Comparative Aspects of Osteosarcoma Pathogenesis in Humans and Dogs
Abstract
:1. Introduction
2. Comparative Environmental Exposures and Osteosarcoma
2.1. Ionizing Radiation—Human
2.2. Systemic Ionizing Radiation—Dog
2.3. Localized Ionizing Radiation—Dog
3. Comparative Skeletal Growth and Osteosarcoma
3.1. Skeletal Growth—Human
3.2. Skeletal Growth—Dog
4. Comparative Genetic Pathogenesis and Osteosarcoma
4.1. Genetic Pathogenesis—Human
4.2. Genetic Pathogenesis—Dog
5. Summary
Author Contributions
Conflicts of Interest
References
- McKenna, R.J.; Schwinn, C.P.; Soong, K.Y.; Higinbotham, N.L. Osteogenic sarcoma arising in paget’s disease. Cancer 1964, 17, 42–66. [Google Scholar] [CrossRef]
- Sissons, H.A. The WHO classification of bone tumors. Recent Results Cancer Res. 1976, 54, 104–108. [Google Scholar] [PubMed]
- Kirpensteijn, J.; Timmermans-Sprang, E.P.; van Garderen, E.; Rutteman, G.R.; van Leeuwen, I.S.L.; Mol, J.A. Growth hormone gene expression in canine normal growth plates and spontaneous osteosarcoma. Mol. Cell Endocrinol. 2002, 197, 179–185. [Google Scholar] [CrossRef]
- MacEwen, E.G.; Pastor, J.; Kutzke, J.; Tsan, R.; Kurzman, I.D.; Thamm, D.H.; Wilson, M.; Radinsky, R. IGF-1 receptor contributes to the malignant phenotype in human and canine osteosarcoma. J. Cell. Biochem. 2004, 92, 77–91. [Google Scholar] [CrossRef] [PubMed]
- Maniscalco, L.; Iussich, S.; Morello, E.; Martano, M.; Gattino, F.; Miretti, S.; Biolatti, B.; Accornero, P.; Martignani, E.; Sanchez-Cespedes, R.; Buracco, P.; de Maria, R. Increased expression of insulin-like growth factor-1 receptor is correlated with worse survival in canine appendicular osteosarcoma. Vet. J. 2015, 205, 272–280. [Google Scholar] [CrossRef] [PubMed]
- Klein, M.J.; Siegal, G.P. Osteosarcoma: Anatomic and histologic variants. Amer. J. Clin. Pathol. 2006, 12, 555–581. [Google Scholar] [CrossRef]
- Goorin, A.M.; Abelson, H.T.; Frei, E. Osteosarcoma: Fifteen years later. N. Eng. J. Med. 1985, 313, 1637–1643. [Google Scholar] [CrossRef] [PubMed]
- Khanna, C.; Fan, T.M.; Gorlick, R.; Helman, L.J.; Kleinerman, E.S.; Adamson, P.C.; Houghton, P.J.; Tap, W.D.; Welch, D.R.; Steeg, P.S.; et al. Toward a drug development path that targets metastatic progression in osteosarcoma. Clin. Cancer Res. 2014, 20, 4200–4209. [Google Scholar] [CrossRef] [PubMed]
- Ottaviani, G.; Jaffe, N. The epidemiology of osteosarcoma. Cancer Treat. Res. 2009, 152, 3–13. [Google Scholar] [PubMed]
- Ottaviani, G.; Jaffe, N. The etiology of osteosarcoma. Cancer Treat. Res. 2009, 152, 15–32. [Google Scholar] [PubMed]
- Dorn, C.R.; Taylor, D.O.; Schneider, R.; Hibbard, H.H.; Klauber, M.R. Survey of animal neoplasms in Alameda and Contra Costa Counties, California. II. Cancer morbidity in dogs and cats from Alameda County. J. Nat. Cancer Int. 1968, 40, 307–318. [Google Scholar]
- Bruland, O.S.; Hoifodt, H.; Saeter, G.; Smeland, S.; Fodstad, O. Hematogenous micrometastases in osteosarcoma patients. Clin. Cancer Res. 2005, 11, 4666–4673. [Google Scholar] [CrossRef] [PubMed]
- Makai, F.; Belan, A.; Malek, P. Lymphatic metastases of bone tumors. Lymphology 1971, 4, 109–115. [Google Scholar] [PubMed]
- Tallroth, K.; Makai, F.; Musumeci, R. Lymphography in bone and soft tissue sarcomas. Experiences from three institutions. Tumori 1980, 66, 721–728. [Google Scholar] [PubMed]
- Bacci, G.; Picci, P.; Ferrari, S.; Avella, M.; Prever, B.A.; Ruggieri, P.; Casadei, R.; Lari, S.; Monti, C.; Cazzola, A.; et al. Neoadjuvant chemotherapy for nonmetastatic osteosarcoma of the extremities: The recent experience at the Rizzoli Institute. Cancer Treat. Res. 1993, 62, 299–308. [Google Scholar] [PubMed]
- Ferrari, S.; Palmerini, E. Adjuvant and neoadjuvant combination chemotherapy for osteogenic sarcoma. Curr. Opin. Oncol. 2007, 19, 341–346. [Google Scholar] [CrossRef] [PubMed]
- Deyrup, A.T.; Montag, A.G.; Inwards, C.Y.; Xu, Z.; Swee, R.G.; Krishnan Unni, K. Sarcomas arising in Paget disease of bone: A clinicopathologic analysis of 70 cases. Arch. Pathol. Lab. Med. 2007, 131, 942–946. [Google Scholar] [PubMed]
- Mangham, D.C.; Davie, M.W.; Grimer, R.J. Sarcoma arising in Paget’s disease of bone: Declining incidence and increasing age at presentation. Bone 2009, 44, 431–436. [Google Scholar] [CrossRef] [PubMed]
