Prevalence and Antimicrobial Resistance Trends of Canine Uropathogens in a Veterinary Teaching Hospital in Northern Italy: A 10-Year Retrospective Study (2014–2023)
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Samples
2.2. Ethical Approval
2.3. Analytical Procedures
- Brilliance™ UTI Clarity plate (Thermo Fisher Scientific, Waltham, MA, USA; distributed by Thermo Fisher Scientific S.p.A., Rodano, MI, Italy) for preliminary colony identification based on color changes in the chromogenic medium.
- Blood agar plate (Thermo Fisher Scientific, Waltham, MA, USA; distributed by Thermo Fisher Scientific S.p.A., Rodano, MI, Italy) for colony identification using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS).
2.4. Data Analysis
3. Results
3.1. Study Population
3.2. Prevalence of Bacterial Uropathogens
3.2.1. General Population
3.2.2. Comparison Between the Two Periods
3.3. Trends in Antimicrobial Resistance
3.3.1. First-Line Antibiotics According to ISCAID Guidelines
3.3.2. Other Commonly Used Antibiotics
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
95% CI | 95% confidence interval |
AMC | Amoxicillin–clavulanate |
AMR | Antimicrobial Resistance |
AMX | Amoxicillin |
EMA | European Medicines Agency |
ENR | Enrofloxacin |
EUCAST | European Committee on Antimicrobial Susceptibility Testing |
ISCAID | International Society for Companion Animals Infectious Diseases |
LUTD | Lower urinary tract disease |
MALDI-TOF MS | Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry |
MAR | Marbofloxacin |
PRA | Pradofloxacin |
PU/PD | Polyuria/polydipsia |
TMS | Trimethoprim–sulfamethoxazole |
UTI | Urinary tract infection |
VTH | Veterinary Teaching Hospital |
Appendix A
Antimicrobial Classes | Molecule | Disk Content (µg) | Interpretive Categories and Zone Diameter Breakpoints (mm) | Source | ||
---|---|---|---|---|---|---|
S | I | R | ||||
Enterobacterales | ||||||
Penicillins | AMX | 25 | ≥21 | 20–15 | <14 | CASFM_VET2020 a |
AMC | 20/10 | ≥21 | 20–15 | <14 | CASFM_VET2020 a | |
Fluoroquinolones | ENR | 5 | ≥19 | - | <19 | CASFM_VET2020 a |
MAR | 5 | ≥19 | - | <19 | CASFM_VET2020 a | |
PRA | 5 | ≥19 | - | <19 | CASFM_VET2020 a | |
PRA | 5 | ≥24 1 | 20–23 | <19 | CLSI VET01 7th Ed b | |
Sulphonamides | TMS | 1.25/23.75 | ≥16 | 15–11 | <10 | CASFM_VET2020 a |
Pseudomonodales | ||||||
Penicillis | AMX | 20 | R 3 | - | - | Eucast Expected Resistant Phenotype 1.2 january2023 c |
AMC | 20/10 | R 3 | - | - | Eucast Expected Resistant Phenotype 1.2 january2023 c | |
Fluoroquinolones | ENR | 5 | 22 2 | - | - | CASFM_VET2020 a |
MAR | 5 | 22 2 | - | - | CASFM_VET2020 a | |
PRA | 5 | 22 2 | - | - | CASFM_VET2020 a | |
Sulphonamides | TMS | 1.25/23.75 | R 3 | - | - | Eucast Expected Resistant Phenotype 1.2 january2023 c |
Staphylococcus spp. | ||||||
Penicillins | AMX | 25 | 20 4 | EUCAST 15 d | ||
AMC | 20/10 | 20 4 | EUCAST 15 d | |||
Fluoroquinolones | ENR | 5 | ≥19 | ≤19 | CASFM_VET2020 a | |
MAR | 5 | ≥19 | ≤19 | CASFM_VET2020 a | ||
PRA | 5 | ≥24 | 20–23 | ≤19 | CLSI Vet 01 7th Ed b | |
Sulphonamides | TMS | 1.25/23.75 | ≥17 | 14 | EUCAST v_13.1_Breakpoint_Tables c | |
