Evaluation of a Tannin Blend on Beef Cattle Performance and Health During the Receiving Period and Subsequent Grazing Period
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animal Care and Use
2.2. Receiving Period
2.3. Treatments
2.4. Animal Health
2.5. Animal Management During the Receiving Period
2.6. Grazing Period
2.7. Statistical Analysis
3. Results
3.1. Receiving Period
3.2. Grazing Period
4. Discussion
4.1. Receiving Period
4.2. Grazing Period
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
BXA | Diet supplemented with the BXA pellet (7 g BX and 1 g ATX per head daily) |
CON | Control diet |
ADG | Average daily gain |
BRD | Bovine respiratory disease |
CH4 | Methane |
BW | Body weight |
DM | Dry matter |
PTI | Post-treatment interval |
RT | Rectal temperature |
DMI | Dry matter intake |
G:F | Gain:feed |
CP | Crude protein |
ADF | Acid detergent fiber |
TDN | Total digestible nutrients |
NEm | Net energy of maintenance |
NEg | Net energy of gain |
CT | Condensed tannins |
HT | Hydrolysable tannins |
References
- NAHMS. National Animal Health Monitoring System: Feedlot 2011 Part IV: Health and Health Management on US Feedlots with a Capacity of 1000 or More Head. USDA-APHIS-VS-CEAH-NAHMS. 2013. Available online: www.aphis.usda.gov/animal_health/nahms/feedlots/downloads/feedlot2011/Feed11_dr_PartIV_1.pdf (accessed on 13 May 2025).
- Galyean, M.L.; Duff, G.C.; Rivera, J.D. Galyean appreciation club review: Revisiting nutrition and health of newly received cattle—What have we learned in the last 15 years? J. Anim. Sci. 2022, 100, skac067. [Google Scholar] [CrossRef]
- FDA. Supporting Antimicrobial Stewardship in Veterinary Settings: Goals for Fiscal Years 2019–2023. FDA Center for Veterinary Medicine. 2018. Available online: https://faolex.fao.org/docs/pdf/us196405.pdf (accessed on 13 May 2025).
- Elam, N.A. Impact of vitamin E supplementation on newly received calves: A Review and Meta-Analysis. Prof. Anim. Sci. 2007, 23, 455–458. [Google Scholar] [CrossRef]
- Duff, G.C.; Galyean, M.L. Board invited review: Recent advances in management of highly stressed, newly received feedlot cattle. J. Anim. Sci. 2007, 85, 823–840. [Google Scholar] [CrossRef]
- Deters, E.L.; Hansen, S.L. Vitamin E supplementation strategies during feedlot receiving: Effects on beef steer performance antibody response to vaccination, and antioxidant defense. J. Anim. Sci. 2019, 97, 4362–4369. [Google Scholar] [CrossRef]
- Amador, M.; Zanotti, C. Immunoprophylaxis in intensive farming systems: The way forward. Vet. Immunol. Immunopathol. 2016, 181, 2–9. [Google Scholar] [CrossRef]
- Lauridsen, C. From oxidative stress to inflammation: Redox balance and immune system. Poult. Sci. 2019, 98, 4240–4246. [Google Scholar] [CrossRef]
- Ao, X.; Kim, I.H. Effects of grape seed extract on performance, immunity, antioxidant capacity and meat quality in Pekin ducks. Poult. Sci. 2020, 99, 2078–2086. [Google Scholar] [CrossRef]
- Hassan, F.A.; Mahose, K.M.; Basyony, M.M. Effects of grape seed extract as a natural antioxidant on growth, performance, immune function and antioxidant status of rabbits during heat stress. Arch. Anim. Nutr. 2016, 70, 141–154. [Google Scholar] [CrossRef]