- Merkow, R.L.; Lane, J.M. Paget’s disease of bone. Orthop. Clin. North Amer. 1990, 21, 171–189. [Google Scholar]
- Ruggieri, P.; Calabro, T.; Montalti, M.; Mercuri, M. The role of surgery and adjuvants to survival in Pagetic osteosarcoma. Clin. Orthop. Relat. Res. 2010, 468, 2962–2968. [Google Scholar] [CrossRef] [PubMed]
- Paoloni, M.; Davis, S.; Lana, S.; Withrow, S.; Sangiorgi, L.; Picci, P.; Hewitt, S.; Triche, T.; Meltzer, P.; Khanna, C. Canine tumor cross-species genomics uncovers targets linked to osteosarcoma progression. BMC Genomics 2009, 10. [Google Scholar] [CrossRef] [PubMed]
- Davis, B.W.; Elaine, A.O. Ostrander, Domestic dogs and cancer research: A breed-based genomics approach. ILAR J. 2014, 55, 59–68. [Google Scholar] [CrossRef] [PubMed]
- Scott, M.C.; Sarver, A.L.; Gavin, K.J.; Thayanithy, V.; Getzy, D.M.; Newman, R.A.; Cutter, G.R.; Lindblad-Toh, K.; Kisseberth, W.C.; Hunter, L.E.; et al. Molecular subtypes of osteosarcoma identified by reducing tumor heterogeneity through an interspecies comparative approach. Bone 2011, 49, 356–367. [Google Scholar] [CrossRef] [PubMed]
- Angstadt, A.Y.; Motsinger-Reif, A.; Thomas, R.; Kisseberth, W.C.; Guillermo Couto, C.; Duval, D.L.; Nielsen, D.M.; Modiano, J.F.; Breen, M. Characterization of canine osteosarcoma by array comparative genomic hybridization and RT-qPCR: Signatures of genomic imbalance in canine osteosarcoma parallel the human counterpart. Gene. Chromosome. Canc. 2011, 50, 859–874. [Google Scholar] [CrossRef] [PubMed]
- Angstadt, A.Y.; Thayanithy, V.; Subramanian, S.; Modiano, J.F.; Breen, M. A genome-wide approach to comparative oncology: High-resolution oligonucleotide aCGH of canine and human osteosarcoma pinpoints shared microaberrations. Cancer Genetics 2012, 205, 572–587. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Bahrami, A.; Pappo, A.; Easton, J.; Dalton, J.; Hedlund, E.; Ellison, D.; Shurtleff, S.; Wu, G.; Wei, L.; et al. Recurrent somatic structural variations contribute to tumorigenesis in pediatric osteosarcoma. Cell Rep. 2014, 7, 104–112. [Google Scholar] [CrossRef] [PubMed]
- Joseph, C.G.; Hwang, H.; Jiao, Y.; Wood, L.D.; Kinde, I.; Wu, J.; Mandahl, N.; Luo, J.; Hruban, R.H.; Diaz, L.A.; et al. Exomic analysis of myxoid liposarcomas, synovial sarcomas, and osteosarcomas. Gene. Chromosome. Canc. 2014, 53, 15–24. [Google Scholar] [CrossRef] [PubMed]
- Karlsson, E.K.; Sigurdsson, S.; Ivansson, E.; Thomas, R.; Elvers, I.; Wright, J.; Howald, C.; Tonomura, N.; Perloski, M.; Swofford, R.; Biagi, T.; et al. Genome-wide analyses implicate 33 loci in heritable dog osteosarcoma, including regulatory variants near CDKN2A/B. Genome Biol. 2013, 14. [Google Scholar] [CrossRef] [PubMed]
- Perry, J.A.; Kiezun, A.; Tonzi, P.; van Allen, E.M.; Carter, S.L.; Baca, S.C.; Cowley, G.S.; Bhatt, A.S.; Rheinbay, E.; Pedamallu, C.S.; et al. Complementary genomic approaches highlight the PI3K/mTOR pathway as a common vulnerability in osteosarcoma. Proc. Nat. Acad. Sci. USA 2014, 111, E5564–E5573. [Google Scholar] [CrossRef] [PubMed]
- Savage, S.A.; Mirabello, L.; Wang, Z.; Gastier-Foster, J.M.; Gorlick, R.; Khanna, C.; Flanagan, A.M.; Tirabosco, R.; Andrulis, I.L.; Wunder, J.S.; et al. Genome-wide association study identifies two susceptibility loci for osteosarcoma. Nat. Genet. 2013, 45, 799–803. [Google Scholar] [CrossRef] [PubMed]
- Mueller, F.; Fuchs, B.; Kaser-Hotz, B. Comparative biology of human and canine osteosarcoma. Anticancer Res. 2007, 27, 155–164. [Google Scholar] [PubMed]
- Withrow, S.J.; Powers, B.E.; Straw, R.C.; Wilkins, R.M. Comparative aspects of osteosarcoma. Dog versus man. Clin. Orthop. Relat. Res. 1991, 159–168. [Google Scholar]
- Vail, D.M.; MacEwen, E.G. Spontaneously occurring tumors of companion animals as models for human cancer. Cancer Invest. 2000, 18, 781–792. [Google Scholar] [CrossRef] [PubMed]
- Doi, K.; Mieno, M.N.; Shimada, Y.; Yoshinaga, S. Risk of second malignant neoplasms among childhood cancer survivors treated with radiotherapy: Meta-analysis of nine epidemiological studies. Paediatr. Perinat. Epidemiol. 2009, 23, 370–379. [Google Scholar] [CrossRef] [PubMed]
