Protective Effect of Tyrosol on BALF Cytology and Biochemistry in Rats Administered Intratracheal Bleomycin
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animal Supply and Care Conditions and Chemicals
2.2. Animal Group
2.3. Experimental Procedures
2.4. Collection and Processing of Bronchoalveolar Lavage Fluid (BALF)
2.5. Biochemical Analysis of BALF
2.6. Statistical Analysis
3. Results
3.1. Cytological Results
3.2. Biochemical Analysis
Antibody | Manufacturer Company | Analysis Range | Analysis Sensitivity | Wavelength | Catalog No. |
---|---|---|---|---|---|
GPX | Sunred | 0.8 ng/mL→200 ng/mL | 0.723 ng/mL | 450 nm | 201-11-1705 |
SOD | Sunred | 0.5 ng/mL→100 ng/mL | 0.415 ng/mL | 450 nm | 201-11-0169 |
CAT | Sunred | 1 ng/mL–300 ng/mL | 0.866 ng/mL | 450 nm | 201-11-5106 |
MDA | Sunred | 0.3 nmol/mL→65 nmol/mL | 0.208 nmol/m | 450 nm | 201-11-0157 |
IL-1β | Sunred | 15 ng/L→3000 ng/L | 10.135 ng/L | 450 nm | 201-11-0108 |
IL-6 | Sunred | 2 pg/mL–600 pg/mL | 1.822 pg/mL | 450 nm | 201-11-0136 |
IL-13 | Sunred | 2 ng/L–360 ng/L | 1.131 ng/L | 450 nm | 201-11-0113 |
TNF α | Sunred | 8 ng/L→1000 ng/L | 5.127 ng/L | 450 nm | 201-11-0765 |
TGF β1 | Sunred | 6 pg/mL→2000 pg/mL | 5.126 pg/mL | 450 nm | 201-11-0779 |
BALF CYTOLOGY | |||||||||
---|---|---|---|---|---|---|---|---|---|
Lymphocyte | Macrophage | Neutrophil | Epithelial Cell | ||||||
Groups | n | MV. | MV. | MV. | MV. | ||||
SS + DW | 9 | 5.142 ± 1.035 | 4.787 a | 92.331 ± 1.828 | 93.251 c | 0.307 ± 0.307 | 0.000 a | 2.154 ± 1.390 | 0.653 ab |
BLM + DW | 8 | 36.673 ± 7.069 | 38.931 b | 38.016 ± 7.667 | 32.824 a | 19.412 ± 7.519 | 9.349 b | 5.898 ± 1.205 | 5.691 c |
BLM + Tyrosol20 | 8 | 30.521 ± 5.718 | 26.190 b | 49.369 ± 8.507 | 56.547 a | 16.403 ± 5.034 | 17.261 b | 3.706 ± 1.455 | 3.614 bc |
BLM + Tyrosol40 | 9 | 13.737 ± 3.162 | 12.962 a | 77.869 ± 3.405 | 77.847 b | 5.742 ± 0.782 | 5.076 a | 2.651 ± 0.337 | 3.151 ab |
BLM + Tyrosol80 | 9 | 13.997 ± 2.233 | 11.316 a | 80.802 ± 3.134 | 83.962 bc | 4.459 ± 1.639 | 2.690 a | 0.739 ± 0.330 | 0.238 a |
P | <0.001 | <0.001 | <0.001 | <0.001 |
Oxidative Stress Parameters in Bronchoalveolar Lavage Fluid (BALF) | |||||||||
---|---|---|---|---|---|---|---|---|---|
GPX | SOD | CAT | MDA | ||||||
Groups | n | MV. | MV. | MV. | MV. | ||||
SS + DW | 9 | 49.499 ± 4.000 | 50.055 | 42.472 ± 2.538 | 43.505 c | 72.238 ± 2.247 | 71.915 b | 2.097 ± 0.037 | 2.097 a |
BLM + DW | 8 | 41.593 ± 2.091 | 41.117 | 34.771 ± 0.396 | 34.723 a | 48.193 ± 2.797 | 48.658 a | 3.023 ± 0.141 | 3.074 c |
BLM + Tyrosol20 | 8 | 41.683 ± 2.468 | 42.517 | 34.733 ± 0.729 | 34.819 a | 49.992 ± 2.466 | 50.559 a | 2.684 ± 0.104 | 2.765 bc |
BLM + Tyrosol40 | 9 | 47.016 ± 2.685 | 46.867 | 37.230 ± 0.636 | 37.727 ab | 63.037 ± 0.9231 | 62.572 b | 2.404 ± 0.123 | 2.422 ab |
BLM + Tyrosol80 | 9 | 47.672 ± 1.582 | 47.254 | 40.826 ± 1.040 | 40.998 bc | 70.803 ± 1.783 | 71.025 b | 2.292 ± 0.205 | 2.209 ab |
