acad. Sci. USA 2016, 113, E5182–5191. [Google Scholar] [CrossRef] [PubMed]
- Niss, O.; Quinn, C.T.; Lane, A.; Daily, J.; Khoury, P.R.; Bakeer, N.; Kimball, T.R.; Towbin, J.A.; Malik, P.; Taylor, M.D. Cardiomyopathy with restrictive physiology in sickle cell disease. JACC Cardiovasc. Imaging 2016, 9, 243–252. [Google Scholar]
- Basso, C.; Corrado, D.; Marcus, F.I.; Nava, A.; Thiene, G. Arrhythmogenic right ventricular cardiomyopathy. Lancet 2009, 373, 1289–1300. [Google Scholar] [CrossRef]
- Ruwald, A.-C.; Marcus, F.; Estes, N.A.M.; Link, M.; McNitt, S.; Polonsky, B.; Calkins, H.; Towbin, J.A.; Moss, A.J.; Zareba, W. Association of competitive and recreational sport participation with cardiac events in patients with arrhythmogenic right ventricular cardiomyopathy: Results from the north american multidisciplinary study of arrhythmogenic right ventricular cardiomyopathy. Eur. Heart J. 2015, 36, 1735–1743. [Google Scholar] [CrossRef] [PubMed]
- Elliott, P.; O’Mahony, C.; Syrris, P.; Evans, A.; Rivera Sorensen, C.; Sheppard, M.N.; Carr-White, G.; Pantazis, A.; McKenna, W.J. Prevalence of desmosomal protein gene mutations in patients with dilated cardiomyopathy. Circ. Cardiovasc. Genet. 2010, 3, 314–322. [Google Scholar] [CrossRef] [PubMed]
- Lazzarini, E.; Jongbloed, J.D.; Pilichou, K.; Thiene, G.; Basso, C.; Bikker, H.; Charbon, B.; Swertz, M.; van Tintelen, J.P.; van der Zwaag, P.A. The arvd/c genetic variants database: 2014 update. Hum. Mutat. 2015, 36, 403–410. [Google Scholar] [CrossRef] [PubMed]
- Patel, H.; Shah, P.; Rampal, U.; Shamoon, F.; Tiyyagura, S. Arrythmogenic right ventricular dysplasia/cardiomyopathy (arvd/c) and cathecholaminergic polymorphic ventricular tachycardia (cpvt): A phenotypic spectrum seen in same patient. J. Electrocardiol. 2015, 48, 874–878. [Google Scholar] [CrossRef] [PubMed]
- Kucerova, D.; Doka, G.; Kruzliak, P.; Turcekova, K.; Kmecova, J.; Brnoliakova, Z.; Kyselovic, J.; Kirchhefer, U.; Muller, F.U.; Krenek, P.; et al. Unbalanced upregulation of ryanodine receptor 2 plays a particular role in early development of daunorubicin cardiomyopathy. Am. J. Transl. Res. 2015, 7, 1280–1294. [Google Scholar] [PubMed]
- Severini, G.M.; Krajinovic, M.; Pinamonti, B.; Sinagra, G.; Fioretti, P.; Brunazzi, M.C.; Falaschi, A.; Camerini, F.; Giacca, M.; Mestroni, L. A new locus for arrhythmogenic right ventricular dysplasia on the long arm of chromosome 14. Genomics 1996, 31, 193–200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rampazzo, A.; Nava, A.; Miorin, M.; Fonderico, P.; Pope, B.; Tiso, N.; Livolsi, B.; Zimbello, R.; Thiene, G.; Danieli, G.A. Arvd4, a new locus for arrhythmogenic right ventricular cardiomyopathy, maps to chromosome 2 long arm. Genomics 1997, 45, 259–263. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Ahmad, F.; Gardner, M.J.; Weilbaecher, D.; Hill, R.; Karibe, A.; Gonzalez, O.; Tapscott, T.; Sharratt, G.P.; Bachinski, L.L.; et al. The locus of a novel gene responsible for arrhythmogenic right-ventricular dysplasia characterized by early onset and high penetrance maps to chromosome 10p12-p14. Am. J. Hum. Genet. 2000, 66, 148–156. [Google Scholar] [CrossRef] [PubMed]
- Matolweni, L.O.; Bardien, S.; Rebello, G.; Oppon, E.; Munclinger, M.; Ramesar, R.; Watkins, H.; Mayosi, B.M. Arrhythmogenic right ventricular cardiomyopathy type 6 (arvc6): Support for the locus assignment, narrowing of the critical region and mutation screening of three candidate genes. BMC Med. Genet. 2006, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Melberg, A.; Oldfors, A.; Blomstrom-Lundqvist, C.; Stalberg, E.; Carlsson, B.; Larrson, E.; Lidell, C.; Eeg-Olofsson, K.E.; Wikstrom, G.; Henriksson, G.; et al. Autosomal dominant myofibrillar myopathy with arrhythmogenic right ventricular cardiomyopathy linked to chromosome 10q. Ann. Neurol. 1999, 46, 684–692. [Google Scholar] [CrossRef]
- Basso, C.; Fox, P.R.; Meurs, K.M.; Towbin, J.A.; Spier, A.W.; Calabrese, F.; Maron, B.J.; Thiene, G. Arrhythmogenic right ventricular cardiomyopathy causing sudden cardiac death in boxer dogs: A new animal model of human disease. Circulation 2004, 109, 1180–1185. [Google Scholar] [CrossRef] [PubMed]
- Meurs, K.M.; Mauceli, E.; Lahmers, S.; Acland, G.M.; White, S.N.; Lindblad-Toh, K. Genome-wide association identifies a deletion in the 3' untranslated region of striatin in a canine model of arrhythmogenic right ventricular cardiomyopathy. Hum. Genet. 2010, 128, 315–324. [Google Scholar] [CrossRef] [PubMed]
- Simpson, M.A.; Cook, R.W.; Solanki, P.; Patton, M.A.; Dennis, J.A.; Crosby, A.H. A mutation in nfκb interacting protein 1 causes cardiomyopathy and woolly haircoat syndrome of poll hereford cattle. Anim. Genet. 2009, 40, 42–46. [Google Scholar] [CrossRef] [PubMed]
- Zhou, B.; Rao, L.; Peng, Y.; Wang, Y.; Li, Y.; Gao, L.; Chen, Y.; Xue, H.; Song, Y.; Liao, M.; et al. Functional polymorphism of the nfkb1 gene promoter is related to the risk of dilated cardiomyopathy. BMC Med. Genet. 2009, 10. [Google Scholar] [CrossRef] [PubMed]
- Fox, P.R.; Maron, B.J.; Basso, C.; Liu, S.-K.; Thiene, G. Spontaneously occurring arrhythmogenic right ventricular cardiomyopathy in the domestic cat. New Anim. Model Similar Hum. Dis. 2000, 102, 1863–1870. [Google Scholar]
- Freel, K.M.; Morrison, L.R.; Thompson, H.; Else, R.W. Arrhythmogenic right ventricular cardiomyopathy as a cause of unexpected cardiac death in two horses. Vet. Record 2010, 166, 718–722. [Google Scholar] [CrossRef] [PubMed]
- Raftery, A.G.; Garcia, N.C.; Thompson, H.; Sutton, D.G.M. Arrhythmogenic right ventricular cardiomyopathy secondary to adipose infiltration as a cause of episodic collapse in a horse. Ir. Vet J. 2015, 68. [Google Scholar] [CrossRef]
