Temporal Dynamics and Surveillance of Highly Pathogenic H5 Avian Influenza in Wild Birds in Northern Serbia (2016–2025)
Simple Summary
Abstract
1. Introduction
2. Material and Methods
2.1. Data Sources and Surveillance Methods
2.2. Outbreak and Case Definition
2.3. Molecular Analysis
3. Highly Pathogenic Avian Influenza H5N8
Outbreaks of HPAI H5N8 in Northern Serbia
4. Highly Pathogenic Avian Influenza H5N1
Outbreaks of HPAI H5N1 in Northern Serbia
5. Highly Pathogenic Avian Influenza H5N2
Outbreaks of HPAI H5N2 in Northern Serbia
6. Spatio-Temporal Distribution of HPAI Cases in Northern Serbia
7. Discussion
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Morens, D.M.; Taubenberger, J.K.; Fauci, A.S. Many Potential Pathways to Future Pandemic Influenza. Sci. Transl. Med. 2023, 15, eadj2379. [Google Scholar] [CrossRef]
- EFSA (European Food Safety Authority); ECDC (European Centre for Disease Prevention and Control); EURL (European Union Reference Laboratory for Avian Influenza); Adlhoch, C.; Fusaro, A.; Gonzales, J.L.; Kuiken, T.; Mirinavičiūtė, G.; Niqueux, É.; Ståhl, K.; et al. Scientific Report: Avian Influenza Overview September–December 2023. EFSA J. 2023, 21, 8539. [Google Scholar] [CrossRef]
- Lycett, S.J.; Pohlmann, A.; Staubach, C.; Caliendo, V.; Woolhouse, M.; Beer, M.; Kuiken, T. Global Consortium for H5N8 and Related Influenza Viruses. Genesis and Spread of Multiple Reassortants during the 2016/2017 H5 Avian Influenza Epidemic in Eurasia. Proc. Natl. Acad. Sci. USA 2020, 117, 20814–20825. [Google Scholar] [CrossRef]
- Verhagen, J.H.; Fouchier, R.A.M.; Lewis, N. Highly Pathogenic Avian Influenza Viruses at the Wild-Domestic Bird Interface in Europe: Future Directions for Research and Surveillance. Viruses 2021, 13, 212. [Google Scholar] [CrossRef]
- Guan, Y.; Smith, G.J. The Emergence and Diversification of Panzootic H5N1 Influenza Viruses. Virus Res. 2013, 178, 35–43. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.H.; Bertran, K.; Kwon, J.H.; Swayne, D.E. Evolution, Global Spread, and Pathogenicity of Highly Pathogenic Avian Influenza H5Nx Clade 2.3.4.4. J. Vet. Sci. 2017, 18 (Suppl. S1), 269–280. [Google Scholar] [CrossRef] [PubMed]
- Opata, M.R.; Lavarello-Schettini, A.; Semenza, J.C.; Manica, M.; Larrauri, A.; Muñoz Guajardo, I.; Adlhoch, C.; Colzani, E. Predictiveness and Drivers of Highly Pathogenic Avian Influenza Outbreaks in Europe. Sci. Rep. 2025, 15, 20286. [Google Scholar] [CrossRef]
- Fusaro, A.; Zecchin, B.; Giussani, E.; Palumbo, E.; Agüero-García, M.; Bachofen, C.; Bálint, Á.; Banihashem, F.; Banyard, A.C.; Beerens, N.; et al. High Pathogenic Avian Influenza A(H5) Viruses of Clade 2.3.4.4b in Europe—Why Trends of Virus Evolution Are More Difficult to Predict. Virus Evol. 2024, 10, veae027. [Google Scholar] [CrossRef]
- Di Guardo, G. Highly Pathogenic Avian Influenza A(H5N1) Virus: How Far Are We from a New Pandemic? Vet. Sci. 2025, 12, 566. [Google Scholar] [CrossRef]
- Uprava za Veterinu—Ministarstvo Poljoprivrede, Šumarstva i Vodoprivrede Republike Srbije. Plan Sprovođenja Nadzora na Avijarnu Influencu u Populaciji Živine i Divljih Ptica, za Period 2023–2024; Up. Vet; Uprava za Veterinu—Ministarstvo Poljoprivrede, Šumarstva i Vodoprivrede Republike Srbije: Beograd, Serbia, 2023. Available online: https://www.vet.minpolj.gov.rs/storage/2023/12/Plan-sprovodenja-nadzora-na-Avijarnu-influencu-za-2023-2024.godinu-sa-prilozima.pdf (accessed on 15 August 2025).