P | 0.305 | 0.008 | 0.005 | 0.025 |
Parameters in Bronchoalveolar Lavage Fluid (BALF) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
TNF-α | TGF-β1 | IL-1β | IL-6 | IL-13 | |||||||
Groups | n | MV. | MV. | MV. | MV. | MV. | |||||
SS + DW | 9 | 243.515 ± 15.186 | 246.685 | 581.237 ± 25.448 | 561.822 a | 532.503 ± 45.884 | 575.471 | 121.809 ± 4.743 | 119.844 a | 78.972 ± 3.171 | 80.793 |
BLM + DW | 8 | 280.220 ± 11.861 | 275.881 | 692.406 ± 13.338 | 677.736 c | 691.662 ± 64.706 | 621.509 | 133.402 ± 2.976 | 134.204 b | 83.881 ± 4.566 | 90.118 |
BLM + Tyrosol20 | 8 | 278.289 ± 26.475 | 260.693 | 686.719 ± 21.722 | 694.398 bc | 698.239 ± 52.770 | 690.566 | 128.266 ± 4.624 | 133.772 ab | 84.019 ± 4.041 | 81.890 |
BLM + Tyrosol40 | 9 | 272.805 ± 17.416 | 262.905 | 685.498 ± 24.981 | 700.919 bc | 619.974 ± 44.436 | 598.490 | 127.202 ± 1.235 | 128.482 ab | 82.198 ± 4.967 | 82.439 |
BLM + Tyrosol80 | 9 | 256.653 ± 18.227 | 280.009 | 648.214 ± 27.971 | 643.686 abc | 544.780 ± 40.739 | 560.125 | 120.168 ± 2.096 | 120.546 a | 81.912 ± 4.582 | 79.916 |
P | 0.504 | 0.008 | 0.182 | 0.073 | 0.334 |
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pesci, A.; Ricchiuti, E.; Ruggiero, R.; De Micheli, A. Bronchoalveolar lavage in idiopathic pulmonary fibrosis: What does it tell us? Respir. Med. 2010, 104, S70–S73. [Google Scholar] [CrossRef]
- Costabel, U.; Guzman, J. Bronchoalveolar lavage in interstitial lung disease. Curr. Opin. Pulm. Med. 2001, 7, 255–261. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Yan, J.; Tong, L.; Liu, S.; Zhang, Y. The role of exosomes from BALF in lung disease. J. Cell. Physiol. 2022, 237, 161–168. [Google Scholar] [CrossRef]
- Adamson, I.Y. Pulmonary toxicity of bleomycin. Environ. Health Perspec. 1976, 16, 119–125. [Google Scholar] [CrossRef]
- Mouratis, M.A.; Aidinis, V. Modeling pulmonary fibrosis with bleomycin. Curr. Opin. Pulm. Med. 2011, 17, 355–361. [Google Scholar] [CrossRef] [PubMed]
- Hay, J.; Shahzeidi, S.; Laurent, G. Mechanisms of bleomycin-induced lung damage. Arch. Toxicol. 1991, 65, 81–94. [Google Scholar] [CrossRef]
- Ishida, Y.; Kuninaka, Y.; Mukaida, N.; Kondo, T. Immune Mechanisms of Pulmonary Fibrosis with Bleomycin. Int. J. Mol. Sci. 2023, 24, 3149. [Google Scholar] [CrossRef] [PubMed]
- Tukhovskaya, E.A.; Palikova, Y.A.; Severyukhina, M.S.; Ismailova, A.M.; Palikov, V.A.; Slashcheva, G.A.; Borozdina, N.A.; Mikhaylov, E.S.; Kravchenko, I.N.; Kazakov, V.A.; et al. Comparison of the Results of Modeling Pulmonary Fibrosis in Sprague Dawley Rats by Intratracheal Administration of Bleomycin in the Form of Sulfate and Chloride at a Dose of 3 mg/kg. Pharmaceuticals 2024, 17, 1360. [Google Scholar] [CrossRef]
- Güvenç, M.; Cellat, M.; Özkan, H.; Tekeli, İ.O.; Uyar, A.; Gökçek, İ.; Yakan, A. Protective Effects of Tyrosol Against DSS-Induced Ulcerative Colitis in Rats. Inflammation 2019, 42, 1680–1691. [Google Scholar] [CrossRef]
