Development and Application of Fluorescent and Lateral Flow Dipstick Recombinase-Aided Amplification for Rapid Detection of Glaesserella parasuis
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Bacterial Strains and Clinical Samples
2.2. Bacterial Isolation and DNA Extraction
2.3. Primer and Probe Design
2.4. Construction of Plasmid Standard
2.5. Development and Optimization for RAA Assays
2.6. Sensitivity and Specificity Test
2.7. Sample Treatment Optimization
2.8. Evaluation of the Clinical Samples
3. Results
3.1. Development and Stability of Fluo-RAA and LFD-RAA Assays
3.2. Sensitivity Test for Fluo-RAA and LFD-RAA Assays
3.3. Specificity Test for Fluo-RAA and LFD-RAA Assays
3.4. Simplified Procedure and Clinical Evaluation for Fluo-RAA and LFD-RAA Assays
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Oliveira, S.; Pijoan, C. Haemophilus parasuis: New trends on diagnosis, epidemiology and control. Vet. Microbiol. 2004, 99, 1–12. [Google Scholar] [CrossRef]
- Álvarez-Estrada, Á.; Martínez-Martínez, S.; Martín, C.G.; García-Iglesias, M.J.; Pérez-Martínez, C.; Yubero-Delgado, S.; Guizzo, J.A.; Frandoloso, R.; Rodríguez-Ferri, E.-F. Immunogenic characterization of vaccines based on Haemophilus parasuis Nagasaki strain, OmpP2, OmpP5 and OmpP15, in colostrum-deprived pigs experimentally challenged with the same strain. Res. Vet. Sci. 2018, 119, 292–301. [Google Scholar] [CrossRef]
- Brockmeier, S.L.; Register, K.B.; Kuehn, J.S.; Nicholson, T.L.; Loving, C.L.; Bayles, D.O.; Shore, S.M.; Phillips, G.J.; Bengoechea, J.A. Virulence and draft genome sequence overview of multiple strains of the swine pathogen Haemophilus parasuis. PLoS ONE 2014, 9, e103787. [Google Scholar] [CrossRef] [PubMed]
- Howell, K.J.; Weinert, L.A.; Peters, S.E.; Wang, J.; Hernandez-Garcia, J.; Chaudhuri, R.R.; Luan, S.-L.; Angen, Ø.; Aragon, V.; Williamson, S.M.; et al. “Pathotyping” multiplex PCR assay for Haemophilus parasuis: A tool for prediction of virulence. J. Clin. Microbiol. 2017, 55, 2617–2628. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Wang, S.; Li, C.; Wang, C.; Liu, Y.; Wang, G.; He, X.; Hu, L.; Liu, Y.; Cui, M.; et al. Secondary Haemophilus parasuis infection enhances highly pathogenic porcine reproductive and respiratory syndrome virus (HP-PRRSV) infection-mediated inflammatory responses. Vet. Microbiol. 2017, 204, 35–42. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Li, W.; Wang, Y.; Gu, C.; Liu, X.; Charreyre, C.; Fan, S.; He, Q. Coinfection with Haemophilus parasuis serovar 4 increases the virulence of porcine circovirus type 2 in piglets. Virol. J. 2017, 14, 227. [Google Scholar] [CrossRef]
- Mathieu-Denoncourt, A.; Letendre, C.; Auger, J.P.; Segura, M.; Aragon, V.; Lacouture, S.; Gottschalk, M. Limited interactions between Streptococcus Suis and Haemophilus parasuis in in vitro co-infection studies. Pathogens 2018, 7, 7. [Google Scholar] [CrossRef]
- Xue, Q.; Zhao, Z.; Liu, H.; Chen, K.; Xue, Y.; Wang, L. First comparison of adjuvant for trivalent inactivated Haemophilus parasuis serovars 4, 5 and 12 vaccines against Glässer’s disease. Vet. Immunol. Immunopathol. 2015, 168, 153–158. [Google Scholar] [CrossRef]
- Guarneri, F.; Romeo, C.; Scali, F.; Zoppi, S.; Formenti, N.; Maisano, A.M.; Catania, S.; Gottschalk, M.; Alborali, G.L. Serotype diversity and antimicrobial susceptibility profiles of Actinobacillus pleuropneumoniae isolated in Italian pig farms from 2015 to 2022. Vet. Res. 2024, 55, 48. [Google Scholar] [CrossRef]
- Yao, X.; Song, Q.; Zhu, W.; Wei, J.; Shao, D.; Liu, K.; Li, Z.; Qiu, Y.; Ma, Z.; Xia, L.; et al. Characterization of small plasmids carrying florfenicol resistance gene floR in Actninobacillus pleuroneumoniae and Pasterella multocida isolates from swine in China. Front. Vet. Sci. 2023, 10, 1084491. [Google Scholar] [CrossRef]
- Vötsch, D.; Willenborg, M.; Baumgärtner, W.; Rohde, M.; Valentin-Weigand, P. Bordetella bronchiseptica promotes adherence, colonization, and cytotoxicity of Streptococcus suis in a porcine precision-cut lung slice model. Virulence 2021, 12, 84–95. [Google Scholar] [CrossRef]