- Dores, G.M.; Metayer, C.; Curtis, R.E.; Lynch, C.F.; Clarke, E.A.; Glimelius, B.; Storm, H.; Pukkala, E.; van Leeuwen, F.E.; Holowaty, E.J.; et al. Second malignant neoplasms among long-term survivors of Hodgkin’s disease: A population-based evaluation over 25 years. J. Clin. Oncol. 2002, 20, 3484–3494. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, F.; Rubino, C.; Guerin, S.; Diallo, I.; Samand, A.; Hawkins, M.; Oberlin, O.; Lefkopoulos, D.; De Vathaire, F. Risk of a second malignant neoplasm after cancer in childhood treated with radiotherapy: Correlation with the integral dose restricted to the irradiated fields. Int. J. Radiat. Oncol. Biol. Phys. 2008, 70, 908–915. [Google Scholar] [CrossRef] [PubMed]
- Hawkins, M.M.; Wilson, L.M.; Burton, H.S.; Potok, M.H.; Winter, D.L.; Marsden, H.B.; Stovall, M.A. Radiotherapy, alkylating agents, and risk of bone cancer after childhood cancer. J. Nat. Cancer Int. 1996, 88, 270–278. [Google Scholar] [CrossRef]
- Le Vu, B.; de Vathaire, F.; Shamsaldin, A.; Hawkins, M.M.; Grimaud, E.; Hardiman, C.; Diallo, I.; Vassal, G.; Bessa, E.; Campbell, S.; et al. Radiation dose, chemotherapy and risk of osteosarcoma after solid tumours during childhood. Int. J. Cancer 1998, 77, 370–377. [Google Scholar] [CrossRef]
- Meadows, A.T.; Strong, L.C.; Li, F.P.; D'Angio, G.J.; Schweisguth, O.; Freeman, A.I.; Jenkin, R.D.; Morris-Jones, P.; Nesbit, M.E. Bone sarcoma as a second malignant neoplasm in children: Influence of radiation and genetic predisposition for the Late Effects Study Group. Cancer 1980, 46, 2603–2606. [Google Scholar] [CrossRef]
- Newton, W.A., Jr.; Meadows, A.T.; Shimada, H.; Bunin, G.R.; Vawter, G.F. Bone sarcomas as second malignant neoplasms following childhood cancer. Cancer 1991, 67, 193–201. [Google Scholar] [CrossRef]
- Tucker, M.A.; D’Angio, G.J.; Boice, J.D., Jr.; Strong, L.C.; Li, F.P.; Stovall, M.; Stone, B.J.; Green, D.M.; Lombardi, F.; Newton, W.; et al. Bone sarcomas linked to radiotherapy and chemotherapy in children. N Engl J. Med. 1987, 317, 588–593. [Google Scholar] [CrossRef] [PubMed]
- Koshy, M.; Paulino, A.C.; Mai, W.Y.; Teh, B.S. Radiation-induced osteosarcomas in the pediatric population. Int. J. Radiat. Oncol. Biol. Phys. 2005, 63, 1169–1174. [Google Scholar] [CrossRef] [PubMed]
- Carnes, B.A.; Groer, P.G.; Kotek, T.J. Radium dial workers: Issues concerning dose response and modeling. Radiat. Res. 1997, 147, 707–714. [Google Scholar] [CrossRef] [PubMed]
- Fry, S.A. Studies of U.S. radium dial workers: An epidemiological classic. Radiat. Res. 1998, 150, S21–S29. [Google Scholar] [CrossRef] [PubMed]
- Bertrand, A.; Legras, B.; Martin, J. Use of radium-224 in the treatment of ankylosing spondylitis and rheumatoid synovitis. Health Phys. 1978, 35, 57–60. [Google Scholar] [CrossRef] [PubMed]
- Nekolla, E.A.; Kellerer, A.M.; Kuse-Isingschulte, M.; Eder, E.; Spiess, H. Malignancies in patients treated with high doses of radium-224. Radiat. Res. 1999, 152, S3–S7. [Google Scholar] [CrossRef] [PubMed]
- Nekolla, E.A.; Kreisheimer, M.; Kellerer, A.M.; Kuse-Isingschulte, M.; Gossner, W.; Spiess, H. Induction of malignant bone tumors in radium-224 patients: Risk estimates based on the improved dosimetry. Radiat. Res. 2000, 153, 93–103. [Google Scholar] [CrossRef]
- Spiess, H. Life-span study on late effects of 224Ra in children and adults. Health Phys. 2010, 99, 286–291. [Google Scholar] [CrossRef] [PubMed]
- Harrist, T.J.; Schiller, A.L.; Trelstad, R.L.; Mankin, H.J.; Mays, C.W. Thorotrast-associated sarcoma of bone: A case report and review of the literature. Cancer 1979, 44, 2049–2058. [Google Scholar] [CrossRef]
- Sindelar, W.F.; Costa, J.; Ketcham, A.S. Osteosarcoma associated with Thorotrast administration: Report of two cases and literature review. Cancer 1978, 42, 2604–2609. [Google Scholar] [CrossRef]
- Arlen, M.; Higinbotham, N.L.; Huvos, A.G.; Marcove, R.C.; Miller, T.; Shah, I.C. Radiation-induced sarcoma of bone. Cancer 1971, 28, 1087–1099. [Google Scholar] [CrossRef]
- Cahan, W.G.; Woodard, H.Q.; Higinbotham, N.L.; Stewart, F.W.; Coley, B.L. Sarcoma arising in irradiated bone; Report of 11 cases. Cancer 1948, 1, 3–29. [Google Scholar] [CrossRef]
