Serum α-Glucosidase Activity as a New Parameter of Negative Energy Balance in Dairy Cows
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Population and Sample Collection
2.2. Standard Blood Parameters
2.3. α-Glucosidase Assay
2.4. Statistics
3. Results
3.1. Assay Establishment
3.2. Analysis of the Population
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| ANOVA | analysis of variance |
| AAG | lysosomal α-glucosidase, acid (gene GAA) |
| BCS | body condition score |
| BHB | β-hydroxybutyric acid |
| ER | endoplasmic reticulum |
| MGAM | maltase-glucoamylase, intestinal |
| 4-MUG | 4-methylumbelliferyl α-D-glucopyranoside |
| 4-MU | 4-methylumbelliferon |
| NAG-AB | tissue α-glucosidase, neutral AB (gene GANAB) |
| NAG-C | tissue α-glucosidase, neutral C (gene GANC) |
| NEB | negative energy balance |
| NEFA | non-esterified fatty acids |
| 4-NPG | 4-nitrophenyl α-D-glucopyranoside |
| 4-NP | 4-nitrophenol |
| OD | optical density |
| RFM | retained fetal membrane |
| U | Unit (enzymatic activity) |
References
- Tannous, S.; Stellbrinck, T.; Hoter, A.; Naim, H.Y. Interaction between the α-glucosidases, sucrase-isomaltase and maltase-glucoamylase, in human intestinal brush border membranes and its potential impact on disaccharide digestion. Front. Mol. Biosci. 2023, 10, 1160860. [Google Scholar] [CrossRef] [PubMed]
- Adeva-Andany, M.M.; Gonzalez-Lucan, M.; Donapetry-Garcia, C.; Fernandez-Fernandez, C.; Ameneiros-Rodriguez, E. Glycogen metabolism in humans. BBA Clin. 2016, 5, 85–100. [Google Scholar] [CrossRef] [PubMed]
- van der Ploeg, A.T.; Reuser, A.J. Pompe’s disease. Lancet 2008, 372, 1342–1353. [Google Scholar] [CrossRef] [PubMed]
- Martiniuk, F.; Ellenbogen, A.; Hirschhorn, R. Identity of neutral α-glucosidase AB and the glycoprotein processing enzyme glucosidase II. Biochemical and genetic studies. J. Biol. Chem. 1985, 260, 1238–1242. [Google Scholar] [CrossRef]
- Nairn, A.; Moremen, K. Glucosidase, α-neutral AB.; Glucosidase II subunit beta. In Handbook of Glycosyltransferases and Related Genes, 2nd ed.; Taniguchi, N., Honke, K., Fukuda, M., Narimatsu, H., Yamaguchi, Y., Angata, T., Eds.; Springer: Tokyo, Japan, 2013; pp. 1282–1296. [Google Scholar]
- Bause, E.; Erkens, R.; Schweden, J.; Jaenicke, L. Purification and characterization of trimming glucosidase I from Saccharomyces cerevisiae. FEBS Lett. 1986, 206, 208–212. [Google Scholar] [CrossRef]
- Nairn, A.; Moremen, K. Mannosyl-oligosaccharide glucosidase. In Handbook of Glycosyltransferases and Related Genes, 2nd ed.; Taniguchi, N., Honke, K., Fukuda, M., Narimatsu, H., Yamaguchi, Y., Angata, T., Eds.; Springer: Tokyo, Japan, 2013; pp. 1273–1282. [Google Scholar]
- Eertmans, F.; Bogaert, V.; Van Poecke, T.; Puype, B. An improved neutral α-glucosidase assay for assessment of epididymal function-validation and comparison to the WHO method. Diagnostics 2014, 4, 1–11. [Google Scholar] [CrossRef]
- Goldbarg, J.A.; Tsou, K.C.; Rutenburg, S.H.; Rutenburg, A.M.; Seligman, A.M. A method for the colorimetric determination of α-D-glucosidase with a chromogenic substrate. Arch. Biochem. Biophys. 1958, 75, 435–442. [Google Scholar] [CrossRef]