- Pauletto, M.; Elgendy, R.; Ianni, A.; Marone, E.; Giantin, M.; Grotta, L.; Ramazzotti, S.; Bennato, F.; Dacasto, M.; Martino, G. Nutrigenomic effects of long-term grape pomace supplementation in dairy cows. Animals 2020, 10, 714. [Google Scholar] [CrossRef]
- Engler, P.; Desguerets, C.; El Amine Benarbia, M.; Mallem, Y. Supplementing young cattle with a rumen protected grape extract around vaccination increases humoral response and antioxidant defenses. Vet. Anim. Sci. 2022, 15, 100232. [Google Scholar] [CrossRef]
- Mueller-Harvey, I. Unravelling the conundrum of tannins in animal nutrition and health. J. Sci. Food Agric. 2006, 86, 2010–2037. [Google Scholar] [CrossRef]
- Montout, L.; Poullet, N.; Bambou, J.C. Systematic review of the interaction between nutrition and immunity in livestock: Effect of dietary supplementation with synthetic amino acids. Animals 2021, 11, 2813. [Google Scholar] [CrossRef]
- Waghorn, G.C.; Ulyatt, M.J.; John, A.; Fisher, M.T. The effect of condensed tannins on the site of digestion of amino acids and other nutrients in sheep fed on Lotus corniculatus L. Br. J. Nutr. 1987, 57, 115–126. [Google Scholar] [CrossRef]
- Orzuna-Orzuna, J.F.; Dorantes-Iturbide, G.; Lara-Bueno, A.; Mendoza-Martínez, G.D.; Miranda-Romero, L.A.; Lee-Rangel, H.A. Growth Performance, Meat Quality and Antioxidant Status of Sheep Supplemented with Tannins: A Meta-Analysis. Animals 2021, 11, 3184. [Google Scholar] [CrossRef]
- Coleman, D.N.; Lopreiato, V.; Alharthi, A.; Loor, J.J. Amino acids and the regulation of oxidative stress and immune function in dairy cattle. J. Anim. Sci. 2020, 98 (Suppl. S1), S175–S193. [Google Scholar] [CrossRef] [PubMed]
- Rivera-Mendez, C.; Plascencia, A.; Torrentera, N.; Zinn, R.A. Effect of level and source of supplemental tannin on growth performance of steers during the late finishing phase. J. Appl. Anim. Res. 2016, 45, 199–203. [Google Scholar] [CrossRef]
- Berca, A.S.; Tedeschi, L.O.; da Silva Cardoso, A.; Reis, R.A. Meta-analysis of the relationship between dietary condensed tannins and methane emissions by cattle. Anim. Feed. Sci. Technol. 2022, 298, 115564. [Google Scholar] [CrossRef]
- Sgofio Rossi, C.A.; Grossi, S.; Compiani, R.; Baldi, G. Effect of a blend of essential oils, bioflavonoids and tannins on production performance, health, immune functionality, and antioxidant status in fattening beef cattle. Large Anim. Rev. 2023, 29, 163–170. [Google Scholar]
- Grossi, S.; Compiani, R.; Sgoifo Rossi, C.A. Effect of the administration of a blend of essential oils, bioflavonoids, and tannins to veal calves on growth performance, health status, and methane emissions. Large Anim. Rev. 2024, 30, 136–169. [Google Scholar]
- Perino, L.J.; Apley, M.D. Clinical trial design in feedlots. Vet. Clin. N. Am. Food Anim. Pract. 1998, 14, 343–365. [Google Scholar] [CrossRef]
- Rivera, J.D.; Johnson, J.; Cravey, M.D. Effects of yeast and yeast cell wall on performance and health of newly received beef steers and heifers grazing bahiagrass pastures. Appl. Anim. Sci. 2019, 35, 339–346. [Google Scholar] [CrossRef]
- Tabke, M.C.; Sarturi, J.O.; Galyean, M.L.; Trojan, S.J.; Brooks, J.C.; Johnson, B.J.; Martin, J.; Baggerman, J.; Thompson, A.J. Effects of tannic acid on growth performance, carcass characteristics, digestibility, nitrogen volatilization, and meat lipid oxidation of steers fed steam flaked corn–based finishing diets. J. Anim. Sci. 2017, 95, 5124–5136. [Google Scholar] [CrossRef]
- Bowman-Schnug, S.M.; Fuerniss, L.K.; Cameron, J.D.; Beckett, J.L.; Ahsin, M.; van Vliet, S.; Hufstedler, G.D.; Johnson, B.J. Replacement of monensin with a proprietary tannin blend additive in calf fed Holstein steer diets. Vet. Sci. 2025, 12, 166. [Google Scholar] [CrossRef]
- Felizari, L.D.; Fuerniss, L.K.; Beckett, J.L.; Secrist, D.S.; Hufstedler, G.D.; Johnson, B.J. Evaluating a proprietary tannin blend product as an alternative to monensin and tylosin phosphate in feedlot cattle diets. Vet. Sci. 2025, 12, 446. [Google Scholar] [CrossRef]
- Min, B.R.; Pinchak, W.E.; Hernandez, K.; Hernandez, C.; Hume, M.E.; Valencia, E.; Fulford, J.D. Effects of plant tannin supplementation on animal responses and in vivo ruminal bacterial populations associated with bloat in heifers grazing wheat forage. Prof. Anim. Sci. 2012, 28, 464–472. [Google Scholar] [CrossRef]
- Min, B.R.; Pinchak, W.E.; Hume, M.E.; Anderson, R.C. Effects of condensed tannins supplementation on animal performance, phylogenetic microbial changes, and in vitro methane emissions in steers grazing winter wheat. Animals 2021, 11, 2391. [Google Scholar] [CrossRef]
- Min, B.R.; Barry, T.N.; Attwood, G.T.; McNabb, W.C. The effect of condensed tannins on the nutrition and health of ruminants fed fresh temperate forages: A review. Anim. Feed Sci. Technol. 2003, 106, 3–19. [Google Scholar] [CrossRef]
- Min, B.R.; Solaiman, S. Comparative aspects of plant tannins on digestive physiology, nutrition and microbial community changes in sheep and goats: A review. J. Anim. Physiol. Anim. Nutr. 2018, 102, 1181–1193. [Google Scholar] [CrossRef]
- Min, B.R.; Pinchak, W.E.; Anderson, R.C.; Hume, M.E. In vitro bacterial growth and in vivo ruminal microbiota populations associated with bloat in steers grazing wheat forage. J. Anim. Sci. 2006, 84, 2873–2882. [Google Scholar] [CrossRef]
- Koenig, K.M.; Beauchemin, K.A. Effect of feeding condensed tannins in high protein finishing diets containing corn distillers grains on ruminal fermentation, nutrient digestibility, and route of nitrogen excretion in beef cattle. J. Anim. Sci. 2018, 96, 4398–4413. [Google Scholar] [CrossRef]
- Hervás, G.; Frutos, P.; Giráldez, F.J.; Mantecón, Á.R.; Del Pino, M.C. Effect of different doses of quebracho tannins extract on rumen fermentation in ewes. Anim. Feed Sci. Technol. 2003, 109, 65–78. [Google Scholar] [CrossRef]
- Min, B.R.; Gurung, N.; Shange, R.; Solaiman, S. Potential role of rumen microbiota in altering average daily gain and feed efficiency in meat goats fed simple and mixed pastures using bacterial tag-encoded FLX amplicon pyrosequencing. J. Anim. Sci. 2019, 97, 3523–3534. [Google Scholar] [CrossRef]
- Min, B.R.; Castleberry, L.; Allen, H.; Parker, D.; Waldrip, H.; Brauer, D.; Willis, W. Associative effects of wet distiller’s grains plus solubles and tannin-rich peanut skin supplementation on in vitro rumen fermentation, greenhouse gas emissions, and microbial changes. J. Anim. Sci. 2019, 97, 4668–4681. [Google Scholar] [CrossRef]
- Naumann, H.; Sepela, R.; Rezaire, A.; Masih, S.E.; Zeller, W.E.; Reinhardt, L.A.; Robe, J.T.; Sullivan, M.L.; Hagerman, A.E. Relationships between structures of condensed tannins from Texas legumes and methane production during in vitro rumen digestion. Molecules 2018, 23, 2123. [Google Scholar] [CrossRef]
- Besharati, M.; Maggiolino, A.; Palangi, V.; Kaya, A.; Jabbar, M.; Eseceli, H.; De Palo, P.; Lorenzo, J.M. Tannin in ruminant nutrition: Review. Molecules 2022, 27, 8273. [Google Scholar] [CrossRef]
- Montano, M.F.; Carvalho, P.H.V.; Chirino-Romero, J.O.; Latack, B.C.; Salinas-Chavira, J.; Zinn, R.A. Influence of supplemental condensed tannins on initial 112-d feedlot growth-performance and characteristics of digestion of calf-fed Holstein steers. Transl. Anim. Sci. 2022, 6, txac024. [Google Scholar] [CrossRef]
Ingredient | BXA 1 | CON |
---|---|---|
Soybean hull pellets | 26.33 | 29.66 |
Corn gluten feed pellets | 25.00 | 25.00 |
Beet pulp pellets | 15.00 | 15.00 |
Corn, DDGS | 10.74 | 10.14 |
LNC Roughpel 2 | 10.00 | 10.00 |
Corn, cracked | 6.75 | 5.51 |
BXA pellet 3 | 3.38 | 0.00 |
Liquid conditioner | 2.50 | 2.50 |
Mineral pellet 4 | 0.00 | 1.50 |
Monensin pellet 5 | 0.30 | 0.30 |
Limestone | 0.00 | 0.24 |
Salt | 0.00 | 0.15 |
Clinical Illness Score | Description | Appearance |
---|---|---|
1 | Normal | No abnormal symptoms |
2 | Slightly ill | Mild depression, gaunt, may have nasal and ocular discharge |
3 | Moderately ill | Nasal and ocular discharge, lags behind cohorts, coughing, labored breathing, weight loss |
4 | Severely ill | Severe depression, labored breathing, purulent ocular/nasal discharge, not responsive to human approach |
5 | Moribund | Near death |
Item | BXA 1 | CON |
---|---|---|
Crude protein (CP), % | 15.5 | 15.2 |
Fat, % | 1.70 | 1.50 |
Acid detergent fiber (ADF), % | 24.3 | 25.2 |
Total digestible nutrients (TDN), % | 72.8 | 75.5 |
Net energy maintenance (NEm), Mcal/kg | 1.67 | 1.74 |
Net energy gain (NEg), Mcal/kg | 1.10 | 1.19 |
Period | CP, % DM | TDN, % DM |
---|---|---|
December–January | 25.8 | 67.4 |
January–February | 18.6 | 73.7 |
February–March | 30.2 | 75.8 |
March–April | 26.7 | 80.1 |
April (study termination) | 22.1 | 76.8 |
Item | BXA 1 | CON | SE | p-Value |
---|---|---|---|---|
Body weight (BW), kg | ||||
D0 | 180.6 | 180.1 | 0.8 | 0.63 |
D21 | 191.6 | 190.5 | 2.0 | 0.61 |
D42 | 211.8 | 213.6 | 2.4 | 0.51 |
D63 | 241.0 | 237.8 | 2.0 | 0.18 |
Dry matter intake (DMI), kg/d | ||||
D0–21 | 3.11 | 2.91 | 0.11 | 0.12 |
D22–42 | 4.58 | 4.42 | 0.08 | 0.09 |
D0–42 | 3.78 | 3.61 | 0.09 | 0.13 |
D43–63 | 5.97 | 5.61 | 0.12 | 0.50 |
D0–63 | 4.31 | 4.17 | 0.09 | 0.16 |
Average daily gain (ADG), deads-out, kg/d 2 | ||||
D0–21 | 0.52 | 0.49 | 0.08 | 0.70 |
D22–42 | 0.98 | 1.10 | 0.07 | 0.11 |
D0–42 | 0.74 | 0.79 | 0.08 | 0.33 |
D43–63 | 1.38 | 1.15 | 0.08 | 0.03 |
D0–63 | 0.96 | 0.91 | 0.3 | 0.25 |
ADG, deads-in, kg/d 3 | ||||
D0–21 | −0.63 | −0.46 | 0.47 | 0.75 |
D22–42 | −0.94 | −0.86 | 0.79 | 0.91 |
D0–42 | −0.75 | −0.64 | 0.39 | 0.77 |
D43–63 | 1.23 | 0.95 | 0.10 | 0.03 |
D0–63 | −0.20 | −0.23 | 0.31 | 0.92 |
Gain:feed (G:F), deads-out, kg:kg | ||||
D0–21 | 0.17 | 0.17 | 0.02 | 0.90 |
D22–42 | 0.21 | 0.25 | 0.02 | 0.07 |
D0–42 | 0.19 | 0.22 | 0.01 | 0.06 |
D43–63 | 0.24 | 0.21 | 0.02 | 0.07 |
D0–63 | 0.22 | 0.22 | 0.01 | 0.98 |
G:F, deads-in, kg:kg | ||||
D0–21 | −0.20 | −0.22 | 0.17 | 0.93 |
D22–42 | −0.22 | −0.25 | 0.20 | 0.88 |
D0–42 | −0.21 | −0.23 | 0.15 | 0.90 |
D43–63 | 0.22 | 0.17 | 0.02 | 0.05 |
D0–63 | −0.05 | −0.09 | 0.10 | 0.70 |
Morbidity, % | 59.7 | 71.2 | 5.99 | 0.19 |
Mortality, % | 13.3 | 18.1 | 8.22 | 0.63 |
Chronic, % | 16.6 | 10.8 | 5.09 | 0.90 |
Medicine cost/USD per head 4 | 12.95 | 15.56 | 1.38 | 0.10 |
Item | BXA 1 | CON | SE | p-Value |
---|---|---|---|---|
Body weight (BW), kg | ||||
D0 | 238.2 | 239.2 | 8.4 | 0.95 |
D28 | 259.9 | 256.4 | 7.7 | 0.76 |
D56 | 290.3 | 281.3 | 7.9 | 0.53 |
D84 | 325.9 | 311.2 | 9.1 | 0.39 |
D112 | 362.0 | 347.5 | 9.1 | 0.29 |
D126 | 375.1 | 360.9 | 9.2 | 0.33 |
Average daily gain (ADG), kg/d | ||||
D0–28 | 0.74 | 0.62 | 0.05 | 0.06 |
D29–56 | 1.06 | 0.89 | 0.10 | 0.15 |
D0–56 | 0.90 | 0.76 | 0.06 | 0.04 |
D57–84 | 1.23 | 1.08 | 0.08 | 0.09 |
D0–84 | 1.01 | 0.87 | 0.06 | 0.05 |
D85–112 | 1.29 | 1.27 | 0.06 | 0.82 |
D0–112 | 1.08 | 0.97 | 0.06 | 0.08 |
D0–126 | 1.07 | 0.97 | 0.05 | 0.09 |
Total (receiving + grazing) ADG, kg/d 2 | 0.49 | 0.38 | 0.09 | 0.28 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rivera, J.D.; Snider, M.A.; Shelton, C.T.; Jones, R.C.; Gourley, G.; Hufstedler, G.D.; Hilscher, F.H. Evaluation of a Tannin Blend on Beef Cattle Performance and Health During the Receiving Period and Subsequent Grazing Period. Vet. Sci. 2025, 12, 833. https://doi.org/10.3390/vetsci12090833
Rivera JD, Snider MA, Shelton CT, Jones RC, Gourley G, Hufstedler GD, Hilscher FH. Evaluation of a Tannin Blend on Beef Cattle Performance and Health During the Receiving Period and Subsequent Grazing Period. Veterinary Sciences. 2025; 12(9):833. https://doi.org/10.3390/vetsci12090833
Chicago/Turabian StyleRivera, J. Daniel, Miriam A. Snider, Cody T. Shelton, R. Cyle Jones, Grayson Gourley, G. Doug Hufstedler, and F. Henry Hilscher. 2025. "Evaluation of a Tannin Blend on Beef Cattle Performance and Health During the Receiving Period and Subsequent Grazing Period" Veterinary Sciences 12, no. 9: 833. https://doi.org/10.3390/vetsci12090833
APA StyleRivera, J. D., Snider, M. A., Shelton, C. T., Jones, R. C., Gourley, G., Hufstedler, G. D., & Hilscher, F. H. (2025). Evaluation of a Tannin Blend on Beef Cattle Performance and Health During the Receiving Period and Subsequent Grazing Period. Veterinary Sciences, 12(9), 833. https://doi.org/10.3390/vetsci12090833