- Samartzis, D.; Nishi, N.; Hayashi, M.; Cologne, J.; Cullings, H.M.; Kodama, K.; Miles, E.F.; Funamoto, S.; Suyama, A.; Soda, M.; Kasagi, F. Exposure to ionizing radiation and development of bone sarcoma: New insights based on atomic-bomb survivors of Hiroshima and Nagasaki. J. Bone Joint Surg. Amer. 2011, 93, 1008–1015. [Google Scholar] [CrossRef] [PubMed]
- Shilnikova, N.S.; Preston, D.L.; Ron, E.; Gilbert, E.S.; Vassilenko, E.K.; Romanov, S.A.; Kuznetsova, I.S.; Sokolnikov, M.E.; Okatenko, P.V.; Kreslov, V.V.; Koshurnikova, N.A. Cancer mortality risk among workers at the Mayak nuclear complex. Radiat. Res. 2003, 159, 787–798. [Google Scholar] [CrossRef]
- Gilbert, E.S.; Koshurnikova, N.A.; Sokolnikov, M.; Khokhryakov, V.F.; Miller, S.; Preston, D.L.; Romanov, S.A.; Shilnikova, N.S.; Suslova, K.G.; Vostrotin, V.V. Liver cancers in Mayak workers. Radiat. Res. 2000, 154, 246–252. [Google Scholar] [CrossRef]
- Koshurnikova, N.A.; Gilbert, E.S.; Sokolnikov, M.; Khokhryakov, V.F.; Miller, S.; Preston, D.L.; Romanov, S.A.; Shilnikova, N.S.; Suslova, K.G.; Vostrotin, V.V. Bone cancers in Mayak workers. Radiat. Res. 2000, 154, 237–245. [Google Scholar] [CrossRef]
- Sokolnikov, M.E.; Gilbert, E.S.; Preston, D.L.; Ron, E.; Shilnikova, N.S.; Khokhryakov, V.V.; Vasilenko, E.K.; Koshurnikova, N.A. Lung, liver and bone cancer mortality in Mayak workers. Int. J. Cancer 2008, 123, 905–911. [Google Scholar] [CrossRef] [PubMed]
- Lloyd, R.D.; Taylor, G.N.; Angus, W.; Bruenger, F.W.; Miller, S.C. Bone cancer occurrence among beagles given 239Pu as young adults. Health Phys. 1993, 64, 45–51. [Google Scholar] [CrossRef] [PubMed]
- Lloyd, R.D.; Taylor, G.N.; Angus, W.; Miller, S.C.; Bruenger, F.W.; Jee, W.S. Distribution of skeletal malignancies in beagles injected with 239Pu citrate. Health Phys. 1994, 66, 407–413. [Google Scholar] [CrossRef] [PubMed]
- Miller, S.C.; Lloyd, R.D.; Bruenger, F.W.; Krahenbuhl, M.P.; Polig, E.; Romanov, S.A. Comparisons of the skeletal locations of putative plutonium-induced osteosarcomas in humans with those in beagle dogs and with naturally occurring tumors in both species. Radiat. Res. 2003, 160, 517–523. [Google Scholar] [CrossRef] [PubMed]
- Muggenburg, B.A.; Guilmette, R.A.; Mewhinney, J.A.; Gillett, N.A.; Mauderly, J.L.; Griffith, W.C.; Diel, J.H.; Scott, B.R.; Hahn, F.F.; Boecker, B.B. Toxicity of inhaled plutonium dioxide in beagle dogs. Radiat. Res. 1996, 145, 361–381. [Google Scholar] [CrossRef] [PubMed]
- Mangano, J.J. A short latency between radiation exposure from nuclear plants and cancer in young children. Int. J. Health Serv. 2006, 36, 113–135. [Google Scholar] [CrossRef] [PubMed]
- Woodard, H.Q.; Harley, J.H. Strontium-90 in the long bones of patients with sarcoma. Health Phys. 1965, 11, 991–998. [Google Scholar] [CrossRef] [PubMed]
- Harvey, R.T.; Donald, P.J.; Weinstein, G.S. Osteogenic sarcoma of the maxillary alveolus occurring five years following the Chernobyl nuclear accident. Amer. J. Otolaryngol. 1996, 17, 210–214. [Google Scholar] [CrossRef]
- Gillett, N.A.; Muggenburg, B.A.; Boecker, B.B.; Griffith, W.C.; Hahn, F.F.; McClellan, R.O. Single inhalation exposure to 90SrCl2 in the beagle dog: Late biological effects. J. Nat. Cancer Int. 1987, 79, 359–376. [Google Scholar]
- White, R.G.; Raabe, O.G.; Culbertson, M.R.; Parks, N.J.; Samuels, S.J.; Rosenblatt, L.S. Bone sarcoma characteristics and distribution in beagles fed strontium-90. Radiat Res. 1993, 136, 178–189. [Google Scholar] [CrossRef] [PubMed]
- Barnes, M.; Duray, P.; DeLuca, A.; Anderson, W.; Sindelar, W.; Kinsella, T. Tumor induction following intraoperative radiotherapy: Late results of the National Cancer Institute canine trials. Int. J. Radiat. Oncol. Biol. Phys. 1990, 19, 651–660. [Google Scholar] [CrossRef]
- Johnstone, P.A.; Laskin, W.B.; DeLuca, A.M.; Barnes, M.; Kinsella, T.J.; Sindelar, W.F. Tumors in dogs exposed to experimental intraoperative radiotherapy. Int. J. Radiat. Oncol. Biol. Phys. 1996, 34, 853–857. [Google Scholar] [CrossRef]