- Cohen, N.; Muntoni, F. Multiple pathogenetic mechanisms in x linked dilated cardiomyopathy. Heart 2004, 90, 835–841. [Google Scholar] [CrossRef] [PubMed]
- Chamberlain, R.C.; Smith, E.C.; Campbell, M.J. Novel rod domain duplication in dystrophin resulting in x-linked dilated cardiomyopathy. Pediatr. Neurol. 2015, 53, 439–441. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, A. X-linked dilated cardiomyopathy: A cardiospecific phenotype of dystrophinopathy. Pharmaceuticals 2015, 8, 303–320. [Google Scholar] [CrossRef] [PubMed]
- D’Arcy, C.; Kanellakis, V.; Forbes, R.; Wilding, B.; McGrath, M.; Howell, K.; Ryan, M.; McLean, C. X-linked recessive distal myopathy with hypertrophic cardiomyopathy caused by a novel mutation in the fhl1 gene. J. Child. Neurol. 2015, 30, 1211–1217. [Google Scholar] [CrossRef] [PubMed]
- Bione, S.; DAdamo, P.; Maestrini, E.; Gedeon, A.K.; Bolhuis, P.A.; Toniolo, D. A novel x-linked gene, g4.5. Is responsible for barth syndrome. Nat. Genet. 1996, 12, 385–389. [Google Scholar] [CrossRef] [PubMed]
- Bione, S.; Maestrini, E.; Rivella, S.; Mancini, M.; Regis, S.; Romeo, G.; Toniolo, D. Identification of a novel x-linked gene responsible for emery-dreifuss muscular-dystrophy. Nat. Genet. 1994, 8, 323–327. [Google Scholar] [CrossRef] [PubMed]
- Nishino, I.; Fu, J.; Tanji, K.; Yamada, T.; Shimojo, S.; Koori, T.; Mora, M.; Riggs, J.E.; Oh, S.J.; Koga, Y.; et al. Primary lamp-2 deficiency causes x-linked vacuolar cardiomyopathy and myopathy (danon disease). Nature 2000, 406, 906–910. [Google Scholar] [CrossRef] [PubMed]
- Ho, M.F.; Chelly, J.; Carter, N.; Danek, A.; Crocker, P.; Monaco, A.P. Isolation of the gene for mcleod syndrome that encodes a novel membrane-transport protein. Cell 1994, 77, 869–880. [Google Scholar] [CrossRef]
- Hoffman, E.P.; Brown, R.H.; Kunkel, L.M. Dystrophin - the protein product of the duchenne muscular-dystrophy locus. Cell 1987, 51, 919–928. [Google Scholar] [CrossRef]
- Zeviani, M.; Taroni, F. Mitochondrial diseases. Baillieres Clin. Neurol. 1994, 3, 315–334. [Google Scholar] [PubMed]
- Wang, Q.; Liao, Y.; Gong, F.; Mao, H.; Zhang, J. Possible association of hla-drb1 gene with the autoantibody against myocardial mitochondria adp/atp carrier in dilated cardiomyopathy. J. Huazhong Univ. Sci. Technol. Med. Sci. 2002, 22, 231–232, 245. [Google Scholar]
- Terasaki, F.; Tanaka, M.; Kawamura, K.; Kanzaki, Y.; Okabe, M.; Hayashi, T.; Shimomura, H.; Ito, T.; Suwa, M.; Gong, J.S.; et al. A case of cardiomyopathy showing progression from the hypertrophic to the dilated form: Association of mt8348A-->G mutation in the mitochondrial trna(lys) gene with severe ultrastructural alterations of mitochondria in cardiomyocytes. Jpn. Circ. J. 2001, 65, 691–694. [Google Scholar] [CrossRef] [PubMed]
- Papadopoulou, L.C.; Theophilidis, G.; Thomopoulos, G.N.; Tsiftsoglou, A.S. Structural and functional impairment of mitochondria in adriamycin-induced cardiomyopathy in mice: Suppression of cytochrome c oxidase ii gene expression. Biochem. Pharmacol. 1999, 57, 481–489. [Google Scholar] [CrossRef]
- Sliwa, K.; Hilfiker-Kleiner, D.; Petrie, M.C.; Mebazaa, A.; Pieske, B.; Buchmann, E.; Regitz-Zagrosek, V.; Schaufelberger, M.; Tavazzi, L.; van Veldhuisen, D.J.; et al. Current state of knowledge on aetiology, diagnosis, management, and therapy of peripartum cardiomyopathy: A position statement from the heart failure association of the european society of cardiology working group on peripartum cardiomyopathy. Eur. J. Heart Fail. 2010, 12, 767–778. [Google Scholar] [CrossRef] [PubMed]
- Lacuata, A.Q.; Yamada, H.; Hirose, T. Atrial-fibrillation (af) in a cow with postpartum cardiomyopathy (ppcm) - case-report. Philipp J. Vet Med. 1980, 19, 97. [Google Scholar]
- Sandusky, G.E.; Cho, D.Y. Congestive cardiomyopathy in a dog associated with pregnancy. Cornell Vet. 1984, 74, 60–64. [Google Scholar] [PubMed]
- Bollen, I.A.E.; Van Deel, E.D.; Kuster, D.W.D.; Van Der Velden, J. Peripartum cardiomyopathy and dilated cardiomyopathy: Different at heart. Front. Physiol. 2015, 5. [Google Scholar] [CrossRef] [PubMed]
- Hilfiker-Kleiner, D.; Struman, I.; Luchtefeld, M.; Forster, O.; Sliwa, K.; Drexler, H. A cathepsin d-cleaved 16kda form of prolactin mediates postpartum cardiomyopathy: Inhibition of prolactin as a novel therapy option. Circulation 2006, 114, 89. [Google Scholar]
- van Spaendonck-Zwarts, K.Y.; van Tintelen, J.P.; van Veldhuisen, D.J.; van der Werf, R.; Jongbloed, J.D.H.; Paulus, W.J.; Dooijes, D.; van den Berg, M.P. Peripartum cardiomyopathy as a part of familial dilated cardiomyopathy. Circulation 2010, 121, 2169–2175. [Google Scholar] [CrossRef] [PubMed]
- Ware, J.S.; Li, J.; Mazaika, E.; Yasso, C.M.; DeSouza, T.; Cappola, T.P.; Tsai, E.J.; Hilfiker-Kleiner, D.; Kamiya, C.A.; Mazzarotto, F.; et al. Shared genetic predisposition in peripartum and dilated cardiomyopathies. New Engl. J. Med. 2016, 374, 233–241. [Google Scholar] [CrossRef] [PubMed]
- Hershberger, R.E.; Siegfried, J.D. Update 2011: Clinical and genetic issues in familial dilated cardiomyopathy. J. Am. Coll. Cardiol. 2011, 57, 1641–1649. [Google Scholar] [CrossRef] [PubMed]
- Amador, F.J.; Kimlicka, L.; Stathopulos, P.B.; Gasmi-Seabrook, G.M.; Maclennan, D.H.; Van Petegem, F.; Ikura, M. Type 2 ryanodine receptor domain a contains a unique and dynamic alpha-helix that transitions to a beta-strand in a mutant linked with a heritable cardiomyopathy. J. Mol. Biol. 2013, 425, 4034–4046. [Google Scholar] [CrossRef] [PubMed]
- GenomicsEngland. The 100,000 genome project. Available online: https://www.genomicsengland.co.uk/the-100000-genomes-project/ (accessed on 28 December 2016).
- Stedmand, N.L.; Brow, T.P. Cardiomyopathy in broiler chickens congenitally infected with avian leukosis virus subgroup. J. Vet. Pathol. 2002, 39, 161–164. [Google Scholar] [CrossRef] [PubMed]
- Simpson, S.; Dunning, M.D.; Brownlie, S.; Patel, J.; Godden, M.; Cobb, M.; Mongan, N.P.; Rutland, C.S. Multiple genetic associations with Irish wolfhound dilated cardiomyopathy. BioMed Res. Int. 2016, 3. [Google Scholar] [CrossRef] [PubMed]
- Simpson, S.; Edwards, J.; Emes, R.D.; Cobb, M.A.; Mongan, N.P.; Rutland, C.S. A predictive model for canine dilated cardiomyopathy-a meta-analysis of doberman pinscher data. Peerj 2015, 3. [Google Scholar] [CrossRef] [PubMed]
- HealthInCode. Medical genetics. Available online: www.healthincode.com (accessed on 28 December 2016).
- Bienengraeber, M.; Olson, T.M.; Selivanov, V.A.; Kathmann, E.C.; O’Cochlain, F.; Gao, F.; Karger, A.B.; Ballew, J.D.; Hodgson, D.M.; Zingman, L.V.; et al. Abcc9 mutations identified in human dilated cardiomyopathy disrupt catalytic katp channel gating. Nat. Genet. 2004, 36, 382–387. [Google Scholar] [CrossRef] [PubMed]
- Olson, T.M.; Michels, V.V.; Thibodeau, S.N.; Tai, Y.S.; Keating, M.T. Actin mutations in dilated cardiomyopathy, a heritable form of heart failure. Science 1998, 280, 750–752. [Google Scholar] [CrossRef] [PubMed]
- Mogensen, J.; Klausen, I.C.; Pedersen, A.K.; Egeblad, H.; Bross, P.; Kruse, T.A.; Gregersen, N.; Hansen, P.S.; Baandrup, U.; Borglum, A.D. Alpha-cardiac actin is a novel disease gene in familial hypertrophic cardiomyopathy. J. Clin. Investig. 1999, 103, R39–R43. [Google Scholar] [CrossRef] [PubMed]
- Chiu, C.; Bagnall, R.D.; Ingles, J.; Yeates, L.; Kennerson, M.; Donald, J.A.; Jormakka, M.; Lind, J.M.; Semsarian, C. Mutations in alpha-actinin-2 cause hypertrophic cardiomyopathy a genome-wide analysis. J. Am. Coll. Cardiol. 2010, 55, 1127–1135. [Google Scholar] [CrossRef] [PubMed]
- Mohapatra, B.; Jimenez, S.; Lin, J.H.; Bowles, K.R.; Coveler, K.J.; Marx, J.G.; Chrisco, M.A.; Murphy, R.T.; Lurie, P.R.; Schwartz, R.J.; et al. Mutations in the muscle lim protein and alpha-actinin-2 genes in dilated cardiomyopathy and endocardial fibroelastosis. Mol. Genet. Metab. 2003, 80, 207–215. [Google Scholar] [CrossRef]
- Moulik, M.; Vatta, M.; Witt, S.H.; Arola, A.M.; Murphy, R.T.; McKenna, W.J.; Boriek, A.M.; Oka, K.; Labeit, S.; Bowles, N.E.; et al. Ankrd1, the gene encoding cardiac ankyrin repeat protein, is a novel dilated cardiomyopathy gene. J. Am. Coll. Cardiol. 2009, 54, 325–333. [Google Scholar] [CrossRef] [PubMed]
- Arimura, T.; Bos, J.M.; Sato, A.; Kubo, T.; Okamoto, H.; Nishi, H.; Harada, H.; Koga, Y.; Moulik, M.; Doi, Y.L.; et al. Cardiac ankyrin repeat protein gene (ankrd1) mutations in hypertrophic cardiomyopathy. Hum. Mutat. 2011, 32, 1481–1491. [Google Scholar] [CrossRef] [PubMed]
- Norton, N.; Li, D.X.; Rieder, M.J.; Siegfried, J.D.; Rampersaud, E.; Zuchner, S.; Mangos, S.; Gonzalez-Quintana, J.; Wang, L.B.; McGee, S.; et al. Genome-wide studies of copy number variation and exome sequencing identify rare variants in bag3 as a cause of dilated cardiomyopathy. Am. J. Hum. Genet. 2011, 88, 273–282. [Google Scholar] [CrossRef] [PubMed]
- Villard, E.; Perret, C.; Gary, F.; Proust, C.; Dilanian, G.; Isnard, R.; Komajda, M.; Charron, P.; Cambien, F. A genome-wide association study identifies two loci associated with heart failure due to dilated cardiomyopathy. Eur. Heart J. 2011, 32, 1065–1076. [Google Scholar] [CrossRef] [PubMed]
- Arimura, T.; Ishikawa, T.; Nunoda, S.; Kawai, S.; Kimura, A. Dilated cardiomyopathy-associated bag3 mutations impair z-disc assembly and enhance sensitivity to apoptosis in cardiomyocytes. Hum. Mutat. 2011, 32, 1481–1491. [Google Scholar] [CrossRef] [PubMed]
- Chiu, C.; Tebo, M.; Ingles, J.; Yeates, L.; Arthur, J.W.; Lind, J.M.; Semsarian, C. Genetic screening of calcium regulation genes in familial hypertrophic cardiomyopathy. J. Mol. Cell. Cardiol. 2007, 43, 337–343. [Google Scholar] [CrossRef] [PubMed]
- Catteruccia, M.; Sanna, T.; Santorelli, F.M.; Tessa, A.; Di Giacopo, R.; Sauchelli, D.; Verbo, A.; Lo Monaco, M.; Servidei, S. Rippling muscle disease and cardiomyopathy associated with a mutation in the cav3 gene. Neuromuscul. Disord. 2009, 19, 779–783. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Hu, A.H.; Yuan, H.X.; Cui, L.; Miao, G.B.; Yang, X.C.; Wang, L.F.; Liu, J.C.; Liu, X.L.; Wang, S.Y.; et al. A missense mutation in the chrm2 gene is associated with familial dilated cardiomyopathy. Circ. Res. 2008, 102, 1426–1432. [Google Scholar] [CrossRef] [PubMed]
- Inagaki, N.; Hayashi, T.; Arimura, T.; Koga, Y.; Takahashi, M.; Shibata, H.; Teraoka, K.; Chikamori, T.; Yamashina, A.; Kimura, A. Alpha b-crystallin mutation in dilated cardiomyopathy. Biochem. Biophys. Res. Commun. 2006, 342, 379–386. [Google Scholar] [PubMed]
- Bos, J.M.; Poley, R.N.; Ny, M.; Tester, D.J.; Xu, X.L.; Vatta, M.; Towbin, J.A.; Gersh, B.J.; Ommen, S.R.; Ackerman, M.J. Genotype-phenotype relationships involving hypertrophic cardiomyopathy-associated mutations in titin, muscle lim protein, and telethonin. Mol. Genet. Metab. 2006, 88, 78–85. [Google Scholar] [CrossRef] [PubMed]
- Erdmann, J.; Hassfeld, S.; Kallisch, H.; Fleck, E.; Regitz-Zagrose, V. Genetic variants in the promoter (g983g>t) and coding region (a92t) of the human cardiotrophin-1 gene (ctf1) in patients with dilated cardiomyopathy. Hum. Mutat. 2000, 16, 448. [Google Scholar] [CrossRef]