- Wang, W.; Xia, Y.; Yang, B.; Su, X.; Chen, J.; Li, W.; Bulletin, P. Protective effects of tyrosol against LPS-induced acute lung injury via inhibiting NF-κB and AP-1 activation and activating the HO-1/Nrf2 pathways. Biol. Pharm. Bull. 2017, 40, 583–593. [Google Scholar] [CrossRef]
- Bahri, S.; Mlika, M.; Nahdi, A.; Ben Ali, R.; Jameleddine, S. Thymus vulgaris inhibit lung fibrosis progression and oxidative stress induced by bleomycin in Wistar rats. Nutr. Cancer 2022, 74, 1420–1430. [Google Scholar] [CrossRef]
- Kim, S.N.; Lee, J.; Yang, H.S.; Cho, J.W.; Kwon, S.; Kim, Y.B.; Lee, K. Dose-response effects of bleomycin on inflammation and pulmonary fibrosis in mice. Toxicol. Res. 2010, 26, 217–222. [Google Scholar] [CrossRef]
- Auñon-Calles, D.; Canut, L.; Visioli, F. Toxicological evaluation of pure hydroxytyrosol. Food Chem. Toxicol. 2013, 55, 498–504. [Google Scholar] [CrossRef]
- Turck, D.; Bresson, J.L.; Burlingame, B.; Dean, T.; Fairweather-Tait, S.; Heinonen, M.; Hirsch-Ernst, K.I.; Mangelsdorf, I.; McArdle, H.J.; Naska, A.; et al. Safety of hydroxytyrosol as a novel food pursuant to Regulation (EC) No 258/97. EFSA J. 2017, 15, e04728. [Google Scholar] [CrossRef]
- Poitout-Belissent, F.; Grant, S.N.; Tepper, J.S. Aspiration and inspiration: Using bronchoalveolar lavage for toxicity assessment. Toxicol. Pathol. 2021, 49, 386–396. [Google Scholar] [CrossRef] [PubMed]
- Akgül, A. Tıbbi Araştırmalarda İstatistiksel Analiz Teknikleri, 3rd ed.; Emek Ofset Ltd. Şti.: Ankara, Türkiye, 2005. [Google Scholar]
- Ashcroft, T.; Simpson, J.M.; Timbrell, V. Simple method of estimating severity of pulmonary fibrozis on a numerical scale. J. Clin. Pathol. 1988, 41, 467–470. [Google Scholar] [CrossRef] [PubMed]
- Giri, S.N.; Hyde, D.M.; Nakashima, J.M. Analysis of bronchoalveolar lavage fluid from bleomycin-induced pulmonary fibrosis in hamsters. Toxicol. Pathol. 1986, 14, 149–157. [Google Scholar] [CrossRef]
- King, T.E.; Costabel, U.; Cordier, J.F.; Pico, G.A.; Bois, R.M.; Lynch, J.P. Idiopathic pulmonary fibrosis: Diagnosis and treatment. Am. J. Respir. Crit. Care Med. 2000, 161, 646–664. [Google Scholar] [CrossRef] [PubMed]
- Grudzinski, K.M.; Fenske, S.; Peltekian, A.; Markov, N.S.; Pawlowski, A.; Kang, M.; Gao, C.A. Neutrophil percentages in bronchoalveolar lavage fluid: Implications for diagnosing bacterial pneumonia in patients with immunocompromise and neutropenia. medRxiv 2024. [CrossRef]
- Romero, F.; Shah, D.; Duong, M.; Penn, R.B.; Fessler, M.B.; Madenspacher, J.; Stafstrom, W.; Kavuru, M.; Lu, B.; Kallen, C.B.; et al. A pneumocyte–macrophage paracrine lipid axis drives the lung toward fibrosis. Am. J. Respir. Cell Mol. Biol. 2015, 53, 74–86. [Google Scholar] [CrossRef]
- Yasuda, K.; Sato, A.; Nishimura, K.; Chida, K.; Hayakawa, H. Phospholipid analysis of alveolar macrophages and bronchoalveolar lavage fluid following bleomycin administration to rabbits. Lung 1994, 172, 91–102. [Google Scholar] [CrossRef]