Enterococcus spp. | ||||||
Penicillins | AMX | 25 | ≥17 5 | CLSI VET01 7th Ed b | ||
AMC | 20/10 | ≥17 5 | CLSI VET01 7th Ed b | |||
Fluoroquinolones | ENR | 5 | 23 6 | 16 | CLSI VET01 7th Ed b | |
MAR | 5 | 23 6 | 16 | CLSI VET01 7th Ed b | ||
PRA | 5 | 23 7 | 16 | CLSI VET01 7th Ed b | ||
Sulphonamides | TMS | 1.25/23.75 | ≥23 8 | EUCAST v_13.1_Breakpoint_Tables. c | ||
Streptococcus spp. | ||||||
Penicillins | AMX | 25 | ≥24 5 | CLSI M100 e | ||
AMC | 20/10 | ≥24 5 | CLSI M100 e | |||
Fluoroquinolones | ENR | 5 | ≥23 | 17–22 | ≤16 | CLSI Vet 01 7th Ed b |
MAR | 5 | ≥20 | 19–15 | ≤14 | CLSI Vet 01 7th Ed b | |
PRA | 5 | ≥23 7 | 17–22 | ≤16 | CLSI Vet 01 7th Ed b | |
Sulphonamides | TMS | 1.25/23.75 | ≥16 | <10 | CASFM_VET2020 a | |
Pasteurellaceae | ||||||
Penicillins | AMX | 25 | ≥21 | 20–14 | <14 | CASFM_VET2020 a |
AMC | 20/10 | ≥21 | 20–14 | <14 | CASFM_VET2020 a | |
Fluoroquinolones | ENR | 5 | ≥22 | 21–17 | <17 | CASFM_VET2020 a |
MAR | 5 | ≥18 | 17–15 | <15 | CASFM_VET2020 a | |
PRA | 5 | ≥24 | <24 | CASFM_VET2020 a | ||
Sulphonamides | TMS | 1.25/23.75 | ≥16 | 15–10 | <10 | CASFM_VET2020 a |
References
- Weese, J.S.; Blondeau, J.; Boothe, D.; Guardabassi, L.G.; Gumley, N.; Papich, M.; Jessen, L.R.; Lappin, M.; Rankin, S.; Westropp, J.L.; et al. International Society for Companion Animal Infectious Diseases (ISCAID) guidelines for the diagnosis and management of bacterial urinary tract infections in dogs and cats. Vet. J. 2019, 247, 8–25. [Google Scholar] [CrossRef]
- Sørensen, T.; Bjørnvad, C.; Cordoba, G.; Damborg, P.; Guardabassi, L.; Siersma, V.; Bjerrum, L.; Jessen, L. Effects of diagnostic work-up on medical decision-making for canine urinary tract infection: An observational study in Danish small animal practices. J. Vet. Intern. Med. 2018, 32, 743–751. [Google Scholar] [CrossRef]
- McMeekin, C.; Hill, K.; Gibson, I.; Bridges, J.; Benschop, J. Antimicrobial resistance patterns of bacteria isolated from canine urinary samples submitted to a New Zealand veterinary diagnostic laboratory between 2005–2012. N. Z. Vet. J. 2017, 65, 99–104. [Google Scholar] [CrossRef] [PubMed]
- Hernando, E.; Vila, A.; D′Ippolito, P.; Rico, A.J.; Rodon, J.; Roura, X. Prevalence and characterization of urinary tract infection in owned dogs and cats from Spain. Top. Companion Anim. Med. 2021, 43, 100512. [Google Scholar] [CrossRef]
- Wong, C.; Epstein, S.E.; Westropp, J.L. Antimicrobial susceptibility patterns in urinary tract infections in dogs (2010–2013). J. Vet. Intern. Med. 2015, 29, 1045–1052. [Google Scholar] [CrossRef]
- Hall, J.L.; Holmes, M.A.; Baines, S.J. Prevalence and antimicrobial resistance of canine urinary tract pathogens. Vet. Rec. 2013, 173, 549. [Google Scholar] [CrossRef] [PubMed]
- European Medicine Agency. Reflection Paper on the Risk of Antimicrobial Resistance Transfer from Companion Animals. Available online: https://www.ema.europa.eu/en/documents/scientific-guideline/draft-reflection-paper-risk-antimicrobial-resistance-transfer-companion-animals_en.pdf (accessed on 15 September 2015).