- van Hengel, J.; Calore, M.; Bauce, B.; Dazzo, E.; Mazzotti, E.; De Bortoli, M.; Lorenzon, A.; Li Mura, I.E.A.; Beffagna, G.; Rigato, I.; et al. Mutations in the area composita protein t-catenin are associated with arrhythmogenic right ventricular cardiomyopathy. Eur. Heart J. 2013, 34, 201–210. [Google Scholar] [CrossRef] [PubMed]
- Schaper, J.; Froede, R.; Sthein; Buck, A.; Hashizume, H.; Speiser, B.; Friedl, A.; Bleese, N. Impairment of the myocardial ultrastructure and changes of the cytoskeleton in dilated cardiomyopathy. Circulation 1991, 83, 504–514. [Google Scholar] [CrossRef] [PubMed]
- Li, D.X.; Tapscoft, T.; Gonzalez, O.; Burch, P.E.; Quinones, M.A.; Zoghbi, W.A.; Hill, R.; Bachinski, L.L.; Mann, D.L.; Roberts, R. Desmin mutation responsible for idiopathic dilated cardiomyopathy. Circulation 1999, 100, 461–464. [Google Scholar] [CrossRef] [PubMed]
- Lorenzon, A.; Beffagna, G.; Bauce, B.; De Bortoli, M.; Mura, I.E.A.L.; Calore, M.; Dazzo, E.; Basso, C.; Nava, A.; Thiene, G.; et al. Desmin mutations and arrhythmogenic right ventricular cardiomyopathy. Am. J. Cardiol. 2013, 111, 400–405. [Google Scholar] [CrossRef] [PubMed]
- Klauke, B.; Kossmann, S.; Gaertner, A.; Brand, K.; Stork, I.; Brodehl, A.; Dieding, M.; Walhorn, V.; Anselmetti, D.; Gerdes, D.; et al. De novo desmin-mutation n116s is associated with arrhythmogenic right ventricular cardiomyopathy. Hum. Mol. Genet. 2010, 19, 4595–4607. [Google Scholar] [CrossRef] [PubMed]
- Muntoni, F.; Cau, M.; Ganau, A.; Congiu, R.; Arvedi, G.; Mateddu, A.; Marrosu, M.G.; Cianchetti, C.; Realdi, G.; Cao, A.; et al. Brief report - deletion of the dystrophin muscle-promoter region associated with x-linked dilated cardiomyopathy. N. Engl. J. Med. 1993, 329, 921–925. [Google Scholar] [CrossRef] [PubMed]
- OrtizLopez, R.; Li, H.; Su, J.; Goytia, V.; Towbin, J.A. Evidence for a dystrophin missense mutation as a cause of x-linked dilated cardiomyopathy. Circulation 1997, 95, 2434–2440. [Google Scholar] [CrossRef]
- Davey, K.M.; Parboosingh, J.S.; McLeod, D.R.; Chan, A.; Casey, R.; Ferreira, P.; Snyder, F.F.; Bridge, P.J.; Bernier, F.P. Mutation of dnajc19, a human homologue of yeast inner mitochondrial membrane co-chaperones, causes dcma syndrome, a novel autosomal recessive barth syndrome-like condition. J. Med. Genet. 2006, 43, 385–393. [Google Scholar] [CrossRef] [PubMed]
- Lefeber, D.J.; de Brouwer, A.P.M.; Morava, E.; Riemersma, M.; Schuurs-Hoeijmakers, J.H.M.; Absmanner, B.; Verrijp, K.; van den Akker, W.M.R.; Huijben, K.; Steenbergen, G.; et al. Autosomal recessive dilated cardiomyopathy due to dolk mutations results from abnormal dystroglycan o-mannosylation. PloS Genet. 2011, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beffagna, G.; De Bortoli, M.; Nava, A.; Salamon, M.; Lorenzon, A.; Zaccolo, M.; Mancuso, L.; Sigalotti, L.; Bauce, B.; Occhi, G.; et al. Missense mutations in desmocollin-2 n-terminus, associated with arrhythmogenic right ventricular cardiomyopathy, affect intracellular localization of desmocollin-2 in vitro. BMC Med. Genet. 2007, 8. [Google Scholar] [CrossRef] [PubMed]
- Posch, M.G.; Posch, M.J.; Geier, C.; Erdmann, B.; Mueller, W.; Richter, A.; Ruppert, V.; Pankuweit, S.; Maisch, B.; Perrot, A.; et al. A missense variant in desmoglein-2 predisposes to dilated cardiomyopathy. Mol. Genet. Metab. 2008, 95, 74–80. [Google Scholar] [CrossRef] [PubMed]
- Pilichou, K.; Nava, A.; Basso, C.; Beffagna, G.; Bauce, B.; Lorenzon, A.; Frigo, G.; Vettori, A.; Valente, M.; Towbin, J.; et al. Mutations in desmoglein-2 gene are associated with arrhythmogenic right ventricular cardiomyopathy. Circulation 2006, 113, 1171–1179. [Google Scholar] [CrossRef] [PubMed]
- Awad, M.M.; Dalal, D.; Cho, E.; Amat-Alarcon, N.; James, C.; Tichnell, C.; Tucker, A.; Russell, S.D.; Bluemke, D.A.; Dietz, H.C.; et al. Dsg2 mutations contribute to arrhythmogenic right ventricular dysplasia/cardiomyopathy. Am. J. Hum. Genet. 2006, 79, 136–142. [Google Scholar] [CrossRef] [PubMed]
- Norgett, E.E.; Hatsell, S.J.; Carvajal-Huerta, L.; Cabezas, J.C.R.; Common, J.; Purkis, P.E.; Whittock, N.; Leigh, I.M.; Stevens, H.P.; Kelsell, D.P. Recessive mutation in desmoplakin disrupts desmoplakin-intermediate filament interactions and causes dilated cardiomyopathy, woolly hair and keratoderma. Hum. Mol. Genet. 2000, 9, 2761–2766. [Google Scholar] [CrossRef] [PubMed]
- Rampazzo, A.; Nava, A.; Malacrida, S.; Beffagna, G.; Bauce, B.; Rossi, V.; Zimbello, R.; Simionati, B.; Basso, C.; Thiene, G.; et al. Mutation in human desmoplakin domain binding to plakoglobin causes a dominant form of arrhythmogenic right ventricular cardiomyopathy. Am. J. Hum. Genet. 2002, 71, 1200–1206. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.Q.; Chen, J.; Si, D.Y.; Zheng, Y.; Jiao, H.X.; Feng, Z.H.; Hu, Z.M.; Duan, R.H. Whole exome sequencing identifies a novel emd mutation in a chinese family with dilated cardiomyopathy. BMC Med. Genet. 2014, 15. [Google Scholar] [CrossRef] [PubMed]
- Schonberger, J.; Wang, L.; Shin, T.J.; Kim, S.D.; Depreux, F.F.S.; Zhu, H.; Zon, L.; Pizard, A.; Kim, J.B.; MacRae, C.A.; et al. Mutation in the transcriptional coactivator eya4 causes dilated cardiomyopathy and sensorineural hearing loss. Nat. Genet. 2005, 37, 418–422. [Google Scholar] [CrossRef] [PubMed]
- Al-Yacoub, N.; Shaheen, R.; Awad, S.M.; Kunhi, M.; Dzimiri, N.; Nguyen, H.C.; Xiong, Y.; Al-Buraiki, J.; Al-Habeeb, W.; Alkuraya, F.S.; et al. Fbxo32, encoding a member of the scf complex, is mutated in dilated cardiomyopathy. Genome Biol. 2016, 17. [Google Scholar] [CrossRef] [PubMed]