- Spackman, E.; Senne, D.A.; Myers, T.J.; Bulaga, L.L.; Garber, L.P.; Perdue, M.L.; Lohman, K.; Daum, L.T.; Suarez, D.L. Development of a real-time reverse transcriptase PCR assay for type A influenza virus and the avian H5 and H7 hemagglutinin subtypes. J. Clin. Microbiol. 2002, 40, 3256–3260. [Google Scholar] [CrossRef] [PubMed]
- Hoffmann, B.; Hoffmann, D.; Henritzi, D.; Beer, M.; Harder, T.C. Riems influenza A typing array (RITA): An RT-qPCR based low density array for subtyping avian and mammalian influenza A viruses. Sci. Rep. 2016, 6, 27211. [Google Scholar] [CrossRef]
- Slomka, M.J.; To, T.L.; Tong, H.H.; Coward, V.J.; Hanna, A.; Shell, W.; Pavlidis, T.; Densham, A.L.E.; Kargiolakis, G.; Arnold, M.E.; et al. Challenges for accurate and prompt molecular diagnosis of clades of highly pathogenic avian influenza H5N1 viruses emerging in Vietnam. Avian Pathol. 2012, 41, 177–193. [Google Scholar] [CrossRef]
- Djurdjević, B.; Polaček, V.; Pajić, M.; Petrović, T.; Vučićević, I.; Vidanović, D.; Aleksić-Kovačević, S. Highly Pathogenic Avian Influenza H5N8 Outbreak in Backyard Chickens in Serbia. Animals 2023, 13, 700. [Google Scholar] [CrossRef] [PubMed]
- Adlhoch, C.; Gossner, C.; Koch, G.; Brown, I.; Bouwstra, R.; Verdonck, F.; Penttinen, P.; Harder, T. Comparing Introduction to Europe of Highly Pathogenic Avian Influenza Viruses A(H5N8) in 2014 and A(H5N1) in 2005. Eurosurveillance 2014, 19, 20996. [Google Scholar] [CrossRef] [PubMed]
- Xie, Z.; Yang, J.; Jiao, W.; Li, X.; Iqbal, M.; Liao, M.; Dai, M. Clade 2.3.4.4b Highly Pathogenic Avian Influenza H5N1 Viruses: Knowns, Unknowns, and Challenges. J. Virol. 2025, 99, e00424–e00425. [Google Scholar] [CrossRef]
- EFSA (European Food Safety Authority). Highly Pathogenic Avian Influenza A Subtype H5N8. EFSA J. 2014, 12, 3941. [Google Scholar] [CrossRef][Green Version]
- Kleyheeg, E.; Slaterus, R.; Bodewes, R.; Rijks, J.M.; Spierenburg, M.A.H.; Beerens, N.; Kelder, L.; Poen, M.J.; Stegeman, J.A.; Fouchier, R.A.M.; et al. Deaths among Wild Birds during Highly Pathogenic Avian Influenza A(H5N8) Virus Outbreak, the Netherlands. Emerg. Infect. Dis. 2017, 23, 2050–2054. [Google Scholar] [CrossRef]
- Si, Y.J.; Jang, S.G.; Kim, Y.I.; Casel, M.A.B.; Kim, D.J.; Ji, H.Y.; Choi, J.H.; Gil, J.R.; Rollon, R.; Jang, H.; et al. Evolutional Dynamics of Highly Pathogenic Avian Influenza H5N8 Genotypes in Wintering Bird Habitats: Insights from South Korea’s 2020–2021 Season. One Health 2024, 18, 100719. [Google Scholar] [CrossRef]
- Adlhoch, C.; Brown, I.H.; Angelova, S.G.; Bálint, Á.; Bouwstra, R.; Buda, S.; Castrucci, M.R.; Dabrera, G.; Dán, Á.; Grund, C.; et al. Highly Pathogenic Avian Influenza A(H5N8) Outbreaks: Protection and Management of Exposed People in Europe, 2014/15 and 2016. Eurosurveillance 2016, 21, 30419. [Google Scholar] [CrossRef] [PubMed]