- Schmerold, I.; van Geijlswijk, I.; Gehring, R. European regulations on the use of antibiotics in veterinary medicine. Eur. J. Pharm. Sci. 2023, 189, 106473. [Google Scholar] [CrossRef]
- Aurich, S.; Prenger-Berninghoff, E.; Ewers, C. Prevalence and antimicrobial resistance of bacterial uropathogens isolated from dogs and cats. Antibiotics 2022, 11, 1730. [Google Scholar] [CrossRef] [PubMed]
- Fonseca, J.D.; Mavrides, D.E.; Graham, P.A.; McHugh, T.D. Results of urinary bacterial cultures and antibiotic susceptibility testing of dogs and cats in the UK. J. Small Anim. Pract. 2021, 62, 1085–1091. [Google Scholar] [CrossRef]
- Criel, D.; Steenbergen, J.; Stalpaert, M. Prevalence and antimicrobial susceptibility of canine uropathogens in Northern Belgium: A retrospective study (2010 to 2012). J. Small Anim. Pract. 2015, 56, 73. [Google Scholar] [CrossRef]
- Ball, K.R.; Rubin, J.E.; Chirino-Trejo, M.; Dowling, P.M. Antimicrobial resistance and prevalence of canine uropathogens at the Western College of Veterinary Medicine Veterinary Teaching Hospital, 2002–2007. Can. Vet. J. 2008, 49, 985–990. [Google Scholar] [PubMed]
- Zogg, A.L.; Zurfluh, K.; Schmitt, S.; Nüesch-Inderbinen, M.; Stephan, R. Antimicrobial resistance, multilocus sequence types and virulence profiles of ESBL producing and non-ESBL producing uropathogenic Escherichia coli isolated from cats and dogs in Switzerland. Vet. Microbiol. 2018, 216, 79–84. [Google Scholar] [CrossRef] [PubMed]
- Roberts, M.; White, J.; Lam, A. Prevalence of bacteria and changes in trends in antimicrobial resistance of Escherichia coli isolated from positive canine urinary samples from an Australian referral hospital over a 5-year period (2013–2017). Vet. Rec. Open 2019, 6, e000345. [Google Scholar] [CrossRef]
- Marques, C.; Gama, L.T.; Belas, A.; Bergström, K.; Beurlet, S.; Briend-Marchal, A.; Broens, E.M.; Costa, M.; Criel, D.; Damborg, P.; et al. European multicenter study on antimicrobial resistance in bacteria isolated from companion animal urinary tract infections. BMC Vet. Res. 2016, 12, 213. [Google Scholar] [CrossRef] [PubMed]
- Veterinary Committee on Antimicrobial Susceptibility Testing (VetCAST). Available online: http://www.eucast.org/ast_of_veterinary_pathogens (accessed on 15 September 2015).
- Clinical and Laboratory Standards Institute (CLSI). Performance Standards for Antimicrobial Susceptibility Testing, 35th ed.; CLSI supplement M100; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2025. [Google Scholar]
- Clinical and Laboratory Standards Institute (CLSI). Performance Standards for Antimicrobial Disk and Dilution Susceptibility Tests for Bacteria Isolated from Animals, 7th ed.; CLSI supplement VET01S; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2024. [Google Scholar]
- European Committee on Antimicrobial Susceptibility Testing (EUCAST). Breakpoint Tables for Interpretation of MICs and Zone Diameters, Version 15; EUCAST: Basel, Switzerland, 2025; Available online: https://www.eucast.org/clinical_breakpoints/ (accessed on 30 July 2025).
- Comité de l’Antibiogramme de la Société Française de Microbiologie (CA-SFM). Available online: https://www.sfm-microbiologie.org/wp-content/uploads/2020/07/CASFM_VET.pdf (accessed on 21 August 2025).