- Gillette, S.M.; Gillette, E.L.; Powers, B.E.; Withrow, S.J. Radiation-induced osteosarcoma in dogs after external beam or intraoperative radiation therapy. Cancer Res. 1990, 50, 54–57. [Google Scholar] [PubMed]
- Hosoya, K.; Poulson, J.M.; Azuma, C. Osteoradionecrosis and radiation induced bone tumors following orthovoltage radiation therapy in dogs. Vet. Radiol. Ultrasound 2008, 49, 189–195. [Google Scholar] [CrossRef] [PubMed]
- McEntee, M.C.; Page, R.L.; Theon, A.; Erb, H.N.; Thrall, D.E. Malignant tumor formation in dogs previously irradiated for acanthomatous epulis. Vet. Radiol. Ultrasound 2004, 45, 357–361. [Google Scholar] [CrossRef] [PubMed]
- Linabery, A.M.; Ross, J.A. Trends in childhood cancer incidence in the U.S. (1992–2004). Cancer 2008, 112, 416–432. [Google Scholar] [CrossRef] [PubMed]
- Price, C.H. Osteogenic sarcoma; An analysis of the age and sex incidence. Brit. J. Cancer 1955, 9, 558–574. [Google Scholar] [CrossRef] [PubMed]
- Huiskes, R.; Ruimerman, R.; van Lenthe, G.H.; Janssen, J.D. Effects of mechanical forces on maintenance and adaptation of form in trabecular bone. Nature 2000, 405, 704–706. [Google Scholar] [CrossRef] [PubMed]
- Cotterill, S.J.; Wright, C.M.; Pearce, M.S.; Craft, A.W. Stature of young people with malignant bone tumors. Pediatr. Blood Cancer 2004, 42, 59–63. [Google Scholar] [CrossRef] [PubMed]
- Fraumeni, J.F., Jr. Stature and malignant tumors of bone in childhood and adolescence. Cancer 1967, 20, 967–973. [Google Scholar] [CrossRef]
- Gelberg, K.H.; Fitzgerald, E.F.; Hwang, S.; Dubrow, R. Growth and development and other risk factors for osteosarcoma in children and young adults. Int. J. Epidemiol. 1997, 26, 272–278. [Google Scholar] [CrossRef] [PubMed]
- Longhi, A.; Pasini, A.; Cicognani, A.; Baronio, F.; Pellacani, A.; Baldini, N.; Bacci, G. Height as a risk factor for osteosarcoma. J. Pediatr. Hematol. Oncol. 2005, 27, 314–318. [Google Scholar] [CrossRef] [PubMed]
- Hadjipavlou, A.; Lander, P.; Srolovitz, H.; Enker, I.P. Malignant transformation in Paget disease of bone. Cancer 1992, 70, 2802–2808. [Google Scholar] [CrossRef]
- Edeiken, J.; DePalma, A.F.; Hodes, P.J. Paget’s disease: Osteitis deformans. Clin. Orthop. Relat. Res. 1966, 46, 141–153. [Google Scholar] [PubMed]
- Roodman, G.D.; Windle, J.J. Paget disease of bone. J. Clin Invest. 2005, 115, 200–208. [Google Scholar] [CrossRef] [PubMed]
- Greditzer, H.G., 3rd; McLeod, R.A.; Unni, K.K.; Beabout, J.W. Bone sarcomas in paget disease. Radiology 1983, 146, 327–333. [Google Scholar] [CrossRef] [PubMed]
- Huvos, A.G. Osteogenic sarcoma of bones and soft tissues in older persons. A clinicopathologic analysis of 117 patients older than 60 years. Cancer 1986, 57, 1442–1449. [Google Scholar] [CrossRef]
- Wick, M.R.; Siegal, G.P.; Unni, K.K.; McLeod, R.A.; Greditzer, H.G. Sarcomas of bone complicating osteitis deformans (Paget’s disease): Fifty years' experience. Amer. J. Surg. Pathol. 1981, 5, 47–59. [Google Scholar] [CrossRef] [PubMed]
- Braddock, G.T.; Hadlow, V.D. Osteosarcoma in enchondromatosis (Ollier’s disease): Report of a case. J. Bone Joint Surg. Br. 1966, 48, 145–149. [Google Scholar] [PubMed]
- Huvos, A.G.; Higinbotham, N.L.; Miller, T.R. Bone sarcomas arising in fibrous dysplasia. J. Bone Joint Surg. Amer. 1972, 54, 1047–1056. [Google Scholar] [PubMed]
- Johnston, R.M.; Miles, J.S. Sarcomas arising from chronic osteomyelitic sinuses:A report of two cases. J. Bone Joint Surg. Amer. 1973, 55, 162–168. [Google Scholar] [PubMed]
- Rockwell, M.A.; Enneking, W.F. Osteosarcoma developing in solitary enchondroma of the tibia. J. Bone Joint Surg. Amer. 1971, 53, 341–344. [Google Scholar] [PubMed]
- Ru, G.; Terracini, B.; Glickman, L.T. Host related risk factors for canine osteosarcoma. Vet. J. 1998, 156, 31–39. [Google Scholar] [CrossRef]
- Brodey, R.S.; Riser, W.H. Canine osteosarcoma:A clinicopathologic study of 194 cases. Clin. Orthop. Relat. Res. 1969, 62, 54–64. [Google Scholar] [PubMed]
- Heyman, S.J.; Diefenderfer, D.L.; Goldschmidt, M.H.; Newton, C.D. Canine axial skeletal osteosarcoma: A retrospective study of 116 cases (1986 to 1989). Vet. Surg. 1992, 21, 304–310. [Google Scholar] [CrossRef] [PubMed]
- Knecht, C.D.; Priester, W.A. Musculoskeletal tumors in dogs. J. Amer. Vet. Med. Assoc. 1978, 172, 72–74. [Google Scholar] [PubMed]