- Guerin, J.F.; Ali, H.B.; Rollet, J.; Souchier, C.; Czyba, J.C. α-glucosidase as a specific epididymal enzyme marker. Its validity for the etiologic diagnosis of azoospermia. J. Androl. 1986, 7, 156–162. [Google Scholar] [CrossRef]
- Okumiya, T.; Keulemans, J.L.; Kroos, M.A.; Van der Beek, N.M.; Boer, M.A.; Takeuchi, H.; Van Diggelen, O.P.; Reuser, A.J. A new diagnostic assay for glycogen storage disease type II in mixed leukocytes. Mol. Genet. Metab. 2006, 88, 22–28. [Google Scholar] [CrossRef]
- Motabar, O.; Shi, Z.D.; Goldin, E.; Liu, K.; Southall, N.; Sidransky, E.; Austin, C.P.; Griffiths, G.L.; Zheng, W. A new resorufin-based α-glucosidase assay for high-throughput screening. Anal. Biochem. 2009, 390, 79–84. [Google Scholar] [CrossRef]
- Chiba, S. Molecular mechanism in α-glucosidase and glucoamylase. Biosci. Biotechnol. Biochem. 1997, 61, 1233–1239. [Google Scholar] [CrossRef]
- Shailubhai, K.; Saxena, E.S.; Balapure, A.K.; Vijay, I.K. Developmental regulation of glucosidase I, an enzyme involved in the processing of asparagine-linked glycoproteins in rat mammary gland. J. Biol. Chem. 1990, 265, 9701–9706. [Google Scholar] [CrossRef]
- Martiniuk, F.; Hirschhorn, R. Characterization of neutral isozymes of human α-glucosidase: Differences in substrate specificity, molecular weight and electrophoretic mobility. Biochim. Biophys. Acta 1981, 658, 248–261. [Google Scholar] [CrossRef] [PubMed]
- Pape, W.; Kochmann, R.; Kochmann, G.; Blank, M.; Baumann, K. Excretion of neutral α-glucosidase, determined with a continuous assay, and of acid α-glucosidase in the urine of human reference subjects. J. Clin. Chem. Clin. Biochem. 1983, 21, 511–517. [Google Scholar] [CrossRef] [PubMed]
- Matsui, H.; Yamada, T.; Someya, Y.; Chiba, S. Comparison between two neutral α-glucosidases from pig’s liver and serum. Agric. Biol. Chem. 1983, 47, 1817–1822. [Google Scholar] [CrossRef]
- Alhadeff, J.A.; Thom, D.; Holzinger, R.T. Activity levels and properties of acid α-glucosidase from liver and neutral α-glucosidase from sera of cystic fibrosis patients and controls. Clin. Chim. Acta 1981, 117, 227–237. [Google Scholar] [CrossRef]
- Tsuji, A.; Yang, R.C.; Omura, K.; Imabayashi, T.; Suzuki, Y. A simple differential immunoprecipitation assay of urinary acid and neutral α-glucosidases for glycogenosis II. Clin. Chim. Acta 1987, 167, 313–320. [Google Scholar] [CrossRef]
- Kotonska-Feiga, J.; Dobicki, W.; Pokorny, P.; Nowacki, W. The activity of neutral α-glucosidase and selected biochemical parameters in the annual cycle of breeding carp (Cyprinus carpio L.). PLoS ONE 2015, 10, e0142227. [Google Scholar] [CrossRef]
- Bartling, B.; Meyer, O.; Siebenmorgen, C.; Schmicke, M.; Thielebein, J. Alternative serum parameters of glucose metabolism in beef cattle breeds. Ger. J. Vet. Res. 2025, 5, 133–143. [Google Scholar] [CrossRef]
- Brada, D.; Kerjaschki, D.; Roth, J. Cell type specific post-Golgi apparatus localization of a resident endoplasmic-reticulum glycoprotein, glucosidase II. J. Cell Biol. 1990, 110, 309–318. [Google Scholar] [CrossRef]