- European Food Safety Authority; European Centre for Disease Prevention and Control; European Union Reference Laboratory for Avian Influenza; Brown, I.; Mulatti, P.; Smietanka, K.; Staubach, C.; Willeberg, P.; Adlhoch, C.; Candiani, D.; et al. Scientific report on the avian influenza overview October 2016–August 2017. EFSA J. 2017, 15, e05018. [Google Scholar] [CrossRef]
- Pajić, M.; Knežević, S.; Đurđević, B.; Pelić, M.; Petrović, T.; Grubač, S.; Polaček, V. Our Experience in Eradication of Avian Influenza and Implementation of Biosecurity Measures. In Proceedings of the International Symposium “Avian Influenza and West Nile Virus—Global Threats for Emerging and Re-Emerging Diseases”, Novi Sad, Serbia, 10–11 March 2022; Scientific Veterinary Institute “Novi Sad”: Novi Sad, Serbia, 2022; pp. 165–173. [Google Scholar]
- Uprava za Veterinu. Avijarna Influence—Aktuelne Informacije. Available online: http://www.vet.minpolj.gov.rs/zarazne-bolesti-zivotinja/avijarna-influenca-aktuelne-informacije/ (accessed on 15 August 2025).
- EFSA (European Food Safety Authority); ECDC (European Centre for Disease Prevention and Control); EURL (European Reference Laboratory for Avian Influenza); Adlhoch, C.; Fusaro, A.; Kuiken, T.; Niqueux, É.; Terregino, C.; Staubach, C.; Muñoz Guajardo, I.; et al. Scientific Report: Avian Influenza Overview February–May 2020. EFSA J. 2020, 18, 6194. [Google Scholar] [CrossRef]
- Caliendo, V.; Kleyheeg, E.; Beerens, N.; Camphuysen, K.; Cazemier, R.; Elbers, A.; Fouchier, R.A.; Kelder, L.; Kuiken, T.; Leopold, M.; et al. Effect of 2020–21 and 2021–22 Highly Pathogenic Avian Influenza H5 Epidemics on Wild Birds, the Netherlands. Emerg. Infect. Dis. 2024, 30, 50–57. [Google Scholar] [CrossRef]
- EFSA (European Food Safety Authority); Aznar, I.; Baldinelli, F.; Stoicescu, A.; Kohnle, L. Annual Report on Surveillance for Avian Influenza in Poultry and Wild Birds in Member States of the European Union in 2021. EFSA J. 2022, 20, 7554. [Google Scholar] [CrossRef]
- EFSA (European Food Safety Authority); ECDC (European Centre for Disease Prevention and Control); EURL (European Reference Laboratory for Avian Influenza); Adlhoch, C.; Fusaro, A.; Gonzales, J.L.; Kuiken, T.; Marangon, S.; Niqueux, É.; Staubach, C.; et al. Scientific report: Avian influenza overview May–September 2021. EFSA J. 2022, 20, 7122. [Google Scholar] [CrossRef]
- Peacock, T.P.; Moncla, L.; Dudas, G.; Van Insberghe, D.; Sukhova, K.; Lloyd-Smith, J.O.; Worobey, M.; Lowen, A.C.; Nelson, M.I. The global H5N1 influenza panzootic in mammals. Nature 2025, 637, 304–313. [Google Scholar] [CrossRef]
- Plaza, P.I.; Gamarra-Toledo, V.; Euguí, J.R.; Lambertucci, S.A. Recent changes in patterns of mammal infection with highly pathogenic avian influenza A(H5N1) virus worldwide. Emerg. Infect. Dis. 2024, 30, 444–452. [Google Scholar] [CrossRef]
- FAO. Scientific Task Force on Avian Influenza and Wild Birds Statement on: H5N1 Highly Pathogenic Avian Influenza in Poultry and Wild Birds: Winter of 2021/2022 with Focus on Mass Mortality of Wild Birds in UK and Israel. 2022. Available online: https://www.woah.org/app/uploads/2022/03/avian-influenza-0.pdf (accessed on 15 August 2025).