- Bossé, J.T.; Li, Y.; Fernandez Crespo, R.; Angen, Ø.; Holden, M.T.G.; Weinert, L.A.; Maskell, D.J.; Tucker, A.W.; Wren, B.W.; Rycroft, A.N.; et al. Draft genome sequences of the type strains of Actinobacillus indolicus (46K2C) and Actinobacillus porcinus (NM319), two NAD-dependent bacterial species found in the repiratory tract of pigs. Microbiol. Resour. Announc. 2020, 9, e00716-19. [Google Scholar] [CrossRef] [PubMed]
- Galofré-Milà, N.; Correa-Fiz, F.; Lacouture, S.; Gottschalk, M.; Strutzberg-Minder, K.; Bensaid, A.; Pina-Pedrero, S.; Aragon, V. A robust PCR for the differentiation of potential virulent strains of Haemophilus parasuis. BMC Vet. Res. 2017, 13, 124. [Google Scholar] [CrossRef] [PubMed]
- Turni, C.; Pyke, M.; Blackall, P.J. Validation of a real-time PCR for Haemophilus parasuis. J. Appl. Microbiol. 2010, 108, 1323–1331. [Google Scholar] [CrossRef] [PubMed]
- Pilchová, V.; Seinige, D.; Hennig-Pauka, I.; Büttner, K.; Abdulmawjood, A.; Kehrenberg, C. Development and validation of a loop-mediated isothermal amplication (LAMP) assay for rapid detection of Glaesserella (Haemophilus) parasuis. Microorganisms 2020, 9, 41. [Google Scholar] [CrossRef]
- Yan, C.; Zhou, Y.; Du, S.; Du, B.; Zhao, H.; Feng, Y.; Xue, G.; Cui, J.; Gan, L.; Feng, J.; et al. Recombinase-Aided Amplification assay for rapid detection of hypervirulent Klebsiella pneumoniae (hvKp) and characterization of the hvKp pathotype. Microbiol. Spectr. 2023, 11, e0398422. [Google Scholar] [CrossRef]
- Wang, K.; Huang, R.; Zhang, L.; Liu, D.; Diao, Y. Recombinase-Aided Amplification combined with lateral Flow (LFD-RAA) assay for rapid AAV genome detection. ACS Omega 2022, 7, 47832–47839. [Google Scholar] [CrossRef]
- Wang, Z.H.; Li, P.; Lin, X.; Jia, H.; Jiang, Y.T.; Wang, X.J.; Hou, S.H. Application of portable real-time recombinase-aided amplication (RT-RAA) assay in the clinical diagnosis of ASFV and prospective DIVA diagnosis. Appl. Microbiol. Biotechnol. 2021, 105, 3249–3264. [Google Scholar] [CrossRef]
- Tan, M.; Liao, C.; Liang, L.; Yi, X.; Zhou, Z.; Wei, G. Recent advances in recombinase polymerase amplification: Principle, advantages, disadvantages and applications. Front. Cell Infect. Microbiol. 2022, 12, 1019071. [Google Scholar] [CrossRef]
- Che, Y.; Wu, R.; Li, H.; Wang, L.; Wu, X.; Chen, Q.; Chen, R.; Zhou, L. Molecular characterization of the integrative and conjugative elements harbouring multidrug resistance genes in Glaesserella parasuis. Vet. Microbiol. 2024, 291, 110014. [Google Scholar] [CrossRef]
- Che, Y.; Wu, R.; Li, H.; Wang, L.; Wu, X.; Chen, Q.; Chen, R.; Zhou, L. Characterization of the plasmids harbouring the florfenicol resistance gene floR in Glaesserella parasuis and Actinobacillus indolicus. J. Glob. Antimicrob. Resist. 2023, 35, 163–171. [Google Scholar] [CrossRef]
- Che, Y.; Wu, R.; Li, H.; Wang, L.; Wu, X.; Chen, Q.; Chen, R.; Zhou, L. Characterization of two novel colistin resistance gene mcr-1 variants originated from Moraxella spp. Front. Microbiol. 2023, 16, 1153740. [Google Scholar] [CrossRef]
- Thompson, J.D.; Gibson, T.J.; Higgins, D.G. Multiple sequence alignment using ClustalW and ClustalX. Curr. Protoc. Bioinform. 2002, 2, 2–3. [Google Scholar] [CrossRef] [PubMed]
- Livstone, M.S.; van Noort, D.; Landweber, L.F. Molecular computing revisited: A Moore’s Law? Trends Biotechnol. 2003, 21, 98–101. [Google Scholar] [CrossRef] [PubMed]
- Johnson, J.S.; Spakowicz, D.J.; Hong, B.Y.; Petersen, L.M.; Demkowicz, P.; Chen, L.; Leopold, S.R.; Hanson, B.M.; Agresta, H.O.; Gerstein, M.; et al. Evaluation of 16S rRNA gene sequencing for species and strain-level microbiome analysis. Nat. Commun. 2019, 10, 5029. [Google Scholar] [CrossRef]
- Brockmeier, S.L. Prior infection with Bordetella bronchiseptica increases nasal colonization by Haemophilus parasuis in swine. Vet. Microbiol. 2004, 99, 75–78. [Google Scholar] [CrossRef]
- Hričínová, M.; Holoda, E.; Mudroňová, D.; Ondrašovičová, S. Multiplex PCR assay for detection of Actinobacillus pleuropneumoniae, Pasteurella multocida and Haemophilus parasuis in lungs of pigs from a slaughterhouse. