Detection of the Candidate Genes of Economically Important Traits in Dorper Sheep Through Whole-Genome Resequencing
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Collection and Sequencing
2.2. Alignments and Variant Identification
2.3. Population Structure Analyses
2.4. Genetic Diversity Analyses
2.5. Selection Signatures and Functional Annotation
3. Results
3.1. Sequencing and SNP Identification
3.2. Population Structure Analysis
3.3. Genetic Diversity and Inbreeding
3.4. Candidate Genomic Regions and Genes Under Selection
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, X.; Yang, J.; Shen, M.; Xie, X.L.; Liu, G.J.; Xu, Y.X.; Lv, F.H.; Yang, H.; Yang, Y.L.; Liu, C.B.; et al. Whole-genome resequencing of wild and domestic sheep identifies genes associated with morphological and agronomic traits. Nat. Commun. 2020, 11, 2815. [Google Scholar] [CrossRef] [PubMed]
- Lv, F.H.; Cao, Y.H.; Liu, G.J.; Luo, L.Y.; Lu, R.; Liu, M.J.; Li, W.R.; Zhou, P.; Wang, X.H.; Shen, M.; et al. Whole-Genome Resequencing of Worldwide Wild and Domestic Sheep Elucidates Genetic Diversity, Introgression, and Agronomically Important Loci. Mol. Biol. Evol. 2022, 39, msab353. [Google Scholar] [CrossRef]
- Kilminster, T.F.; Greeff, J.C. A note on the reproductive performance of Damara, Dorper and Merino sheep under optimum management and nutrition for Merino ewes in the eastern wheatbelt of Western Australia. Trop. Anim. Health Prod. 2011, 43, 1459–1464. [Google Scholar] [CrossRef]
- Milne, C. The history of the Dorper sheep. Small Rumin. Res. 2000, 36, 99–102. [Google Scholar] [CrossRef]
- Schoeman, S.J. A comparative assessment of Dorper sheep in different production environments and systems. Small Rumin. Res. 2000, 36, 137–146. [Google Scholar] [CrossRef]
- Cloete, S.W.; Snyman, M.A.; Herselman, M.J. Productive performance of Dorper sheep. Small Rumin. Res. 2000, 36, 119–135. [Google Scholar] [CrossRef]
- Joy, A.; Dunshea, F.R.; Leury, B.J.; DiGiacomo, K.; Clarke, I.J.; Zhang, M.H.; Abhijith, A.; Osei-Amponsah, R.; Chauhan, S.S. Comparative Assessment of Thermotolerance in Dorper and Second-Cross (Poll Dorset/Merino x Border Leicester) Lambs. Animals 2020, 10, 2441. [Google Scholar] [CrossRef]
- Lv, X.; Chen, W.; Wang, S.; Cao, X.; Yuan, Z.; Getachew, T.; Mwacharo, J.M.; Haile, A.; Sun, W. Whole-genome resequencing of Dorper and Hu sheep to reveal selection signatures associated with important traits. Anim. Biotechnol. 2023, 34, 3016–3026. [Google Scholar] [CrossRef]
- Sun, L.; Zhao, J.; Zhan, W.; Jiang, H. Research progress on meat performance and genetic parameter of Chinese sheep. China Anim. Husb. Vet. Med. 2014, 41, 196–202. [Google Scholar]
- Quan, K.; Li, J.; Han, H.; Wei, H.; Zhao, J.; Si, H.A.; Zhang, X.; Zhang, D. Review of Huang-huai sheep, a new multiparous mutton sheep breed first identified in China. Trop. Anim. Health Prod. 2020, 53, 35. [Google Scholar] [CrossRef] [PubMed]
- Shi, J.; Wang, X.; Song, Y.; Liu, T.; Cheng, S.; Zhang, Q. Excavation of Genes Related to the Mining of Growth, Development, and Meat Quality of Two Crossbred Sheep Populations Based on Comparative Transcriptomes. Animals 2021, 11, 1492. [Google Scholar] [CrossRef] [PubMed]
- Ma, T.; Xu, G.S.; Deng, K.D.; Ji, S.K.; Tu, Y.; Zhang, N.F.; Diao, Q.Y. Energy requirements of early-weaned Dorper cross-bred female lambs. J. Anim. Physiol. Anim. Nutr. 2016, 100, 1081–1089. [Google Scholar] [CrossRef]
- Liu, Z.; Tan, X.; Wang, J.; Jin, Q.; Meng, X.; Cai, Z.; Cui, X.; Wang, K. Whole genome sequencing of Luxi Black Head sheep for screening selection signatures associated with important traits. Anim. Biosci. 2022, 35, 1340–1350. [Google Scholar] [CrossRef]
- van Marle-Koster, E.; Lashmar, S.F.; Retief, A.; Visser, C. Whole-Genome SNP Characterisation Provides Insight for Sustainable Use of Local South African Livestock Populations. Front. Genet. 2021, 12, 714194. [Google Scholar] [CrossRef]
- Xia, Q.; Wang, X.; Pan, Z.; Zhang, R.; Wei, C.; Chu, M.; Di, R. Genetic diversity and phylogenetic relationship of nine sheep populations based on microsatellite markers. Arch. Anim. Breed. 2021, 64, 7–16. [Google Scholar] [CrossRef]
- Oliveira, J.A.; Egito, A.A.D.; Crispim, B.D.A.; Vargas Junior, F.M.; Seno, L.O.; Barufatti, A. Importance of naturalized breeds as a base for the formation of exotic sheep (Ovis aries) breeds in tropical altitude regions. Genet. Mol. Biol. 2020, 43, e20190054. [Google Scholar] [CrossRef]
- Wanjala, G.; Astuti, P.K.; Bagi, Z.; Kichamu, N.; Strausz, P.; Kusza, S. Assessing the Genomics Structure of Dorper and White Dorper Variants, and Dorper Populations in South Africa and Hungary. Biology 2023, 12, 386. [Google Scholar] [CrossRef]
- Peng, H.; Hu, M.; Liu, Z.; Lai, W.; Shi, L.; Zhao, Z.; Ma, H.; Li, Y.; Yan, S. Transcriptome Analysis of the Liver and Muscle Tissues of Dorper and Small-Tailed Han Sheep. Front. Genet. 2022, 13, 868717. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Luo, R.; Lai, D.; Ma, M.; Hao, F.; Qi, X.; Liu, X.; Liu, D. Whole-genome resequencing of Ujumqin sheep to investigate the determinants of the multi-vertebral trait. Genome 2018, 61, 653–661. [Google Scholar] [CrossRef] [PubMed]
- Eer, H.; Ma, L.; Xie, X.; Ma, J.; Ma, X.; Yue, C.; Ma, Q.; Liang, X.; Ding, W.; Li, Y. Genetic polymorphism association analysis of SNPs on the species conservation genes of Tan sheep and Hu sheep. Trop. Anim. Health Prod. 2020, 52, 915–926. [Google Scholar] [CrossRef]
- Liu, Z.; Ji, Z.; Wang, G.; Chao, T.; Hou, L.; Wang, J. Genome-wide analysis reveals signatures of selection for important traits in domestic sheep from different ecoregions. BMC Genom. 2016, 17, 863. [Google Scholar] [CrossRef]
- Chen, S.; Zhou, Y.; Chen, Y.; Gu, J. fastp: An ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 2018, 34, i884–i890. [Google Scholar] [CrossRef]
- Li, H.; Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 2009, 25, 1754–1760. [Google Scholar] [CrossRef] [PubMed]
- Danecek, P.; Bonfield, J.K.; Liddle, J.; Marshall, J.; Ohan, V.; Pollard, M.O.; Whitwham, A.; Keane, T.; McCarthy, S.A.; Davies, R.M.; et al. Twelve years of SAMtools and BCFtools. Gigascience 2021, 10, giab008. [Google Scholar] [CrossRef]
- McKenna, A.; Hanna, M.; Banks, E.; Sivachenko, A.; Cibulskis, K.; Kernytsky, A.; Garimella, K.; Altshuler, D.; Gabriel, S.; Daly, M.; et al. The Genome Analysis Toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010, 20, 1297–1303. [Google Scholar] [CrossRef] [PubMed]
- Purcell, S.; Neale, B.; Todd-Brown, K.; Thomas, L.; Ferreira, M.A.; Bender, D.; Maller, J.; Sklar, P.; de Bakker, P.I.; Daly, M.J.; et al. PLINK: A tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 2007, 81, 559–575. [Google Scholar] [CrossRef]
- Tamura, K.; Stecher, G.; Kumar, S. MEGA11: Molecular Evolutionary Genetics Analysis Version 11. Mol. Biol. Evol. 2021, 38, 3022–3027. [Google Scholar] [CrossRef] [PubMed]
- Letunic, I.; Bork, P. Interactive Tree of Life (iTOL) v5: An online tool for phylogenetic tree display and annotation. Nucleic Acids Res. 2021, 49, W293–W296. [Google Scholar] [CrossRef]
- Yang, J.; Lee, S.H.; Goddard, M.E.; Visscher, P.M. GCTA: A tool for genome-wide complex trait analysis. Am. J. Hum. Genet. 2011, 88, 76–82. [Google Scholar] [CrossRef]
- Alexander, D.H.; Novembre, J.; Lange, K. Fast model-based estimation of ancestry in unrelated individuals. Genome Res. 2009, 19, 1655–1664. [Google Scholar] [CrossRef]
- Danecek, P.; Auton, A.; Abecasis, G.; Albers, C.A.; Banks, E.; DePristo, M.A.; Handsaker, R.E.; Lunter, G.; Marth, G.T.; Sherry, S.T.; et al. The variant call format and VCFtools. Bioinformatics 2011, 27, 2156–2158. [Google Scholar] [CrossRef]
- Addo, S.; Klingel, S.; Hinrichs, D.; Thaller, G. Runs of Homozygosity and NetView analyses provide new insight into the genome-wide diversity and admixture of three German cattle breeds. PLoS ONE 2019, 14, e0225847. [Google Scholar] [CrossRef]
- Purfield, D.C.; Berry, D.P.; McParland, S.; Bradley, D.G. Runs of homozygosity and population history in cattle. BMC Genet. 2012, 13, 70. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Dong, S.S.; Xu, J.Y.; He, W.M.; Yang, T.L. PopLDdecay: A fast and effective tool for linkage disequilibrium decay analysis based on variant call format files. Bioinformatics 2019, 35, 1786–1788. [Google Scholar] [CrossRef] [PubMed]
- Szpiech, Z.A.; Hernandez, R.D. selscan: An efficient multithreaded program to perform EHH-based scans for positive selection. Mol. Biol. Evol. 2014, 31, 2824–2827. [Google Scholar] [CrossRef] [PubMed]
- Cingolani, P.; Platts, A.; Wang, L.L.; Coon, M.; Nguyen, T.; Wang, L.; Land, S.J.; Lu, X.; Ruden, D.M. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly 2012, 6, 80–92. [Google Scholar] [CrossRef]
- Huang, D.W.; Sherman, B.T.; Lempicki, R.A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 2009, 4, 44–57. [Google Scholar] [CrossRef]
- Sherman, B.T.; Hao, M.; Qiu, J.; Jiao, X.; Baseler, M.W.; Lane, H.C.; Imamichi, T.; Chang, W. DAVID: A web server for functional enrichment analysis and functional annotation of gene lists (2021 update). Nucleic Acids Res. 2022, 50, W216–W221. [Google Scholar] [CrossRef]
- Hu, Z.L.; Park, C.A.; Reecy, J.M. Building a livestock genetic and genomic information knowledgebase through integrative developments of Animal QTLdb and CorrDB. Nucleic Acids Res. 2019, 47, D701–D710. [Google Scholar] [CrossRef]
- Gu, Z.; Eils, R.; Schlesner, M. Complex heatmaps reveal patterns and correlations in multidimensional genomic data. Bioinformatics 2016, 32, 2847–2849. [Google Scholar] [CrossRef]
- Ibelli, A.M.G.; Peixoto, J.O.; Zanella, R.; Gouveia, J.J.S.; Cantao, M.E.; Coutinho, L.L.; Marchesi, J.A.P.; Pizzol, M.S.D.; Marcelino, D.E.P.; Ledur, M.C. Downregulation of growth plate genes involved with the onset of femoral head separation in young broilers. Front. Physiol. 2022, 13, 941134. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Chen, C.; Yang, B.; Guo, Y.; Ai, H.; Ren, J.; Peng, Z.; Tu, Z.; Yang, X.; Meng, Q.; et al. A systems genetics study of swine illustrates mechanisms underlying human phenotypic traits. BMC Genom. 2015, 16, 88. [Google Scholar] [CrossRef]
- Li, J.; Wang, L.; Yu, D.; Hao, J.; Zhang, L.; Adeola, A.C.; Mao, B.; Gao, Y.; Wu, S.; Zhu, C.; et al. Single-cell RNA Sequencing Reveals Thoracolumbar Vertebra Heterogeneity and Rib-genesis in Pigs. Genom. Proteom. Bioinform. 2021, 19, 423–436. [Google Scholar] [CrossRef] [PubMed]
- Becker, G.M.; Shira, K.A.; Woods, J.L.; Khilji, S.F.; Schauer, C.S.; Webb, B.T.; Stewart, W.C.; Murdoch, B.M. Angular limb deformity associated with TSPAN18, NRG3 and NOVA2 in Rambouillet rams. Sci. Rep. 2023, 13, 16059. [Google Scholar] [CrossRef]
- Tan, Z.; Chen, P.; Zhang, J.; Shek, H.T.; Li, Z.; Zhou, X.; Zhou, Y.; Yin, S.; Dong, L.; Feng, L.; et al. Multi-omics analyses reveal aberrant differentiation trajectory with WNT1 loss-of-function in type XV osteogenesis imperfecta. J. Bone Miner. Res. 2024, 39, 1253–1267. [Google Scholar] [CrossRef]
- Yun, Y.; Wu, R.; He, X.; Qin, X.; Chen, L.; Sha, L.; Yun, X.; Nishiumi, T.; Borjigin, G. Integrated Transcriptome Analysis of miRNAs and mRNAs in the Skeletal Muscle of Wuranke Sheep. Genes 2023, 14, 2034. [Google Scholar] [CrossRef]
- Greenhalgh, C.J.; Rico-Bautista, E.; Lorentzon, M.; Thaus, A.L.; Morgan, P.O.; Willson, T.A.; Zervoudakis, P.; Metcalf, D.; Street, I.; Nicola, N.A.; et al. SOCS2 negatively regulates growth hormone action in vitro and in vivo. J. Clin. Investig. 2005, 115, 397–406. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Chen, Y.; Li, Y.; Zheng, X.; Shu, L.; Tian, L.; Lin, H.; Liang, Y. Cytidine triphosphate synthase 1-mediated metabolic reprogramming promotes proliferation and drug resistance in multiple myeloma. Heliyon 2024, 10, e33001. [Google Scholar] [CrossRef]
- O’Brien, S.; Kelso, S.; Steinhart, Z.; Orlicky, S.; Mis, M.; Kim, Y.; Lin, S.; Sicheri, F.; Angers, S. SCF(FBXW7) regulates G2-M progression through control of CCNL1 ubiquitination. EMBO Rep. 2022, 23, e55044. [Google Scholar] [CrossRef]
- Tsoporis, J.N.; Marks, A.; Haddad, A.; O’Hanlon, D.; Jolly, S.; Parker, T.G. S100A6 is a negative regulator of the induction of cardiac genes by trophic stimuli in cultured rat myocytes. Exp. Cell Res. 2005, 303, 471–481. [Google Scholar] [CrossRef]
- Jia, Z.; Chen, X.; Chen, J.; Zhang, L.; Oprescu, S.N.; Luo, N.; Xiong, Y.; Yue, F.; Kuang, S. ACSS3 in brown fat drives propionate catabolism and its deficiency leads to autophagy and systemic metabolic dysfunction. Clin. Transl. Med. 2022, 12, e665. [Google Scholar] [CrossRef]
- Mota, L.F.M.; Lopes, F.B.; Fernandes Junior, G.A.; Rosa, G.J.M.; Magalhaes, A.F.B.; Carvalheiro, R.; Albuquerque, L.G. Genome-wide scan highlights the role of candidate genes on phenotypic plasticity for age at first calving in Nellore heifers. Sci. Rep. 2020, 10, 6481. [Google Scholar] [CrossRef]
- Jin, M.; Fei, X.; Li, T.; Lu, Z.; Chu, M.; Di, R.; He, X.; Wang, X.; Wei, C. Transcriptome study digs out BMP2 involved in adipogenesis in sheep tails. BMC Genom. 2022, 23, 457. [Google Scholar] [CrossRef]
- Petrilla, J.; Matis, G.; Mackei, M.; Kulcsar, A.; Sebok, C.; Papp, M.; Galfi, P.; Febel, H.; Huber, K.; Neogrady, Z. Modulation of Hepatic Insulin and Glucagon Signaling by Nutritional Factors in Broiler Chicken. Vet. Sci. 2022, 9, 103. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Xue, X.; Liu, Y.; Abied, A.; Ding, Y.; Zhao, S.; Wang, W.; Ma, L.; Guo, J.; Guan, W.; et al. Genome-wide comparative analyses reveal selection signatures underlying adaptation and production in Tibetan and Poll Dorset sheep. Sci. Rep. 2021, 11, 2466. [Google Scholar] [CrossRef] [PubMed]
- Guilherme, A.; Soriano, N.A.; Furcinitti, P.S.; Czech, M.P. Role of EHD1 and EHBP1 in perinuclear sorting and insulin-regulated GLUT4 recycling in 3T3-L1 adipocytes. J. Biol. Chem. 2004, 279, 40062–40075. [Google Scholar] [CrossRef] [PubMed]
- Liu, P.; Huang, S.; Ling, S.; Xu, S.; Wang, F.; Zhang, W.; Zhou, R.; He, L.; Xia, X.; Yao, Z.; et al. Foxp1 controls brown/beige adipocyte differentiation and thermogenesis through regulating beta3-AR desensitization. Nat. Commun. 2019, 10, 5070. [Google Scholar] [CrossRef]
- Shen, L.; Tan, Z.; Gan, M.; Li, Q.; Chen, L.; Niu, L.; Jiang, D.; Zhao, Y.; Wang, J.; Li, X.; et al. tRNA-Derived Small Non-Coding RNAs as Novel Epigenetic Molecules Regulating Adipogenesis. Biomolecules 2019, 9, 274. [Google Scholar] [CrossRef]
- Dong, K.; Yang, M.; Han, J.; Ma, Q.; Han, J.; Song, Z.; Luosang, C.; Gorkhali, N.A.; Yang, B.; He, X.; et al. Genomic analysis of worldwide sheep breeds reveals PDGFD as a major target of fat-tail selection in sheep. BMC Genom. 2020, 21, 800. [Google Scholar] [CrossRef]
- Muansangi, L.; Tiwari, J.; Ilayaraja, I.; Kumar, I.; Vyas, J.; Chitra, A.; Singh, S.P.; Pal, P.; Gowane, G.; Mishra, A.K.; et al. DCMS analysis revealed differential selection signatures in the transboundary Sahiwal cattle for major economic traits. Sci. Rep. 2025, 15, 15685. [Google Scholar] [CrossRef]
- Zhang, L.; Sun, F.; Jin, H.; Dalrymple, B.P.; Cao, Y.; Wei, T.; Vuocolo, T.; Zhang, M.; Piao, Q.; Ingham, A.B. A comparison of transcriptomic patterns measured in the skin of Chinese fine and coarse wool sheep breeds. Sci. Rep. 2017, 7, 14301. [Google Scholar] [CrossRef]
- Zhang, W.; Jin, M.; Lu, Z.; Li, T.; Wang, H.; Yuan, Z.; Wei, C. Whole Genome Resequencing Reveals Selection Signals Related to Wool Color in Sheep. Animals 2023, 13, 3265. [Google Scholar] [CrossRef]
- Tse, S.W.; Radtke, A.J.; Espinosa, D.A.; Cockburn, I.A.; Zavala, F. The chemokine receptor CXCR6 is required for the maintenance of liver memory CD8(+) T cells specific for infectious pathogens. J. Infect. Dis. 2014, 210, 1508–1516. [Google Scholar] [CrossRef]
- Nicol, L.; Gossner, A.; Watkins, C.; Chianini, F.; Dalziel, R.; Hopkins, J. Variations in IL-23 and IL-25 receptor gene structure, sequence and expression associated with the two disease forms of sheep paratuberculosis. Vet. Res. 2016, 47, 27. [Google Scholar] [CrossRef]
- Feng, Y.; Chen, Z.; Xu, Y.; Han, Y.; Jia, X.; Wang, Z.; Zhang, N.; Lv, W. Corrigendum: The central inflammatory regulator IkappaBzeta: Induction regulation and physiological functions. Front. Immunol. 2024, 15, 1398222. [Google Scholar] [CrossRef] [PubMed]
- Heaton, M.P.; Clawson, M.L.; Chitko-Mckown, C.G.; Leymaster, K.A.; Smith, T.P.; Harhay, G.P.; White, S.N.; Herrmann-Hoesing, L.M.; Mousel, M.R.; Lewis, G.S.; et al. Reduced lentivirus susceptibility in sheep with TMEM154 mutations. PLoS Genet. 2012, 8, e1002467. [Google Scholar] [CrossRef] [PubMed]
- Cheng, J.; Zhao, H.; Chen, N.; Cao, X.; Hanif, Q.; Pi, L.; Hu, L.; Chaogetu, B.; Huang, Y.; Lan, X.; et al. Population structure, genetic diversity, and selective signature of Chaka sheep revealed by whole genome sequencing. BMC Genom. 2020, 21, 520. [Google Scholar] [CrossRef]
- Chen, Q.; Shen, J.; Hanif, Q.; Chen, N.; Huang, Y.; Dang, R.; Lan, X.; Chen, H.; Lei, C. Whole genome analyses revealed genomic difference between European taurine and East Asian taurine. J. Anim. Breed. Genet. 2021, 138, 56–68. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Bickhart, D.M.; Cole, J.B.; Schroeder, S.G.; Song, J.; Tassell, C.P.; Sonstegard, T.S.; Liu, G.E. Genomic signatures reveal new evidences for selection of important traits in domestic cattle. Mol. Biol. Evol. 2015, 32, 711–725. [Google Scholar] [CrossRef]
- Ebel, P.; Imgrund, S.; Vom Dorp, K.; Hofmann, K.; Maier, H.; Drake, H.; Degen, J.; Dormann, P.; Eckhardt, M.; Franz, T.; et al. Ceramide synthase 4 deficiency in mice causes lipid alterations in sebum and results in alopecia. Biochem. J. 2014, 461, 147–158. [Google Scholar] [CrossRef]
- Han, Y.; Akhtar, M.F.; Chen, W.; Liu, X.; Zhao, M.; Shi, L.; Khan, M.Z.; Wang, C. Potential candidate genes influencing meat production phenotypic traits in sheep: A review. Front. Vet. Sci. 2025, 12, 1616533. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Li, X.; Han, Z.; Yang, R.; Zhou, W.; Peng, Y.; He, J.; Liu, S. Population structure and selective signature analysis of local sheep breeds in Xinjiang, China based on high-density SNP chip. Sci. Rep. 2024, 14, 28133. [Google Scholar] [CrossRef] [PubMed]
Chromosome | Position (bp) | Candidate Genes | Traits |
---|---|---|---|
3 | 148,725,001–148,775,000 | COL2A1 | Skeletal development [41] |
3 | 14,600,001–14,650,000 | DAB2IP | Skeletal development [42] |
3 | 136,800,001–136,850,000 | EPYC | Skeletal development [43] |
15 | 80,850,001–80,900,000 | TSPAN18 | Skeletal development [44] |
3 | 147,100,001–147,150,000 | WNT1 | Skeletal development [45] |
5 | 14,475,001–14,525,000 | INSR | Muscle development [46] |
3 | 139,225,001–139,275,000 | SOCS2 | Muscle development [47] |
1 | 16,125,001–16,175,000 | CTPS1 | Cell growth regulation [48] |
17 | 6,000,001–6,050,000 | FBXW7 | Cell growth regulation [49] |
1 | 110,075,001–110,125,000 | S100A6 | Cell growth regulation [50] |
3 | 124,950,001–125,000,000 | ACSS3 | Energy metabolism [51] |
5 | 9,475,001–9,525,000 | ADGRE3 | Energy metabolism [52] |
1 | 29,350,001–29,400,000 | CPT2 | Energy metabolism [53] |
11 | 12,050,001–12,100,000 | GCGR | Energy metabolism [54] |
16 | 35,450,001–35,500,000 | PRKAA1 | Energy metabolism [55] |
3 | 47,325,001–47,375,000 | EHBP1 | Adipocyte differentiation [56] |
19 | 31,900,001–31,950,000 | FOXP1 | Adipocyte differentiation [57] |
10 | 52,800,001–52,850,000 | KLF12 | Adipocyte differentiation [58] |
15 | 4,225,001–4,275,000 | PDGFD | Fat deposition [59] |
13 | 41,200,001–41,250,000 | RALGAPA2 | Fat deposition [60] |
5 | 15,200,001–15,250,000 | CERS4 | Hair follicle development [61] |
19 | 33,375,001–33,425,000 | MITF | Pigmentation [62] |
19 | 55,275,001–55,325,000 | CXCR6 | Immune response [63] |
19 | 49,075,001–49,125,000 | IL17RB | Immune response [64] |
1 | 182,150,001–182,200,000 | NFKBIZ | Immune response [65] |
17 | 5,700,001–5,750,000 | TMEM154 | Immune response [66] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Z.; Liu, Z.; Sun, H.; Bai, C.; Pi, T.; Ma, H.; Zhao, Z.; Yan, S. Detection of the Candidate Genes of Economically Important Traits in Dorper Sheep Through Whole-Genome Resequencing. Vet. Sci. 2025, 12, 887. https://doi.org/10.3390/vetsci12090887
Wang Z, Liu Z, Sun H, Bai C, Pi T, Ma H, Zhao Z, Yan S. Detection of the Candidate Genes of Economically Important Traits in Dorper Sheep Through Whole-Genome Resequencing. Veterinary Sciences. 2025; 12(9):887. https://doi.org/10.3390/vetsci12090887
Chicago/Turabian StyleWang, Zhihua, Zhengxi Liu, Hao Sun, Chunyan Bai, Te Pi, Huihai Ma, Zhongli Zhao, and Shouqing Yan. 2025. "Detection of the Candidate Genes of Economically Important Traits in Dorper Sheep Through Whole-Genome Resequencing" Veterinary Sciences 12, no. 9: 887. https://doi.org/10.3390/vetsci12090887
APA StyleWang, Z., Liu, Z., Sun, H., Bai, C., Pi, T., Ma, H., Zhao, Z., & Yan, S. (2025). Detection of the Candidate Genes of Economically Important Traits in Dorper Sheep Through Whole-Genome Resequencing. Veterinary Sciences, 12(9), 887. https://doi.org/10.3390/vetsci12090887