- Arimura, T.; Hayashi, T.; Matsumoto, Y.; Shibata, H.; Hiroi, S.; Nakamura, T.; Inagaki, N.; Hinohara, K.; Takahashi, M.; Manatsu, S.I.; et al. Structural analysis of four and half lim protein-2 in dilated cardiomyopathy. Biochem. Biophs. Res. Commun. 2007, 357, 162–167. [Google Scholar] [CrossRef] [PubMed]
- Murakami, T.; Hayashi, Y.K.; Noguchi, S.; Ogawa, M.; Nonaka, I.; Tanabe, Y.; Ogino, M.; Takada, F.; Eriguchi, M.; Kotooka, N.; et al. Fukutin gene mutations cause dilated cardiomyopathy with minimal muscle weakness. Ann. Neurol. 2006, 60, 597–602. [Google Scholar] [CrossRef] [PubMed]
- Muller, T.; Krasnianski, M.; Witthaut, R.; Deschauer, M.; Zierz, S. Dilated cardiomyopathy may be an early sign of the c826a fukutin-related protein mutation. Neuromusc. Disord. 2005, 15, 372–376. [Google Scholar] [CrossRef] [PubMed]
- Minoretti, P.; Arra, M.; Emanuele, E.; Olivieri, V.; Aldeghi, A.; Politi, P.; Martinelli, V.; Pesenti, S.; Falcone, C. A w148r mutation in the human foxd4 gene segregating with dilated cardiomyopathy, obsessive-compulsive disorder, and suicidality. Int. J. Mol. Med. 2007, 19, 369–372. [Google Scholar] [CrossRef] [PubMed]
- Theis, J.L.; Sharpe, K.M.; Matsumoto, M.E.; Chai, H.S.; Nair, A.A.; Theis, J.D.; de Andrade, M.; Wieben, E.D.; Michels, V.V.; Olson, T.M. Homozygosity mapping and exome sequencing reveal gatad1 mutation in autosomal recessive dilated cardiomyopathy. Circ. Cardiovasc. Genet. 2011, 4, 585–644. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.M.; Dai, X.Y.; Qiu, X.B.; Yuan, F.; Li, R.G.; Xu, Y.J.; Qu, X.K.; Huang, R.T.; Xue, S.; Yang, Y.Q. Hand1 loss-of-function mutation associated with familial dilated cardiomyopathy. Clin. Chem. Lab. Med. 2016, 54, 1161–1167. [Google Scholar] [CrossRef] [PubMed]
- Pankuweit, S.; Ruppert, V.; Jonsdottir, P.; Muller, H.H.; Meyer, T.; Heart, G.C.N. The hla class ii allele dqb1*0309 is associated with dilated cardiomyopathy. Gene 2013, 531, 180–183. [Google Scholar] [CrossRef] [PubMed]
- Stark, K.; Esslinger, U.B.; Reinhard, W.; Petrov, G.; Winkler, T.; Komajda, M.; Isnard, R.; Charron, P.; Villard, E.; Cambien, F.; et al. Genetic association study identifies hspb7 as a risk gene for idiopathic dilated cardiomyopathy. PLoS Genet. 2010, 6. [Google Scholar] [CrossRef] [PubMed]
- Knoll, R.; Postel, R.; Wang, J.; Kratzner, R.; Hennecke, G.; Vacaru, A.M.; Vakeel, P.; Schubert, C.; Murthy, K.; Rana, B.K.; et al. Laminin-alpha4 and integrin-linked kinase mutations cause human cardiomyopathy via simultaneous defects in cardiomyocytes and endothelial cells. Circulation 2007, 116, 515–525. [Google Scholar] [CrossRef] [PubMed]
- Landstrom, A.P.; Weisleder, N.; Batalden, K.B.; Bos, J.M.; Tester, D.J.; Ommen, S.R.; Wehrens, X.H.; Claycomb, W.C.; Ko, J.K.; Hwang, M.; et al. Mutations in jph2-encoded junctophilin-2 associated with hypertrophic cardiomyopathy in humans. J. Mol. Cell. Cardiol. 2007, 42, 1026–1035. [Google Scholar] [CrossRef] [PubMed]
- McKoy, G.; Protonotarios, N.; Crosby, A.; Tsatsopoulou, A.; Anastasakis, A.; Coonar, A.; Norman, M.; Baboonian, C.; Jeffery, S.; McKenna, W.J. Identification of a deletion in plakoglobin in arrhythmogenic right ventricular cardiomyopathy with palmoplantar keratoderma and woolly hair (naxos disease). Lancet 2000, 355, 2119–2124. [Google Scholar] [CrossRef]
- Carboni, N.; Marrosu, G.; Porcu, M.; Mateddu, A.; Solla, E.; Cocco, E.; Maioli, M.A.; Oppo, V.; Piras, R.; Marrosu, M.G. Dilated cardiomyopathy with conduction defects in a patient with partial merosin deficiency due to mutations in the laminin-alpha 2-chain gene: A chance association or a novel phenotype? Muscle Nerve 2011, 44, 826–828. [Google Scholar] [CrossRef] [PubMed]
- Maron, B.J.; Roberts, W.C.; Arad, M.; Haas, T.S.; Spirito, P.; Wright, G.B.; Almquist, A.K.; Baffa, J.M.; Saul, J.P.; Ho, C.Y.; et al. Clinical outcome and phenotypic expression in lamp2 cardiomyopathy. JAMA 2009, 301, 1253–1259. [Google Scholar] [CrossRef] [PubMed]
- Arimura, T.; Hayashi, T.; Terada, H.; Lee, S.Y.; Zhou, Q.; Takahashi, M.; Ueda, K.; Nouchi, T.; Hohda, S.; Shibutani, M.; et al. A cypher/zasp mutation associated with dilated cardiomyopathy alters the binding affinity to protein kinase c. J. Biol. Chem. 2004, 279, 6746–6752. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Pavia, P.; Vazquez, M.E.; Segovia, J.; Salas, C.; Avellana, P.; Gomez-Bueno, M.; Vilches, C.; Gallardo, M.E.; Garesse, R.; Molano, J.; et al. Genetic basis of end-stage hypertrophic cardiomyopathy. Eur. J. Heart Fail. 2011, 13, 1193–1201. [Google Scholar] [CrossRef] [PubMed]
- Fatkin, D.; MacRae, C.; Sasaki, T.; Wolff, M.R.; Porcu, M.; Frenneaux, M.; Atherton, J.; Vidaillet, H.J.; Spudich, S.; De Girolami, U.; et al. Missense mutations in the rod domain of the lamin a/c gene as causes of dilated cardiomyopathy and conduction-system disease. N. Engl. J. Med. 1999, 341, 1715–1724. [Google Scholar] [CrossRef] [PubMed]
- Quarta, G.; Syrris, P.; Ashworth, M.; Jenkins, S.; Alapi, K.Z.; Morgan, J.; Muir, A.; Pantazis, A.; McKenna, W.J.; Elliott, P.M. Mutations in the lamin a/c gene mimic arrhythmogenic right ventricular cardiomyopathy. Eur. Heart J. 2012, 33, 1128–1149. [Google Scholar] [CrossRef] [PubMed]
- Qu, X.K.; Yuan, F.; Li, R.G.; Xu, L.; Jing, W.F.; Liu, H.; Xu, Y.J.; Zhang, M.; Liu, X.; Fang, W.Y.; et al. Prevalence and spectrum of lrrc10 mutations associated with idiopathic dilated cardiomyopathy. Mol. Med. Rep. 2015, 12, 3718–3724. [Google Scholar] [PubMed]