- Bennett, D.; Campbell, J.R.; Brown, P. Osteosarcoma associated with healed fractures. J. Small Anim. Pract. 1979, 20, 13–18. [Google Scholar] [CrossRef] [PubMed]
- Dubielzig, R.R.; Biery, D.N.; Brodey, R.S. Bone sarcomas associated with multifocal medullary bone infarction in dogs. J. Amer. Vet. Med. Assoc. 1981, 179, 64–68. [Google Scholar] [PubMed]
- Sinibaldi, K.; Rosen, H.; Liu, S.K.; de Angelis, M. Tumors associated with metallic implants in animals. Clin. Orthop. Relat. Res. 1976, 21, 257–266. [Google Scholar] [CrossRef]
- Stevenson, S. Fracture-associated sarcomas. Vet. Clin. North. Amer. Small Anim. Pract. 1991, 21, 859–872. [Google Scholar] [CrossRef]
- Stevenson, S.; Hohn, R.B.; Pohler, O.E.; Fetter, A.W.; Olmstead, M.L.; Wind, A.P. Fracture-associated sarcoma in the dog. J. Amer. Vet. Med. Assoc. 1982, 180, 1189–1196. [Google Scholar] [PubMed]
- Banks, W.C.; Morris, E.; Herron, M.R.; Green, R.W. Osteogenic sarcoma associated with internal fracture fixation in two dogs. J. Amer. Vet. Med. Assoc. 1975, 167, 166–167. [Google Scholar] [PubMed]
- Harrison, J.W.; McLain, D.L.; Hohn, R.B.; Wilson, G.P.; Chalman, J.A.; MacGowan, K.N. Osteosarcoma associated with metallic implants: Report of two cases in dogs. Clin. Orthop. Relat. Res. 1976, 116, 253–257. [Google Scholar] [PubMed]
- Madewell, B.R.; Pool, R.R.; Leighton, R.L. Osteogenic sarcoma at the site of a chronic nonunion fracture and internal fixation device in a dog. J. Amer. Vet. Med. Assoc. 1977, 171, 187–189. [Google Scholar] [PubMed]
- Van Bree, H.; Verschooten, F.; Hoorens, J.; Mattheeuws, D. Internal fixation of a fractured humerus in a dog and late osteosarcoma development. Vet. Rec 1980, 107, 501–502. [Google Scholar] [CrossRef] [PubMed]
- Hansen, M.F. Molecular genetic considerations in osteosarcoma. Clin. Orthop. Relat. Res. 1991, 270, 237–246. [Google Scholar] [CrossRef] [PubMed]
- Levine, A.J.; Momand, J.; Finlay, C.A. The p53 tumour suppressor gene. Nature 1991, 351, 453–436. [Google Scholar] [CrossRef] [PubMed]
- Park, D.J.; Nakamura, H.; Chumakov, A.M.; Said, J.W.; Miller, C.W.; Chen, D.L.; Koeffler, H.P. Transactivational and DNA binding abilities of endogenous p53 in p53 mutant cell lines. Oncogene 1994, 9, 1899–1906. [Google Scholar] [PubMed]
- Raycroft, L.; Schmidt, J.R.; Yoas, K.; Hao, M.M.; Lozano, G. Analysis of p53 mutants for transcriptional activity. Mol. Cell. Biol. 1991, 11, 6067–6074. [Google Scholar] [PubMed]
- Li, F.P.; Fraumeni, J.F., Jr.; Mulvihill, J.J.; Blattner, W.A.; Dreyfus, M.G.; Tucker, M.A.; Miller, R.W. A cancer family syndrome in twenty-four kindreds. Cancer Res. 1988, 48, 5358–5362. [Google Scholar] [PubMed]
- Malkin, D.; Li, F.P.; Strong, L.C.; Fraumeni, J.F., Jr.; Nelson, C.E.; Kim, D.H.; Kassel, J.; Gryka, M.A.; Bischoff, F.Z.; Tainsky, M.A.; et al. Germ line p53 mutations in a familial syndrome of breast cancer, sarcomas, and other neoplasms. Science 1990, 250, 1233–1238. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, S.; Wang, S.; Tong, Y.A.; Hao, Z.M.; Chang, E.H. Dominant negative effect of a germ-line mutant p53: A step fostering tumorigenesis. Cancer Res. 1993, 53, 4452–4455. [Google Scholar] [PubMed]
- McIntyre, J.F.; Smith-Sorensen, B.; Friend, S.H.; Kassell, J.; Borresen, A.L.; Yan, Y.X.; Russo, C.; Sato, J.; Barbier, N.; Miser, J.; et al. Germline mutations of the p53 tumor suppressor gene in children with osteosarcoma. J. Clin. Oncol. 1994, 12, 925–930. [Google Scholar] [CrossRef]
- Gokgoz, N.; Wunder, J.S.; Mousses, S.; Eskandarian, S.; Bell, R.S.; Andrulis, I.L. Comparison of p53 mutations in patients with localized osteosarcoma and metastatic osteosarcoma. Cancer 2001, 92, 2181–2189. [Google Scholar] [CrossRef]
- Miller, C.W.; Aslo, A.; Won, A.; Tan, M.; Lampkin, B.; Koeffler, H.P. Alterations of the p53, Rb and MDM2 genes in osteosarcoma. J. Cancer Res. Clin. Oncol. 1996, 122, 559–565. [Google Scholar] [CrossRef] [PubMed]
- Tsuchiya, T.; Sekine, K.; Hinohara, S.; Namiki, T.; Nobori, T.; Kaneko, Y. Analysis of the p16INK4, p14ARF, p15, TP53, and MDM2 genes and their prognostic implications in osteosarcoma and Ewing sarcoma. Cancer Genet. Cytogenet 2000, 120, 91–98. [Google Scholar] [CrossRef]