- Šolaja, S.; Glišić, D.; Veljović, L.; Milošević, I.; Nićković, E.; Nišavić, J.; Milićević, V. Phylogeographic Analysis of Clade 2.3.4.4b H5N1 in Serbia Reveals Repeated Introductions and Spread Across the Balkans. Pathogens 2025, 14, 636. [Google Scholar] [CrossRef] [PubMed]
- Adlhoch, C.; Fusaro, A.; Gonzales, J.L.; Kuiken, T.; Melidou, A.; Mirinavičiūtė, G.; Niqueux, É.; Ståhl, K.; Staubach, C.; Terregino, C.; et al. Avian Influenza Overview April–June 2023. EFSA J. 2023, 21, e08191. [Google Scholar] [CrossRef]
- Lublin, A.; Shkoda, I.; Simanov, L.; Hadas, R.; Berkowitz, A.; Lapin, K.; Farnoushi, Y.; Katz, R.; Nagar, S.; Kharboush, C.; et al. The History of Highly-Pathogenic Avian Influenza in Israel (H5-subtypes): From 2006 to 2023. Isr. J. Vet. Med. 2023, 78, 13. [Google Scholar]
- Djurdjević, B.; Petrović, T.; Gajdov, V.; Vidanović, D.; Vučićević, I.; Samojlović, M.; Pajić, M. Natural Infection of Common Cranes (Grus grus) with Highly Pathogenic Avian Influenza H5N1 in Serbia. Front. Vet. Sci. 2024, 11, 1462546. [Google Scholar] [CrossRef] [PubMed]
- European Food Safety Authority; European Centre for Disease Prevention and Control; European Union Reference Laboratory for Avian Influenza; Alexakis, L.; Buczkowski, H.; Ducatez, M.; Fusaro, A.; Gonzales, J.L.; Kuiken, T.; Ståhl, K.; et al. Avian influenza overview June–September 2024. EFSA J. 2024, 22, e9057. [Google Scholar] [CrossRef] [PubMed]
- WHO/OIE/FAO H5N1 Evolution Working Group. Toward a unified nomenclature system for highly pathogenic avian influenza virus (H5N1). Emerg. Infect. Dis. 2008, 14, e1. [Google Scholar] [CrossRef]
- Verhagen, J.H.; Herfst, S.; Fouchier, R.A.M. How a virus travels the world. Science 2015, 347, 616–617. [Google Scholar] [CrossRef]
- Snoeck, C.J.; Adeyanju, A.T.; De Landtsheer, S.; Ottosson, U.; Manu, S.; Niamir-Fuller, M.; Tende, T.; Saegerman, C.; Matthijnssens, J.; Van Ranst, M.; et al. Reassortant low-pathogenic avian influenza H5N2 viruses in African wild birds. J. Gen. Virol. 2011, 92, 1172–1183. [Google Scholar] [CrossRef]
- Cheng, M.C.; Soda, K.; Lee, M.S.; Lee, S.H.; Sakoda, Y.; Shimojima, M.; Kida, H.; Yamaguchi, S. Isolation and characterization of potentially pathogenic H5N2 influenza virus from a chicken in Taiwan in 2008. Avian Dis. 2010, 54, 885–893. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.H.; Pascua, P.N.; Song, M.S.; Baek, Y.H.; Kim, C.J.; Kang, H.M.; Lee, O.S.; Choi, Y.K. Isolation and genetic characterization of H5N2 influenza viruses from pigs in Korea. J. Virol. 2009, 83, 4205–4215. [Google Scholar] [CrossRef]
- Guang-Jian, Z.; Zong-Shuai, L.; Yan-Li, Z.; Shi-Jin, J.; Zhi-Jing, X. Genetic characterization of a novel influenza A virus H5N2 isolated from a dog in China. Vet. Microbiol. 2011, 155, 409–416. [Google Scholar] [CrossRef]