- Rodriguez, G.; Ueyama, T.; Ogata, T.; Czernuszewicz, G.; Tan, Y.L.; Dorn, G.W.; Bogaev, R.; Amano, K.; Oh, H.; Matsubara, H.; et al. Molecular genetic and functional characterization implicate muscle-restricted coiled-coil gene (murc) as a causal gene for familial dilated cardiomyopathy. Circ. Cardiovasc. Genet. 2011, 4, 349–357. [Google Scholar] [CrossRef] [PubMed]
- Daehmlow, S.; Erdmann, J.; Knueppel, T.; Gille, C.; Froemmel, C.; Hummel, M.; Hetzer, R.; Regitz-Zagrosek, V. Novel mutations in sarcomeric protein genes in dilated cardiomyopathy. Biochem. Biophys. Res. Commun. 2002, 298, 116–120. [Google Scholar] [CrossRef]
- Carrier, L.; Bonne, G.; Bahrend, E.; Yu, B.; Richard, P.; Niel, F.; Hainque, B.; Cruaud, C.; Gary, F.; Labeit, S.; et al. Organization and sequence of human cardiac myosin binding protein c gene (mybpc3) and identification of mutations predicted to produce truncated proteins in familial hypertrophic cardiomyopathy. Circ. Res. 1997, 80, 427–434. [Google Scholar] [PubMed]
- Bonne, G.; Carrier, L.; Bercovici, J.; Cruaud, C.; Richard, P.; Hainque, B.; Gautel, M.; Labeit, S.; James, M.; Beckmann, J.; et al. Cardiac myosin binding protein-c gene splice acceptor site mutation is associated with familial hypertrophic cardiomyopathy. Nat. Genet. 1995, 11, 438–440. [Google Scholar] [CrossRef] [PubMed]
- Hershberger, R.E.; Norton, N.; Morales, A.; Li, D.X.; Siegfried, J.D.; Gonzalez-Quintana, J. Coding sequence rare variants identified in mybpc3, myh6, tpm1, tnnc1, and tnni3 from 312 patients with familial or idiopathic dilated cardiomyopathy. Circ. Cardiovasc. Genet. 2010, 3, 155–161. [Google Scholar] [CrossRef] [PubMed]
- Niimura, H.; Patton, K.K.; McKenna, W.J.; Soults, J.; Maron, B.J.; Seidman, J.G.; Seidman, C.E. Sarcomere protein gene mutations in hypertrophic cardiomyopathy of the elderly. Circulation 2002, 105, 446–451. [Google Scholar] [CrossRef] [PubMed]
- Fananapazir, L.; Dalakas, M.C.; Cyran, F.; Cohn, G.; Epstein, N.D. Missense mutations in the beta-myosin heavy-chain gene cause central core disease in hypertrophic cardiomyopathy. Proc. Natl. Acad. Sci. USA 1993, 90, 3993–3997. [Google Scholar] [CrossRef] [PubMed]
- Karkkainen, S.; Helio, T.; Jaaskelainen, P.; Miettinen, R.; Tuomainen, P.; Ylitalo, K.; Kaartinen, M.; Reissell, E.; Toivonen, L.; Nieminen, M.S.; et al. Two novel mutations in the beta-myosin heavy chain gene associated with dilated cardiomyopathy. Eur. J. Heart Fail. 2004, 6, 861–868. [Google Scholar] [CrossRef] [PubMed]
- Flavigny, J.; Richard, P.; Isnard, R.; Carrier, L.; Charron, P.; Bonne, G.; Forissier, J.F.; Desnos, M.; Dubourg, O.; Komajda, M.; et al. Identification of two novel mutations in the ventricular regulatory myosin light chain gene (myl2) associated with familial and classical forms of hypertrophic cardiomyopathy. J. Mol. Med. 1998, 76, 208–214. [Google Scholar] [CrossRef] [PubMed]
- Ingles, J.; Doolan, A.; Chiu, C.; Seidman, J.; Seidman, C.; Semsarian, C. Compound and double mutations in patients with hypertrophic cardiomyopathy: Implications for genetic testing and counselling. J. Med. Genet. 2005, 42. [Google Scholar] [CrossRef] [PubMed]
- Osio, A.; Tan, L.; Chen, S.N.; Lombardi, R.; Nagueh, S.F.; Shete, S.; Roberts, R.; Willerson, J.T.; Marian, A.J. Myozenin 2 is a novel gene for human hypertrophic cardiomyopathy. Circ. Res. 2007, 100, 766–768. [Google Scholar] [CrossRef] [PubMed]
- Duboscq-Bidot, L.; Xu, P.; Charron, P.; Neyroud, N.; Dilanian, G.; Millaire, A.; Bors, V.; Komajda, M.; Villard, E. Mutations in the z-band protein myopalladin gene and idiopathic dilated cardiomyopathy. Cardiovasc. Res. 2008, 77, 118–125. [Google Scholar] [CrossRef] [PubMed]
- Purevjav, E.; Varela, J.; Morgado, M.; Kearney, D.L.; Li, H.; Taylor, M.D.; Arimura, T.; Moncman, C.L.; McKenna, W.; Murphy, R.T.; et al. Nebulette mutations are associated with dilated cardiomyopathy and endocardial fibroelastosis. J. Am. Coll. Cardiol. 2010, 56, 1493–1502. [Google Scholar] [CrossRef] [PubMed]
- Hassel, D.; Dahme, T.; Erdmann, J.; Meder, B.; Huge, A.; Stoll, M.; Just, S.; Hess, A.; Ehlermann, P.; Weichenhan, D.; et al. Nexilin mutations destabilize cardiac z-disks and lead to dilated cardiomyopathy. Nature Med. 2009, 15. [Google Scholar] [CrossRef] [PubMed]
- Matsa, L.S.; Rangaraju, A.; Vengaldas, V.; Latifi, M.; Jahromi, H.M.; Ananthapur, V.; Nallari, P. Haplotypes of nos3 gene polymorphisms in dilated cardiomyopathy. PLoS ONE 2013, 8. [Google Scholar] [CrossRef] [PubMed]
- Cruz, F.M.; Sanz-Rosa, D.; Roche-Molina, M.; Garcia-Prieto, J.; Garcia-Ruiz, J.M.; Pizarro, G.; Jimenez-Borreguero, L.J.; Torres, M.; Bernad, A.; Ruiz-Cabello, J.; et al. Exercise triggers arvc phenotype in mice expressing a disease-causing mutated version of human plakophilin-2. J. Am. Coll. Cardiol. 2015, 65, 1438–1450. [Google Scholar] [PubMed]
- Muhammad, E.; Levitas, A.; Singh, S.R.; Braiman, A.; Ofir, R.; Etzion, S.; Sheffield, V.C.; Etzion, Y.; Carrier, L.; Parvari, R. Plekhm2 mutation leads to abnormal localization of lysosomes, impaired autophagy flux and associates with recessive dilated cardiomyopathy and left ventricular noncompaction. Hum. Mol. Genet. 2015, 24, 7227–7240. [Google Scholar] [CrossRef] [PubMed]
- Haghighi, K.; Kolokathis, F.; Pater, L.; Lynch, R.A.; Asahi, M.; Gramolini, A.O.; Fan, G.C.; Tsiapras, D.; Hahn, H.S.; Adamopoulos, S.; et al. Human phospholamban null results in lethal dilated cardiomyopathy revealing a critical difference between mouse and human. J. Clin. Investig. 2003, 111, 869–876. [Google Scholar] [CrossRef] [PubMed]