- Norris, C.; Williams, B.; Ling, G.; Franti, C.; Johnson, D.; Ruby, A. Recurrent and persistent urinary tract infections in dogs: 383 cases (1969–1995). J. Am. Anim. Hosp. Assoc. 2000, 36, 484–492. [Google Scholar] [CrossRef]
- Gibson, J.; Morton, J.; Cobbold, R.; Sidjabat, H.; Filippich, L.; Trott, D. Multidrug-resistant E. coli and enterobacter extraintestinal infection in 37 dogs. J. Vet. Intern. Med. 2008, 22, 844–850. [Google Scholar] [CrossRef]
- Garcês, A.; Lopes, R.; Silva, A.; Sampaio, F.; Duque, D.; Brilhante-Simões, P. Bacterial isolates from urinary tract infection in dogs and cats in Portugal, and their antibiotic susceptibility pattern: A retrospective study of 5 years (2017–2021). Antibiotics 2022, 11, 1520. [Google Scholar] [CrossRef]
- Yamamoto, S.; Tsukamoto, T.; Terai, A.; Kurazono, H.; Takeda, Y.; Yoshida, O. Genetic evidence supporting the fecal-perineal-urethral hypothesis in cystitis caused by Escherichia coli. J. Urol. 1997, 157, 1127–1129. [Google Scholar] [CrossRef]
- Kivistö, A.; Vasenius, H.; Sandholm, M. Canine bacteruria. J. Small Anim. Pract. 1977, 18, 707–712. [Google Scholar] [CrossRef]
- Dorsch, R.; Von Vopelius-Feldt, C.; Wolf, G.; Straubinger, R.K.; Hartmann, K. Feline urinary tract pathogens: Prevalence of bacterial species and antimicrobial resistance over a 10-year period. Vet. Rec. 2015, 176, 201. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhou, Z.; Zheng, L.; Gong, Z.; Li, Y.; Jin, Y.; Huang, Y.; Chi, M. Urinary tract infections caused by uropathogenic Escherichia coli: Mechanisms of infection and treatment options. Int. J. Mol. Sci. 2023, 24, 10537. [Google Scholar] [CrossRef] [PubMed]
- Windahl, U.; Holst, B.S.; Nyman, A.; Grönlund, U.; Bengtsson, B. Characterisation of bacterial growth and antimicrobial susceptibility patterns in canine urinary tract infections. BMC Vet. Res. 2014, 10, 217. [Google Scholar] [CrossRef]
- Ling, G.V.; Norris, C.R.; Franti, C.E.; Eisele, P.H.; Johnson, D.L.; Ruby, A.L. Interrelations of organism prevalence, specimen collection method, and host age, sex, and breed among 8,354 canine urinary tract infections (1969–1995). J. Vet. Intern. Med. 2001, 15, 341–347. [Google Scholar] [CrossRef] [PubMed]
- Brložnik, M.; Šterk, K.; Zdovc, I. Prevalence and resistance patterns of canine uropathogens in regard to concurrent diseases. Berl. Munch. Tierarztl. Wochenschr. 2016, 129, 340–350. [Google Scholar]
- Lomiya, M.A.E.; Raguvaran, R.; Mondal, D.; Dosar, S.; Nair, S.S.; Jitha, K.R.; Chandni, A.R.; Thakur, N.S.; Yadav, N.; Jambagi, K. Mitigating antimicrobial resistance, an approach to stewardship in canine urinary tract infection. Vet. Res. Commun. 2024, 48, 2145–2155. [Google Scholar] [CrossRef]
- Foglia Manzillo, V.; Peruzy, M.F.; Gizzarelli, M.; Izzo, B.; Sarnelli, P.; Carrella, A.; Vinciguerra, G.; Chirollo, C.; Ben Fayala, N.E.H.; Balestrino, I.; et al. Examining the veterinary electronic antimicrobial prescriptions for dogs and cats in the Campania region, Italy: Corrective strategies are imperative. Animals 2023, 13, 2869. [Google Scholar] [CrossRef]
- Saputra, S.; Jordan, D.; Mitchell, T.; Wong, H.S.; Abraham, R.J.; Kidsley, A.; Turnidge, J.; Trott, D.J.; Abraham, S. Antimicrobial resistance in clinical Escherichia coli isolated from companion animals in Australia. Vet. Microbiol. 2017, 211, 43–50. [Google Scholar] [CrossRef]
- Bellato, A.; Robino, P.; Stella, M.C.; Scalas, D.; Savarino, P.; Zanatta, R.; Re, G.; Nebbia, P. Ten-Year Antimicrobial Resistance Trend in Uropathogenic Escherichia coli (UPEC) Isolated from Dogs and Cats Admitted to a Veterinary Teaching Hospital in Italy. Microorganisms 2024, 12, 2175. [Google Scholar] [CrossRef]
- Ministero della Salute. Relazione Sulla Resistenza agli Antimicrobici dei Batteri Zoonotici e Commensali Negli Animali Destinati alla Produzione di Alimenti e Nelle Carni Derivate 2014–2021. 15 January 2024. Available online: https://www.salute.gov.it/portale/news/p3_2_1_1_1.jsp?lingua=italiano&menu=notizie&p=dalministero&id=6459 (accessed on 23 August 2025).