- Azuma, A.; Li, Y.J.; Abe, S.; Usuki, J.; Matsuda, K.; Henmi, S.; Miyauchi, Y.; Ueda, K.; Izawa, A.; Sone, S.; et al. Interferon-beta inhibits bleomycin-induced lung fibrosis by decreasing transforming growth factor-beta and thrombospondin. Am. J. Respir. Cell Mol. Biol. 2005, 32, 93–98. [Google Scholar] [CrossRef]
- Gungor, H.; Ekici, M.; Onder Karayigit, M.; Turgut, N.H.; Kara, H.; Arslanbas, E. Zingerone ameliorates oxidative stress and inflammation in bleomycin-induced pulmonary fibrosis: Modulation of the expression of TGF-β1 and iNOS. Naunyn-Schmiedeberg’s Arch. Pharmacol. 2020, 393, 1659–1670. [Google Scholar] [CrossRef]
- Şener, G.; Topaloğlu, N.; Şehirli, A.Ö.; Ercan, F.; Gedik, N. Resveratrol alleviates bleomycin-induced lung injury in rats. Pulm. Pharmacol. Ther. 2007, 20, 642–649. [Google Scholar] [CrossRef]
- Malayerl, A.; Hemmati, A.A.; Arzi, A.; Rezaie, A.; Ghafourıan, B.M.; Khalili, H.R. A comparison of the effects of quercetin hydrate with those of vitamin E on the levels of IL-13, PDGF, TNF-α, and INF-γ in bleomycin-induced pulmonary fibrosis in rats. Jundishapur J. Nat. Pharm. Prod. 2016, 11, e27705. [Google Scholar]
- Dong, X.; Li, X.; Li, M.; Chen, M.; Fan, Q.; Wei, W. Inhibitory effects of thalidomide on bleomycin-induced pulmonary fibrosis in rats via regulation of thioredoxin reductase and inflammations. Am. J. Transl. Res. 2017, 9, 4390–4401. [Google Scholar]
- Kim, Y.Y.; Lee, S.; Kim, M.J.; Kang, B.C.; Dhakal, H.; Choi, Y.A.; Kim, S.H. Tyrosol attenuates lipopolysaccharide-induced acute lung injury by inhibiting the inflammatory response and maintaining the alveolar capillary barrier. Food Chem. Toxicol. 2017, 109, 526–533. [Google Scholar] [CrossRef] [PubMed]
- Gabbia, D. Beneficial Effects of Tyrosol and Oleocanthal from Extra Virgin Olive Oil on Liver Health: Insights into Their Mechanisms of Action. Biology 2024, 13, 760. [Google Scholar] [CrossRef]
- Kutlu, T.; Özkan, H.; Güvenç, M. Tyrosol retards induction of fibrosis in rats. J. Food Biochem. 2021, 45, e13965. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, T.; Narazaki, M.; Kishimoto, T. IL-6 in inflammation, immunity, and disease. Cold Spring Harb. Perspect. Biol. 2014, 6, a016295. [Google Scholar] [CrossRef] [PubMed]
- Kliment, C.R.; Oury, T.D. Oxidative stress, extracellular matrix targets, and idiopathic pulmonary fibrosis. Free Radic. Biol. Med. 2010, 49, 707–717. [Google Scholar] [CrossRef]
- Kara, H.; Karatas, F.; Tug, T.; Canatan, H.; Karaoglu, A. Protective effect of octreotide on intra-tracheal bleomycin-induced oxidative damage in rats. Exp. Toxicol. Pathol. 2010, 62, 235–241. [Google Scholar] [CrossRef]
- Venkatesan, N.; Punithavathi, V.; Chandrakasan, G. Curcumin protects bleomycin-induced lung injury in rats. Life Sci. 1997, 61, A51–A58. [Google Scholar] [CrossRef]