- Minamisawa, S.; Sato, Y.; Tatsuguchi, Y.; Fujino, T.; Imamura, S.; Uetsuka, Y.; Nakazawa, M.; Matsuoka, R. Mutation of the phospholamban promoter associated with hypertrophic cardiomyopathy. Biochem. Biophys. Res. Commun. 2003, 304, 1–4. [Google Scholar] [CrossRef]
- van der Zwaag, P.A.; van Rijsingen, I.A.W.; Asimaki, A.; Jongbloed, J.D.H.; van Veldhuisen, D.J.; Wiesfeld, A.C.P.; Cox, M.G.P.J.; van Lochem, L.T.; de Boer, R.A.; Hofstra, R.M.W.; et al. Phospholamban r14del mutation in patients diagnosed with dilated cardiomyopathy or arrhythmogenic right ventricular cardiomyopathy: Evidence supporting the concept of arrhythmogenic cardiomyopathy. Eur. J. Heart Fail. 2012, 14, 1199–1207. [Google Scholar] [CrossRef] [PubMed]
- Verhoeven, W.M.; Egger, J.I.; Kremer, B.P.; de Pont, B.J.; Marcelis, C.L. Recurrent major depression, ataxia, and cardiomyopathy: Association with a novel polg mutation? Neuropsychiatr. Dis. Treat. 2011, 7, 293–296. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arndt, A.K.; Schafer, S.; Drenckhahn, J.D.; Sabeh, M.K.; Plovie, E.R.; Caliebe, A.; Klopocki, E.; Musso, G.; Werdich, A.A.; Kalwa, H.; et al. Fine mapping of the 1p36 deletion syndrome identifies mutation of prdm16 as a cause of cardiomyopathy. Am. J. Hum. Genet. 2013, 93, 67–77. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Cao, H.; Song, Y.D.; Feng, Y.; Ding, X.X.; Pang, M.J.; Zhang, Y.M.; Zhang, H.; Ding, J.H.; Xia, X.S. Identification of novel mutations including a double mutation in patients with inherited cardiomyopathy by a targeted sequencing approach using the ion torrent pgm system. Int. J. Mol. Med. 2016, 37, 1511–1520. [Google Scholar] [CrossRef] [PubMed]
- Li, D.X.; Parks, S.B.; Kushner, J.D.; Nauman, D.; Burgess, D.; Ludwigsen, S.; Partain, J.; Nixon, R.R.; Allen, C.N.; Irwin, R.P.; et al. Mutations of presenilin genes in dilated cardiomyopathy and heart failure. Am. J. Hum. Genet. 2006, 79, 1030–1039. [Google Scholar] [CrossRef] [PubMed]
- Brauch, K.M.; Karst, M.L.; Herron, K.J.; de Andrade, M.; Pellikka, P.A.; Rodeheffer, R.J.; Michels, V.V.; Olson, T.M. Mutations in ribonucleic acid binding protein gene cause familial dilated cardiomyopathy. J. Am. Coll. Cardiol. 2009, 54, 930–941. [Google Scholar] [CrossRef] [PubMed]
- Hussain, S.; Haroon, J.; Ejaz, S.; Javed, Q. Variants of resistin gene and the risk of idiopathic dilated cardiomyopathy in pakistan. Meta Gene 2016, 9, 37–41. [Google Scholar] [CrossRef] [PubMed]
- Gupta, A.; Colmenero, I.; Ragge, N.K.; Blakely, E.L.; He, L.; McFarland, R.; Taylor, R.W.; Vogt, J.; Milford, D.V. Compound heterozygous rmnd1 gene variants associated with chronic kidney disease, dilated cardiomyopathy and neurological involvement: A case report. BMC Res. Notes 2016, 9, 325. [Google Scholar] [CrossRef] [PubMed]
- Long, P.A.; Zimmermann, M.T.; Kim, M.; Evans, J.M.; Xu, X.; Olson, T.M. De novo rragc mutation activates mtorc1 signaling in syndromic fetal dilated cardiomyopathy. Hum. Genet. 2016, 135, 909–917. [Google Scholar] [CrossRef] [PubMed]
- Bhuiyan, Z.A.; van den Berg, M.P.; van Tintelen, J.P.; Bink-Boelkens, M.T.; Wiesfeld, A.C.; Alders, M.; Postma, A.V.; van Langen, I.; Mannens, M.M.; Wilde, A.A. Expanding spectrum of human ryr2-related disease: New electrocardiographic, structural, and genetic features. Circulation 2007, 116, 1569–1576. [Google Scholar] [CrossRef] [PubMed]
- Tiso, N.; Stephan, D.A.; Nava, A.; Bagattin, A.; Devaney, J.M.; Stanchi, F.; Larderet, G.; Brahmbhatt, B.; Brown, K.; Bauce, B.; et al. Identification of mutations in the cardiac ryanodine receptor gene in families affected with arrhythmogenic right ventricular cardiomyopathy type 2 (arvd2). Hum. Mol. Genet. 2001, 10, 189–194. [Google Scholar] [CrossRef] [PubMed]
- Roux-Buisson, N.; Gandjbakhch, E.; Donal, E.; Probst, V.; Deharo, J.C.; Chevalier, P.; Klug, D.; Mansencal, N.; Delacretaz, E.; Cosnay, P.; et al. Prevalence and significance of rare ryr2 variants in arrhythmogenic right ventricular cardiomyopathy/dysplasia: Results of a systematic screening. Heart Rhythm 2014, 11, 1999–2009. [Google Scholar] [CrossRef] [PubMed]
- McNair, W.P.; Ku, L.; Taylor, M.R.; Fain, P.R.; Dao, D.; Wolfel, E.; Mestroni, L.; Familial Cardiomyopathy Registry Research Group. Scn5a mutation associated with dilated cardiomyopathy, conduction disorder, and arrhythmia. Circulation 2004, 110, 2163–2167. [Google Scholar] [CrossRef] [PubMed]
- Levitas, A.; Muhammad, E.; Harel, G.; Saada, A.; Caspi, V.C.; Manor, E.; Beck, J.C.; Sheffield, V.; Parvari, R. Familial neonatal isolated cardiomyopathy caused by a mutation in the flavoprotein subunit of succinate dehydrogenase. Eur. J. Hum. Genet. 2010, 18, 1160–1165. [Google Scholar] [CrossRef] [PubMed]
- Tsubata, S.; Bowles, K.R.; Vatta, M.; Zintz, C.; Titus, J.; Muhonen, L.; Bowles, N.E.; Towbin, J.A. Mutations in the human delta-sarcoglycan gene in familial and sporadic dilated cardiomyopathy. J. Clin. Investig. 2000, 106, 655–662. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.P.; Bethmann, C.; Worth, N.F.; Davies, J.D.; Wasner, C.; Feuer, A.; Ragnauth, C.D.; Yi, Q.J.; Mellad, J.A.; Warren, D.T.; et al. Nesprin-1 and -2 are involved in the pathogenesis of emery-dreifuss muscular dystrophy and are critical for nuclear envelope integrity. Hum. Mol. Genet. 2007, 16, 2816–2833. [Google Scholar] [CrossRef] [PubMed]