- Alhadeff, J.A.; Pollack, B.C.; Hopfer, R.L.; Holsclaw, D.S., Jr. Serum neutral α-D-glucosidase from patients with cystic fibrosis and chronic pulmonary disease. Pediatr. Res. 1985, 19, 171–174. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Measurement of neutral α-glucosidase in ejaculate. In WHO Laboratory Manual for the Examination and Processing of Human Semen, 6th ed.; Björndahl, L., Ed.; WHO Press: Geneva, Switzerland, 2021; pp. 132–133. [Google Scholar]
- Kang, D.; Lungu, S.E.; Danso, F.; Dzou, C.F.; Chen, Y.; Zheng, X.; Nie, F.; Lin, H.; Chen, J.; Zhou, G. Animal health and nutrition: Metabolic disorders in cattle and improvement strategies. Front. Vet. Sci. 2025, 12, 1470391. [Google Scholar] [CrossRef] [PubMed]
- Martens, H. Invited review: Increasing milk yield and negative energy balance: A Gordian knot for dairy cows? Animals 2023, 13, 3097. [Google Scholar] [CrossRef] [PubMed]
- Heirbaut, S.; Jing, X.P.; Stefanska, B.; Pruszynska-Oszmalek, E.; Ampe, B.; Umstaetter, C.; Vandaele, L.; Fievez, V. Combination of milk variables and on-farm data as an improved diagnostic tool for metabolic status evaluation in dairy cattle during the transition period. J. Dairy. Sci. 2024, 107, 489–507. [Google Scholar] [CrossRef]
- Gessner, D.K.; Sandrock, L.M.; Most, E.; Koch, C.; Ringseis, R.; Eder, K. Performance and metabolic, inflammatory, and oxidative stress-related parameters in early lactating dairy cows with high and low hepatic FGF21 expression. Animals 2022, 13, 131. [Google Scholar] [CrossRef]
- Boisclair, Y.R.; Giesy, S.L. International Symposium on Ruminant Physiology: Endocrine adaptations to demanding physiological states in ruminants. J. Dairy Sci. 2025, 108, 7631–7642. [Google Scholar] [CrossRef]
- Magro, S.; Costa, A.; Cavallini, D.; Chiarin, E.; De Marchi, M. Phenotypic variation of dairy cows’ hematic metabolites and feasibility of non-invasive monitoring of the metabolic status in the transition period. Front. Vet. Sci. 2024, 11, 1437352. [Google Scholar] [CrossRef]
- Leduc, A.; Rau, A.; Laloe, D.; Le Guillou, S.; Martin, P.; Gele, M.; Pires, J.; Faulconnier, Y.; Leroux, C.; Boutinaud, M.; et al. Integrated multi-omic analyses of bovine milk identify biomarkers of negative energy balance. Mol. Omics 2025, 21, 433–445. [Google Scholar] [CrossRef]
- Van Tilbeurgh, H.; Loontiens, F.G.; Debruyne, C.K.; Claeyssens, M. Fluorogenic and chromogenic glycosides as substrates and ligands of carbohydrases. Method. Enzymol. 1988, 160, 45–59. [Google Scholar]
- Beg, A.E. The effect of pH and various additives on extinction coefficients of p-nitrophenol. J. Chem. Soc. Pak. 1983, 6, 55–61. [Google Scholar]
- Paquin, R.; Chapdelaine, P.; Dube, J.Y.; Tremblay, R.R. Similar biochemical properties of human seminal plasma and epididymal α-1,4-glucosidase. J. Androl. 1984, 5, 277–282. [Google Scholar] [CrossRef] [PubMed]
- Bjerre-Harpoth, V.; Friggens, N.C.; Thorup, V.M.; Larsen, T.; Damgaard, B.M.; Ingvartsen, K.L.; Moyes, K.M. Metabolic and production profiles of dairy cows in response to decreased nutrient density to increase physiological imbalance at different stages of lactation. J. Dairy Sci. 2012, 95, 2362–2380. [Google Scholar] [CrossRef] [PubMed]
- Ruoff, J.; Borchardt, S.; Heuwieser, W. Associations between blood glucose concentration, onset of hyperketonemia, and milk production in early lactation dairy cows. J. Dairy Sci. 2017, 100, 5462–5467. [Google Scholar] [CrossRef] [PubMed]
- de Bruijn, B.G.C.; van der Drift, S.G.A.; de Mol, R.M.; van der Werf, J.T.N.; van Weeghel, C.; Bokkers, E.A.M.; van Reenen, C.G.; van Dixhoorn, I.D.E. Prepartum metabolic profiles as predictors of postpartum health in dairy cows. Res. Vet. Sci. 2025, 193, 105801. [Google Scholar] [CrossRef]
- Urh, C.; Denissen, J.; Harder, I.; Koch, C.; Gerster, E.; Ettle, T.; Kraus, N.; Schmitz, R.; Kuhla, B.; Stamer, E.; et al. Circulating adiponectin concentrations during the transition from pregnancy to lactation in high-yielding dairy cows: Testing the effects of farm, parity, and dietary energy level in large animal numbers. Domest. Anim. Endocrinol. 2019, 69, 1–12. [Google Scholar] [CrossRef]
- Obese, F.Y.; MacCarthy, C.; Osei-Amponsah, R.; Ayizanga, R.A.; Damptey, J.K. Blood metabolite profiles in cycling and non-cycling Friesian-Sanga cross-bred cows grazing natural pasture during the post-partum period. Reprod. Domest. Anim. 2015, 50, 304–311. [Google Scholar] [CrossRef]
- Patton, J.; Murphy, J.J.; O’Mara, F.P.; Butler, S.T. A comparison of energy balance and metabolic profiles of the New Zealand and North American strains of Holstein Friesian dairy cow. Animal 2008, 2, 969–978. [Google Scholar] [CrossRef]
- Sorondo, M.L.; Cirio, A. Evaluation of the serum fructosamine test to monitor plasma glucose concentration in the transition dairy cow. J. Dairy Res. 2009, 76, 173–178. [Google Scholar] [CrossRef]
- Grelet, C.; Vanden Dries, V.; Leblois, J.; Wavreille, J.; Mirabito, L.; Soyeurt, H.; Franceschini, S.; Gengler, N.; Brostaux, Y.; HappyMoo, C.; et al. Identification of chronic stress biomarkers in dairy cows. Animal 2022, 16, 100502. [Google Scholar] [CrossRef]
- Wu, N.; Liu, T.; Tian, M.; Liu, C.; Ma, S.; Cao, H.; Bian, H.; Wang, L.; Feng, Y.; Qi, J. Albumin, an interesting and functionally diverse protein, varies from ‘native’ to ‘effective’. Mol. Med. Rep. 2024, 29, 24. [Google Scholar] [CrossRef]
- Joosten, I.; Vaneldik, P.; Elving, L.; Vandermey, G.J.W. Factors related to the etiology of retained placenta in dairy cattle. Anim. Reprod. Sci. 1987, 14, 251–262. [Google Scholar] [CrossRef]
- Lean, I.J.; LeBlanc, S.J.; Sheedy, D.B.; Duffield, T.; Santos, J.E.P.; Golder, H.M. Associations of parity with health disorders and blood metabolite concentrations in Holstein cows in different production systems. J. Dairy Sci. 2023, 106, 500–518. [Google Scholar] [CrossRef] [PubMed]
- Yenilmez, K.; Doğan, H.; Arslan, S.; Gökçe, E. Relationship of some hormone levels and some biochemical parameters with parity in repeat breeder dairy cows. Large Anim. Rev. 2024, 30, 113–117. [Google Scholar]
- Ferreira, M.F.L.; Renno, L.N.; Rodrigues, I.I.; Detmann, E.; Paulino, M.F.; de Campos Valadares Filho, S.; Martins, H.C.; Moreira, S.S.; de Lana, D.S. Effects of parity order on performance, metabolic, and hormonal parameters of grazing beef cows during pre-calving and lactation periods. BMC Vet. Res. 2021, 17, 311. [Google Scholar] [CrossRef]