- Tavares, L.A.; Rezende, A.A.; Santos, J.L.; Estevam, C.S.; Silva, A.M.; Schneider, J.K.; Albuquerqu, R.L. Cymbopogon winterianus essential oil attenuates bleomycin-induced pulmonary fibrosis in a murine model. Pharmaceutics 2021, 13, 679. [Google Scholar] [CrossRef] [PubMed]
- Arslan, S.O.; Zerin, M.; Vural, H.; Coskun, A. The effect of melatonin on bleomycin-induced pulmonary fibrosis in rats. J. Pineal Res. 2002, 32, 21–25. [Google Scholar] [CrossRef] [PubMed]
- Chandramohan, R.; Pari, L.; Rathinam, A.; Sheikh, B.A. Tyrosol, a phenolic compound, ameliorates hyperglycemia by regulating key enzymes of carbohydrate metabolism in streptozotocin induced diabetic rats. Chem. Biol. Interact. 2015, 229, 44–54. [Google Scholar] [CrossRef] [PubMed]
- Roche, M.; Dufour, C.; Loonis, M.; Reist, M.; Carrupt, P.A.; Dangles, O. Olive phenols efficiently inhibit the oxidation of serum albumin-bound linoleic acid and butyrylcholine esterase. Biochim. Biophys. Acta (BBA)-Gen. Subj. 2009, 1790, 240–248. [Google Scholar] [CrossRef]
- Sarna, L.K.; Sid, V.; Wang, P.; Siow, Y.L.; House, J.D.; Karmin, O. Tyrosol attenuates high fat diet-induced hepatic oxidative stress: Potential involvement of cystathionine β-synthase and cystathionine γ-lyase. Lipids 2016, 51, 583–590. [Google Scholar] [CrossRef]
- Wang, P.; Zhu, Q.; Wu, N.; Siow, Y.; Aukema, H.; Karmin, O. Tyrosol Attenuates Ischemia–Reperfusion-Induced Kidney Injury via Inhibition of Inducible Nitric Oxide Synthase. J. Agric. Food Chem. 2013, 61, 3669–3675. [Google Scholar] [CrossRef]
- Ramos, A.C.; Melo, M.C.F.D.; Lima, A.K.M.D.; Souza, T.G.; Ferreira, A.K.A.; Macêdo, T.S.D.; Godoy, G.P. Biosafety and Protective Effects of Tyrosol from Olea europaea L. in Gingivitis: In Vitro and in Vivo Studies. Pesqui. Bras. Odontopediatria Clín. Integr. 2025, 25, e230185. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ekinci, E.; Karabulut, B.; Incili, C.A.; Cankaya, E.; Seker, I.; Timurkaan, N. Protective Effect of Tyrosol on BALF Cytology and Biochemistry in Rats Administered Intratracheal Bleomycin. Vet. Sci. 2025, 12, 760. https://doi.org/10.3390/vetsci12080760
Ekinci E, Karabulut B, Incili CA, Cankaya E, Seker I, Timurkaan N. Protective Effect of Tyrosol on BALF Cytology and Biochemistry in Rats Administered Intratracheal Bleomycin. Veterinary Sciences. 2025; 12(8):760. https://doi.org/10.3390/vetsci12080760
Chicago/Turabian StyleEkinci, Elif, Burak Karabulut, Canan Akdeniz Incili, Eren Cankaya, Ibrahim Seker, and Necati Timurkaan. 2025. "Protective Effect of Tyrosol on BALF Cytology and Biochemistry in Rats Administered Intratracheal Bleomycin" Veterinary Sciences 12, no. 8: 760. https://doi.org/10.3390/vetsci12080760
APA StyleEkinci, E., Karabulut, B., Incili, C. A., Cankaya, E., Seker, I., & Timurkaan, N. (2025). Protective Effect of Tyrosol on BALF Cytology and Biochemistry in Rats Administered Intratracheal Bleomycin. Veterinary Sciences, 12(8), 760. https://doi.org/10.3390/vetsci12080760