- The Medicines Utilisation Monitoring Centre. National Report on Antibiotics Use in Italy; Italian Medicines Agency: Rome, Italy, 2022. [Google Scholar]
- Gilham, E.L.; Pearce-Smith, N.; Carter, V.; Ashiru-Oredope, D. Assessment of global antimicrobial resistance campaigns conducted to improve public awareness and antimicrobial use behaviours: A rapid systematic review. BMC Public Health 2024, 24, 396. [Google Scholar] [CrossRef] [PubMed]
- Gilham, E.L.; Casale, E.; Hardy, A.; Ayeni, A.H.; Sunyer, E.; Harris, T.; Feechan, R.; Heltmann, A.; Fawcett, M.; Hopkins, S.; et al. Assessing the impact of a national social marketing campaign for antimicrobial resistance on public awareness, attitudes, and behaviour, and as a supportive tool for healthcare professionals, England, 2017 to 2019. Eurosurveillance 2023, 28, 2300100. [Google Scholar] [CrossRef]
Antibiotic | % Resistant 2014–2023 | % Resistant 2014–2018 | % Resistant 2019–2023 | p Value |
---|---|---|---|---|
AMC | 36.4% | 52.6% | 25.6% | 0.0002 |
AMX | 62.4% | 66.7% | 61.7% | 0.79 |
ENR | 36.6% | 38.4% | 35.4% | 0.66 |
MAR | 23.5% | 27% | 20.2% | 0.29 |
PRA | 30.6% | 39.6% | 26.8% | 0.13 |
TMS | 33.6% | 50% | 30.4% | 0.088 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tagliasacchi, F.; Zambarbieri, J.; Grilli, G.; Bronzo, V.; Zampollo, E.G.; Stranieri, A.; Pansecchi, S.; Martino, P.A.; Scarpa, P. Prevalence and Antimicrobial Resistance Trends of Canine Uropathogens in a Veterinary Teaching Hospital in Northern Italy: A 10-Year Retrospective Study (2014–2023). Vet. Sci. 2025, 12, 910. https://doi.org/10.3390/vetsci12090910
Tagliasacchi F, Zambarbieri J, Grilli G, Bronzo V, Zampollo EG, Stranieri A, Pansecchi S, Martino PA, Scarpa P. Prevalence and Antimicrobial Resistance Trends of Canine Uropathogens in a Veterinary Teaching Hospital in Northern Italy: A 10-Year Retrospective Study (2014–2023). Veterinary Sciences. 2025; 12(9):910. https://doi.org/10.3390/vetsci12090910
Chicago/Turabian StyleTagliasacchi, Filippo, Jari Zambarbieri, Guido Grilli, Valerio Bronzo, Emanuele Giacobbe Zampollo, Angelica Stranieri, Sara Pansecchi, Piera Anna Martino, and Paola Scarpa. 2025. "Prevalence and Antimicrobial Resistance Trends of Canine Uropathogens in a Veterinary Teaching Hospital in Northern Italy: A 10-Year Retrospective Study (2014–2023)" Veterinary Sciences 12, no. 9: 910. https://doi.org/10.3390/vetsci12090910
APA StyleTagliasacchi, F., Zambarbieri, J., Grilli, G., Bronzo, V., Zampollo, E. G., Stranieri, A., Pansecchi, S., Martino, P. A., & Scarpa, P. (2025). Prevalence and Antimicrobial Resistance Trends of Canine Uropathogens in a Veterinary Teaching Hospital in Northern Italy: A 10-Year Retrospective Study (2014–2023). Veterinary Sciences, 12(9), 910. https://doi.org/10.3390/vetsci12090910