- Toguchida, J.; Yamaguchi, T.; Ritchie, B.; Beauchamp, R.L.; Dayton, S.H.; Herrera, G.E.; Yamamuro, T.; Kotoura, Y.; Sasaki, M.S.; Little, J.B.; et al. Mutation spectrum of the p53 gene in bone and soft tissue sarcomas. Cancer Res. 1992, 52, 6194–6199. [Google Scholar] [PubMed]
- Grana, X.; Garriga, J.; Mayol, X. Role of the retinoblastoma protein family, pRB, p107 and p130 in the negative control of cell growth. Oncogene 1998, 17, 3365–3383. [Google Scholar] [CrossRef] [PubMed]
- Weinberg, R.A. The retinoblastoma protein and cell cycle control. Cell 1995, 81, 323–330. [Google Scholar] [CrossRef]
- Eng, C.; Li, F.P.; Abramson, D.H.; Ellsworth, R.M.; Wong, F.L.; Goldman, M.B.; Seddon, J.; Tarbell, N.; Boice, J.D., Jr. Mortality from second tumors among long-term survivors of retinoblastoma. J. Nat. Cancer Int. 1993, 85, 1121–1128. [Google Scholar] [CrossRef]
- Wong, F.L.; Boice, J.D., Jr.; Abramson, D.H.; Tarone, R.E.; Kleinerman, R.A.; Stovall, M.; Goldman, M.B.; Seddon, J.M.; Tarbell, N.; Fraumeni, J.F., Jr.; Li, F.P. Cancer incidence after retinoblastoma. Radiation dose and sarcoma risk. JAMA 1997, 278, 1262–1267. [Google Scholar] [CrossRef] [PubMed]
- Hansen, M.F.; Koufos, A.; Gallie, B.L.; Phillips, R.A.; Fodstad, O.; Brogger, A.; Gedde-Dahl, T.; Cavenee, W.K. Osteosarcoma and retinoblastoma: A shared chromosomal mechanism revealing recessive predisposition. Proc. Nat. Acad. USA 1985, 82, 6216–6220. [Google Scholar] [CrossRef]
- Savage, S.A.; Mirabello, L. Using epidemiology and genomics to understand osteosarcoma etiology. Sarcoma 2011. [Google Scholar] [CrossRef] [PubMed]
- Wadayama, B.; Toguchida, J.; Shimizu, T.; Ishizaki, K.; Sasaki, M.S.; Kotoura, Y.; Yamamuro, T. Mutation spectrum of the retinoblastoma gene in osteosarcomas. Cancer Res. 1994, 54, 3042–3048. [Google Scholar] [PubMed]
- Puranam, K.L.; Kennington, E.; Sait, S.N.; Shows, T.B.; Rochelle, J.M.; Seldin, M.F.; Blackshear, P.J. Chromosomal localization of the gene encoding the human DNA helicase RECQL and its mouse homologue. Genomics 1995, 26, 595–598. [Google Scholar] [CrossRef]
- Watt, P.M.; Hickson, I.D. Failure to unwind causes cancer. Genome stability. Curr Biol 1996, 6, 265–267. [Google Scholar] [CrossRef]
- Mohaghegh, P.; Hickson, I.D. DNA helicase deficiencies associated with cancer predisposition and premature ageing disorders. Hum. Mol. Genet. 2001, 10, 741–746. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.L.; Gannavarapu, A.; Kozinetz, C.A.; Levy, M.L.; Lewis, R.A.; Chintagumpala, M.M.; Ruiz-Maldanado, R.; Contreras-Ruiz, J.; Cunniff, C.; Erickson, R.P.; et al. Association between osteosarcoma and deleterious mutations in the RECQL4 gene in Rothmund-Thomson syndrome. J. Nat. Cancer Int. 2003, 95, 669–674. [Google Scholar] [CrossRef]
- Goto, M.; Miller, R.W.; Ishikawa, Y.; Sugano, H. Excess of rare cancers in Werner syndrome (adult progeria). Cancer Epidemiol. Biomark. Prev. 1996, 5, 239–246. [Google Scholar]
- Ishikawa, Y.; Miller, R.W.; Machinami, R.; Sugano, H.; Goto, M. Atypical osteosarcomas in Werner Syndrome (adult progeria). Jpn J. Cancer Res. 2000, 91, 1345–1349. [Google Scholar] [CrossRef] [PubMed]
- Johnson, A.S.; Couto, C.G.; Weghorst, C.M. Mutation of the p53 tumor suppressor gene in spontaneously occurring osteosarcomas of the dog. Carcinogenesis 1998, 19, 213–217. [Google Scholar] [CrossRef] [PubMed]
- Kirpensteijn, J.; Kik, M.; Teske, E.; Rutteman, G.R. TP53 gene mutations in canine osteosarcoma. Vet. Surg. 2008, 37, 454–460. [Google Scholar] [CrossRef] [PubMed]
- Levine, R.A.; Fleischli, M.A. Inactivation of p53 and retinoblastoma family pathways in canine osteosarcoma cell lines. Vet. Pathol 2000, 37, 54–61. [Google Scholar] [CrossRef] [PubMed]
- Loukopoulos, P.; Thornton, J.R.; Robinson, W.F. Clinical and pathologic relevance of p53 index in canine osseous tumors. Vet. Pathol. 2003, 40, 237–248. [Google Scholar] [CrossRef] [PubMed]
- Mendoza, S.; Konishi, T.; Dernell, W.S.; Withrow, S.J.; Miller, C.W. Status of the p53, Rb and MDM2 genes in canine osteosarcoma. Anticancer Res. 1998, 18, 4449–4453. [Google Scholar] [PubMed]