- Ogata, T.; Yamazaki, Y.; Okabe, N.; Nakamura, Y.; Tashiro, M.; Sata, T. Human H5N2 avian influenza infection in Japan and the factors associated with high H5N2-neutralizing antibody titer. J. Epidemiol. 2008, 18, 160–166. [Google Scholar] [CrossRef][Green Version]
- Zhao, G.; Gu, X.; Lu, X.; Pan, J.; Duan, Z.; Zhao, K.; Gu, M.; Liu, Q.; He, L.; Chen, J.; et al. Novel reassortant highly pathogenic H5N2 avian influenza viruses in poultry in China. PLoS ONE 2012, 7, e46183. [Google Scholar] [CrossRef]
- Bosco-Lauth, A.M.; Marlenee, N.L.; Hartwig, A.E.; Bowen, R.A.; Root, J.J. Shedding of clade 2.3.4.4 H5N8 and H5N2 highly pathogenic avian influenza viruses in peridomestic wild birds in the US. Transbound. Emerg. Dis. 2019, 66, 1301–1305. [Google Scholar] [CrossRef] [PubMed]
- El-Shesheny, R.; Gomaa, M.; Sayes, M.E.; Kamel, M.N.; Taweel, A.E.; Kutkat, O.; Kayali, G. Emergence of a novel reassortant highly pathogenic avian influenza clade 2.3.4.4b A(H5N2) Virus, 2024. Emerg. Microbes Infect. 2025, 14, 2455601. [Google Scholar] [CrossRef]
- Jhung, M.A.; Nelson, D.I.; Centers for Disease Control and Prevention (CDC). Outbreaks of avian influenza A (H5N2), (H5N8), and (H5N1) among birds—United States, December 2014–January 2015. MMWR Morb. Mortal. Wkly. Rep. 2015, 64, 111. [Google Scholar] [PubMed]
- DeJesus, E.; Costa-Hurtado, M.; Smith, D.; Lee, D.H.; Spackman, E.; Kapczynski, D.R.; Torchetti, M.K.; Killian, M.L.; Suarez, D.L.; Swayne, D.E.; et al. Changes in adaptation of H5N2 highly pathogenic avian influenza H5 clade 2.3.4.4 viruses in chickens and mallards. Virology 2016, 499, 52–64. [Google Scholar] [CrossRef]
- Shearn-Bochsler, V.I.; Knowles, S.; Ip, H.S. Lethal Infection of Wild Raptors with Highly Pathogenic Avian Influenza H5N8 and H5N2 Viruses in the USA, 2014–2015. J. Wildl. Dis. 2019, 55, 164–168. [Google Scholar] [CrossRef] [PubMed]
- Božić, B.; Vučićević, I.; Polaček, V.; Vasković, N.; Petrović, T.; Pajić, M.; Aleksić-Kovačević, S. Comparative pathological findings in mute swans (Cygnus olor) naturally infected with highly pathogenic Avian influenza viruses H5N1 and H5N8 in Serbia. Vet. Ital. 2019, 55, 95–101. [Google Scholar] [CrossRef]
- Li, X.; Lv, X.; Li, Y.; Peng, P.; Zhou, R.; Qin, S.; Ma, E.; Liu, W.; Fu, T.; Ma, P.; et al. Highly pathogenic avian influenza A(H5N8) virus in swans, China, 2020. Emerg. Infect. Dis. 2021, 27, 1732–1734. [Google Scholar] [CrossRef] [PubMed]
- Nagy, A.; Machova, J.; Hornickova, J.; Tomci, M.; Nagl, I.; Horyna, B.; Holko, I. Highly pathogenic avian influenza virus subtype H5N1 in mute swans in the Czech Republic. Vet. Microbiol. 2007, 120, 9–16. [Google Scholar] [CrossRef]