- Chebel, R.C. Predicting the risk of retained fetal membranes and metritis in dairy cows according to prepartum hemogram and immune and metabolic status. Prev. Vet. Med. 2021, 187, 105204. [Google Scholar] [CrossRef]
- Breda, J.C.D.; Santos, L.G.C.; Facury, E.J.; Flaiban, K.K.M.D.; Lisboa, J.A.N. Metabolic profile of Holstein × Gyr cows: Effects of parity and body condition score at calving. Trop. Anim. Health Prod. 2025, 57, 224. [Google Scholar] [CrossRef]
- Seifi, H.A.; Dalir-Naghadeh, B.; Farzaneh, N.; Mohri, M.; Gorji-Dooz, M. Metabolic changes in cows with or without retained fetal membranes in transition period. J. Vet. Med. A 2007, 54, 92–97. [Google Scholar] [CrossRef]
- Gabrisko, M. The in silico characterization of neutral α-glucosidase C (GANC) and its evolution from GANAB. Gene 2020, 726, 144192. [Google Scholar] [CrossRef]
- Nimmerjahn, F.; Werner, A. Sweet rules: Linking glycosylation to antibody function. In Antibody Glycosylation; Experientia Supplementum, 112nd ed.; Pezer, M., Ed.; Springer International Publishing: Cham, Switzerland, 2021; pp. 365–393. [Google Scholar]
- Trevisi, E.; Cattaneo, L.; Piccioli-Cappelli, F.; Mezzetti, M.; Minuti, A. International Symposium on Ruminant Physiology: The immunometabolism of transition dairy cows from dry-off to early lactation—Lights and shadows. J. Dairy Sci. 2025, 108, 7662–7674. [Google Scholar] [CrossRef]




| Blood Parameter | 14 d Ante Partum | 5 d Post Partum |
|---|---|---|
| BHB (mmol/L) | 0.92 ± 0.29 | 1.23 ± 0.72 a |
| NEFA (mmol/L) | 0.18 ± 0.13 | 0.61 ± 0.35 a |
| IGF-1 (ng/mL) | 259 ± 82.8 | 88.3 ± 79.0 a |
| Insulin (µg/mL) | 30.9 ± 15.2 | 9.21 ± 8.70 a |
| Parity (n) | Animals (n) | Age (Months) | RFM (%) | Blood Parameters a | |||||
|---|---|---|---|---|---|---|---|---|---|
| BHB (mmol/L) | NEFA (mmol/L) | IGF-1 (ng/mL) | Insulin (µg/mL) | Glucose (mmol/L) | Fructosamine (mmol/L) | ||||
| 2 | 21 | 27 ± 6 | 10 | 1.08 ± 0.19 | 0.57 ± 0.17 | 125 ± 88.8 | 8.50 ± 14.8 | 3.29 ± 0.65 | 0.50 ± 0.19 |
| 3 | 22 | 42 ± 4 | 9 | 1.12 ± 0.39 | 0.40 ± 0.05 | 119 ± 45.8 | 10.8 ± 14.4 | 3.26 ± 0.95 | 0.50 ± 0.14 |
| ≥4 b | 30 | 65 ± 14 c | 40 c | 1.42 ± 0.19 | 0.79 ± 0.12 c | 42.0 ± 18.7 c | 8.49 ± 16.0 | 2.92 ± 1.12 c | 0.40 ± 0.14 c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Bartling, B.; Tröbner, T.; Grone, L.; Schmicke, M. Serum α-Glucosidase Activity as a New Parameter of Negative Energy Balance in Dairy Cows. Vet. Sci. 2026, 13, 122. https://doi.org/10.3390/vetsci13020122
Bartling B, Tröbner T, Grone L, Schmicke M. Serum α-Glucosidase Activity as a New Parameter of Negative Energy Balance in Dairy Cows. Veterinary Sciences. 2026; 13(2):122. https://doi.org/10.3390/vetsci13020122
Chicago/Turabian StyleBartling, Babett, Thomas Tröbner, Lena Grone, and Marion Schmicke. 2026. "Serum α-Glucosidase Activity as a New Parameter of Negative Energy Balance in Dairy Cows" Veterinary Sciences 13, no. 2: 122. https://doi.org/10.3390/vetsci13020122
APA StyleBartling, B., Tröbner, T., Grone, L., & Schmicke, M. (2026). Serum α-Glucosidase Activity as a New Parameter of Negative Energy Balance in Dairy Cows. Veterinary Sciences, 13(2), 122. https://doi.org/10.3390/vetsci13020122