- Sagartz, J.E.; Bodley, W.L.; Gamblin, R.M.; Couto, C.G.; Tierney, L.A.; Capen, C.C. p53 tumor suppressor protein overexpression in osteogenic tumors of dogs. Vet. Pathol. 1996, 33, 213–221. [Google Scholar] [CrossRef] [PubMed]
- Setoguchi, A.; Sakai, T.; Okuda, M.; Minehata, K.; Yazawa, M.; Ishizaka, T.; Watari, T.; Nishimura, R.; Sasaki, N.; Hasegawa, A.; Tsujimoto, H. Aberrations of the p53 tumor suppressor gene in various tumors in dogs. Amer. J. Vet. Res. 2001, 62, 433–439. [Google Scholar] [CrossRef] [PubMed]
- van Leeuwen, I.S.; Cornelisse, C.J.; Misdorp, W.; Goedegebuure, S.A.; Kirpensteijn, J.; Rutteman, G.R. P53 gene mutations in osteosarcomas in the dog. Cancer Lett. 1997, 111, 173–178. [Google Scholar] [CrossRef]
- Thomas, R.; Wang, H.J.; Tsai, P.C.; Langford, C.F.; Fosmire, S.P.; Jubala, C.M.; Getzy, D.M.; Cutter, G.R.; Modiano, J.F.; Breen, M. Influence of genetic background on tumor karyotypes: Evidence for breed-associated cytogenetic aberrations in canine appendicular osteosarcoma. Chromosome Res. 2009, 17, 365–377. [Google Scholar] [CrossRef] [PubMed]
- Levine, A.J.; Chang, A.; Dittmer, D.; Notterman, D.A.; Silver, A.; Thorn, K.; Welsh, D.; Wu, M. The p53 tumor suppressor gene. J. Lab. Clin. Med. 1994, 123, 817–823. [Google Scholar] [PubMed]
- Cooley, D.M.; Beranek, B.C.; Schlittler, D.L.; Glickman, N.W.; Glickman, L.T.; Waters, D.J. Endogenous gonadal hormone exposure and bone sarcoma risk. Cancer Epidemiol. Biomark. Prev. 2002, 11, 1434–1440. [Google Scholar]
- Grice, H.C.; Hutchison, J.A. Retinoblastoma in a dog. A clinico-pathologic report. J. Amer. Vet. Med. Assoc. 1960, 136, 444–447. [Google Scholar]
- Syed, N.A.; Nork, T.M.; Poulsen, G.L.; Riis, R.C.; George, C.; Albert, D.M. Retinoblastoma in a dog. Arch. Ophthalmol. 1997, 115, 758–763. [Google Scholar] [CrossRef] [PubMed]
- Phillips, J.C.; Lembcke, L.; Chamberlin, T. A novel locus for canine osteosarcoma (OSA1) maps to CFA34, the canine orthologue of human 3q26. Genomics 2010, 96, 220–227. [Google Scholar] [CrossRef] [PubMed]
- Phillips, J.C.; Stephenson, B.; Hauck, M.; Dillberger, J. Heritability and segregation analysis of osteosarcoma in the Scottish deerhound. Genomics 2007, 90, 354–363. [Google Scholar] [CrossRef] [PubMed]
- Urfer, S.R.; Gaillard, C.; Steiger, A. Lifespan and disease predispositions in the Irish Wolfhound: A review. Vet. Quart. 2007, 29, 102–111. [Google Scholar] [CrossRef] [PubMed]
- Rosenberger, J.A.; Pablo, N.V.; Crawford, P.C. Prevalence of and intrinsic risk factors for appendicular osteosarcoma in dogs: 179 Cases (1996–2005). J. Amer. Vet. Med. Assoc. 2007, 231, 1076–1080. [Google Scholar] [CrossRef] [PubMed]
- Bech-Nielsen, S.; Haskins, M.E.; Reif, J.S.; Brodey, R.S.; Patterson, D.F.; Spielman, R. Frequency of osteosarcoma among first-degree relatives of St. Bernard dogs. J. Nat. Cancer Int. 1978, 60, 349–353. [Google Scholar]
- Kruzelock, R.P.; Murphy, E.C.; Strong, L.C.; Naylor, S.L.; Hansen, M.F. Localization of a novel tumor suppressor locus on human chromosome 3q important in osteosarcoma tumorigenesis. Cancer Res. 1997, 57, 106–109. [Google Scholar] [PubMed]
- Yamaguchi, T.; Toguchida, J.; Yamamuro, T.; Kotoura, Y.; Takada, N.; Kawaguchi, N.; Kaneko, Y.; Nakamura, Y.; Sasaki, M.S.; Ishizaki, K. Allelotype analysis in osteosarcomas: Frequent allele loss on 3q, 13q, 17p, and 18q. Cancer Res. 1992, 52, 2419–2423. [Google Scholar] [PubMed]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fan, T.M.; Khanna, C. Comparative Aspects of Osteosarcoma Pathogenesis in Humans and Dogs. Vet. Sci. 2015, 2, 210-230. https://doi.org/10.3390/vetsci2030210
Fan TM, Khanna C. Comparative Aspects of Osteosarcoma Pathogenesis in Humans and Dogs. Veterinary Sciences. 2015; 2(3):210-230. https://doi.org/10.3390/vetsci2030210
Chicago/Turabian StyleFan, Timothy M., and Chand Khanna. 2015. "Comparative Aspects of Osteosarcoma Pathogenesis in Humans and Dogs" Veterinary Sciences 2, no. 3: 210-230. https://doi.org/10.3390/vetsci2030210
APA StyleFan, T. M., & Khanna, C. (2015). Comparative Aspects of Osteosarcoma Pathogenesis in Humans and Dogs. Veterinary Sciences, 2(3), 210-230. https://doi.org/10.3390/vetsci2030210