- Okamatsu, M.; Tanaka, T.; Yamamoto, N.; Sakoda, Y.; Sasaki, T.; Tsuda, Y.; Isoda, N.; Kokumai, N.; Takada, A.; Umemura, T.; et al. Antigenic, genetic, and pathogenic characterization of H5N1 highly pathogenic avian influenza viruses isolated from dead whooper swans (Cygnus cygnus) found in northern Japan in 2008. Virus Genes 2010, 41, 351–357. [Google Scholar] [CrossRef]
- Uchida, Y.; Mase, M.; Yoneda, K.; Kimura, A.; Obara, T.; Kumagai, S.; Saito, T.; Yamamoto, Y.; Nakamura, K.; Tsukamoto, K.; et al. Highly pathogenic avian influenza virus (H5N1) isolated from whooper swans, Japan. Emerg. Infect. Dis. 2008, 14, 1427–1429. [Google Scholar] [CrossRef]
- Pálmai, N.; Erdélyi, K.; Bálint, A.; Márton, L.; Dán, A.; Deim, Z.; Ursu, K.; Löndt, B.Z.; Brown, I.H.; Glávits, R. Pathobiology of highly pathogenic avian influenza virus (H5N1) infection in mute swans (Cygnus olor). Avian Pathol. 2007, 36, 245–249. [Google Scholar] [CrossRef]
- Teifke, J.P.; Klopfleisch, R.; Globig, A.; Starick, E.; Hoffmann, B.; Wolf, P.U.; Beer, M.; Mettenleiter, T.C.; Harder, T.C. Pathology of natural infections by H5N1 highly pathogenic avian influenza virus in mute (Cygnus olor) and whooper (Cygnus cygnus) swans. Vet. Pathol. 2007, 44, 137–143. [Google Scholar] [CrossRef]
- Ogawa, S.; Yamamoto, Y.; Yamada, M.; Mase, M.; Nakamura, K. Pathology of whooper swans (Cygnus cygnus) infected with H5N1 avian influenza virus in Akita, Japan, in 2008. J. Vet. Med. Sci. 2009, 71, 1377–1380. [Google Scholar] [CrossRef]
- Hars, J.; Ruette, S.; Benmergui, M.; Fouque, C.; Fournier, J.Y.; Legouge, A.; Cherbonnel, M.; Daniel, B.; Dupuy, C.; Jestin, V. The epidemiology of the highly pathogenic H5N1 avian influenza in Mute Swan (Cygnus olor) and other Anatidae in the Dombes region (France), 2006. J. Wildl. Dis. 2008, 44, 811–823. [Google Scholar] [CrossRef]
- Stanković, D.; Raković, M.; Paunović, M. Bird migratory movements and their possible impact on avian influenza and West Nile disease spreading. In Proceedings of the International Symposium “Avian Influenza and West Nile Virus—Global Threats for Emerging and Re-emerging Diseases”, Novi Sad, Serbia, 10–11 March 2022; Scientific Veterinary Institute “Novi Sad”: Novi Sad, Serbia, 2022; pp. 187–192. [Google Scholar]
- Grabic, J. Wetlands in Serbia: Past, present and future. Columella J. Agric. Environ. Sci. 2024, 11, 19–28. [Google Scholar] [CrossRef]
- Shimizu, Y.; Hayama, Y.; Yamamoto, T.; Ito, H.; Miura, S.; Tsunekuni, R.; Sakoda, Y.; Umemura, T.; Suzuki, H.; Nishimura, M. Matched case-control study of the influence of inland waters surrounding poultry farms on avian influenza outbreaks in Japan. Sci. Rep. 2018, 8, 3306. [Google Scholar] [CrossRef] [PubMed]
- Fujimoto, Y.; Usui, T.; Ito, H.; Ono, E.; Ito, T. Susceptibility of wild passerines to subtype H5N1 highly pathogenic avian influenza viruses. Avian Pathol. 2015, 44, 243–247. [Google Scholar] [CrossRef]