- Kirk, E.P.; Sunde, M.; Costa, M.W.; Rankin, S.A.; Wolstein, O.; Castro, M.L.; Butler, T.L.; Hyun, C.; Guo, G.; Otway, R.; et al. Mutations in cardiac t-box factor gene tbx20 are associated with diverse cardiac pathologies, including defects of septation and valvulogenesis and cardiomyopathy. Am. J. Hum. Genet. 2007, 81, 280–291. [Google Scholar] [CrossRef] [PubMed]
- Zhou, W.; Zhao, L.; Jiang, J.Q.; Jiang, W.F.; Yang, Y.Q.; Qiu, X.B. A novel tbx5 loss-of-function mutation associated with sporadic dilated cardiomyopathy. Int. J. Mol. Med. 2015, 36, 282–288. [Google Scholar] [CrossRef] [PubMed]
- Hayashi, T.; Arimura, T.; Itoh-Satoh, M.; Ueda, K.; Hohda, S.; Inagaki, N.; Takahashi, M.; Hori, H.; Yasunami, M.; Nishi, H.; et al. Tcap gene mutations in hypertrophic cardiomyopathy and dilated cardiomyopathy. J. Am. Coll. Cardiol. 2004, 44, 2192–2201. [Google Scholar] [CrossRef] [PubMed]
- Beffagna, G.; Occhi, G.; Nava, A.; Vitiello, L.; Ditadi, A.; Basso, C.; Bauce, B.; Carraro, G.; Thiene, G.; Towbin, J.A.; et al. Regulatory mutations in transforming growth factor-beta3 gene cause arrhythmogenic right ventricular cardiomyopathy type 1. Cardiovasc. Res. 2005, 65, 366–373. [Google Scholar]
- Merner, N.D.; Hodgkinson, K.A.; Haywood, A.F.M.; Connors, S.; French, V.M.; Drenckhahn, J.D.; Kupprion, C.; Ramadanova, K.; Thierfelder, L.; McKenna, W.; et al. Arrhythmogenic right ventricular cardiomyopathy type 5 is a fully penetrant, lethal arrhythmic disorder caused by a missense mutation in the tmem43 gene. Am. J. Hum. Genet. 2008, 82, 809–821. [Google Scholar] [CrossRef] [PubMed]
- Taylor, M.R.G.; Slavov, D.; Gajewski, A.; Vlcek, S.; Ku, L.; Fain, P.R.; Carniel, E.; Di Lenarda, A.; Sinagra, G.; Boucek, M.M.; et al. Thymopoietin (lamina-associated polypeptide 2) gene mutation associated with dilated cardiomyopathy. Hum. Mutat. 2005, 26, 566–574. [Google Scholar] [CrossRef] [PubMed]
- Kimura, A.; Harada, H.; Park, J.E.; Nishi, H.; Satoh, M.; Takahashi, M.; Hiroi, S.; Sasaoka, T.; Ohbuchi, N.; Nakamura, T.; et al. Mutations in the cardiac troponin i gene associated with hypertrophic cardiomyopathy. Nat. Genet. 1997, 16, 379–382. [Google Scholar] [PubMed]
- Murphy, R.T.; Mogensen, J.; Shaw, A.; Kubo, T.; Hughes, S.; McKenna, W.J. Novel mutation in cardiac troponin i in recessive idiopathic dilated cardiomyopathy. Lancet 2004, 363, 371–372. [Google Scholar] [CrossRef]
- Kamisago, M.; Sharma, S.D.; DePalma, S.R.; Solomon, S.; Sharma, P.; McDonough, B.; Smoot, L.; Mullen, M.P.; Woolf, P.K.; Wigle, E.D.; et al. Mutations in sarcomere protein genes as a cause of dilated cardiomyopathy. N. Engl. J. Med. 2000, 343, 1688–1696. [Google Scholar] [CrossRef] [PubMed]
- Thierfelder, L.; Watkins, H.; Macrae, C.; Lamas, R.; Mckenna, W.; Vosberg, H.P.; Seidman, J.G.; Seidman, C.E. Alpha-tropomyosin and cardiac troponin-t mutations cause familial hypertrophic cardiomyopathy - a disease of the sarcomere. Cell 1994, 77, 701–712. [Google Scholar] [CrossRef]
- Sibbing, D.; Pfeufer, A.; Perisic, T.; Mannes, A.M.; Fritz-Wolf, K.; Unwin, S.; Sinner, M.F.; Gieger, C.; Gloeckner, C.J.; Wichmann, H.E.; et al. Mutations in the mitochondrial thioredoxin reductase gene txnrd2 cause dilated cardiomyopathy. Eur. Heart J. 2011, 32, 1121–1133. [Google Scholar] [CrossRef] [PubMed]
- Gerull, B.; Gramlich, M.; Atherton, J.; McNabb, M.; Trombitas, K.; Sasse-Klaassen, S.; Seidman, J.G.; Seidman, C.; Granzier, H.; Labeit, S.; et al. Mutations of ttn, encoding the giant muscle filament titin, cause familial dilated cardiomyopathy. Nat. Genet. 2002, 30, 201–204. [Google Scholar] [CrossRef] [PubMed]
- Taylor, M.; Graw, S.; Sinagra, G.; Barnes, C.; Slavov, D.; Brun, F.; Pinamonti, B.; Salcedo, E.E.; Sauer, W.; Pyxaras, S.; et al. Genetic variation in titin in arrhythmogenic right ventricular cardiomyopathy-overlap syndromes. Circulation 2011, 124, 876–885. [Google Scholar] [CrossRef] [PubMed]
- Olson, T.M.; Illenberger, S.; Kishimoto, N.Y.; Huttelmaier, S.; Keating, M.T.; Jockusch, B.M. Metavinculin mutations alter actin interaction in dilated cardiomyopathy. Circulation 2002, 105, 431–437. [Google Scholar] [CrossRef] [PubMed]
- Vasile, V.C.; Ommen, S.R.; Edwards, W.D.; Ackerman, M.J. A missense mutation in a ubiquitously expressed protein, vinculin, confers susceptibility to hypertrophic cardiomyopathy. Biochem. Biophys. Res. Commun. 2006, 345, 998–1003. [Google Scholar] [CrossRef] [PubMed]
- Li, X.P.; Luo, R.; Mo, X.Y.; Jiang, R.J.; Kong, H.; Hua, W.; Wu, X.S. Polymorphism of zbtb17 gene is associated with idiopathic dilated cardiomyopathy: A case control study in a han chinese population. Eur. J. Med. Res. 2013, 18. [Google Scholar] [CrossRef] [PubMed]
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Simpson, S.; Rutland, P.; Rutland, C.S. Genomic Insights into Cardiomyopathies: A Comparative Cross-Species Review. Vet. Sci. 2017, 4, 19. https://doi.org/10.3390/vetsci4010019
Simpson S, Rutland P, Rutland CS. Genomic Insights into Cardiomyopathies: A Comparative Cross-Species Review. Veterinary Sciences. 2017; 4(1):19. https://doi.org/10.3390/vetsci4010019
Chicago/Turabian StyleSimpson, Siobhan, Paul Rutland, and Catrin Sian Rutland. 2017. "Genomic Insights into Cardiomyopathies: A Comparative Cross-Species Review" Veterinary Sciences 4, no. 1: 19. https://doi.org/10.3390/vetsci4010019
APA StyleSimpson, S., Rutland, P., & Rutland, C. S. (2017). Genomic Insights into Cardiomyopathies: A Comparative Cross-Species Review. Veterinary Sciences, 4(1), 19. https://doi.org/10.3390/vetsci4010019