- Hiono, T.; Isoda, N.; Ueda, S.; Takemae, N.; Kubo, M.; Yamamoto, T.; Sakoda, Y.; Tsunekuni, R.; Haga, A.; Okamatsu, M.; et al. Experimental infection of highly and low pathogenic avian influenza viruses to chickens, ducks, tree sparrows, jungle crows, and black rats for the evaluation of their roles in virus transmission. Vet. Microbiol. 2015, 182, 108–115. [Google Scholar] [CrossRef]
- Velkers, F.C.; Blokhuis, S.J.; Veldhuis Kroeze, E.J.B.; Burt, S.A. The role of rodents in avian influenza outbreaks in poultry farms: A review. Vet. Q. 2017, 37, 182–194. [Google Scholar] [CrossRef] [PubMed]
- Cui, P.; Zeng, X.; Li, X.; Li, Y.; Shi, J.; Zhao, C.; Qu, Z.; Wang, Y.; Guo, J.; Gu, W.; et al. Genetic and biological characteristics of the globally circulating H5N8 avian influenza viruses and the protective efficacy offered by the poultry vaccine currently used in China. Sci. China Life Sci. 2022, 65, 795–808. [Google Scholar] [CrossRef]
Year | Number of Outbreaks | Affected Wild Bird Species |
---|---|---|
2016 | 12 | Mute swan |
2017 | 6 | Mute swan, grey heron, common buzzard |
2018 | Not detected | / |
2019 | Not detected | / |
2020 | Not detected | / |
2021 | 2 | Mute swan |
Year | Number of Outbreaks | Affected Wild Bird Species |
---|---|---|
2021 | 7 | Mute swan, mallard duck (wild ducks held in captivity) |
2022 | 9 | Mute swan, black-headed gulls, mallard duck |
2023 | 18 | Common crane, mute swan |
2024 | 3 | Mute swan |
2025 | 1 | Mute swan |
Year | Number of Outbreaks | Affected Wild Bird Species |
---|---|---|
2021 | 1 | Mallard duck |
2022 | Not detected | / |
2023 | 1 | Mute swan |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Djurdjević, B.; Samojlović, M.; Lupulović, D.; Petrović, T.; Polaček, V.; Knežević, S.; Pajić, M. Temporal Dynamics and Surveillance of Highly Pathogenic H5 Avian Influenza in Wild Birds in Northern Serbia (2016–2025). Vet. Sci. 2025, 12, 894. https://doi.org/10.3390/vetsci12090894
Djurdjević B, Samojlović M, Lupulović D, Petrović T, Polaček V, Knežević S, Pajić M. Temporal Dynamics and Surveillance of Highly Pathogenic H5 Avian Influenza in Wild Birds in Northern Serbia (2016–2025). Veterinary Sciences. 2025; 12(9):894. https://doi.org/10.3390/vetsci12090894
Chicago/Turabian StyleDjurdjević, Biljana, Milena Samojlović, Diana Lupulović, Tamaš Petrović, Vladimir Polaček, Slobodan Knežević, and Marko Pajić. 2025. "Temporal Dynamics and Surveillance of Highly Pathogenic H5 Avian Influenza in Wild Birds in Northern Serbia (2016–2025)" Veterinary Sciences 12, no. 9: 894. https://doi.org/10.3390/vetsci12090894
APA StyleDjurdjević, B., Samojlović, M., Lupulović, D., Petrović, T., Polaček, V., Knežević, S., & Pajić, M. (2025). Temporal Dynamics and Surveillance of Highly Pathogenic H5 Avian Influenza in Wild Birds in Northern Serbia (2016–2025). Veterinary Sciences, 12(9), 894. https://doi.org/10.3390/vetsci12090894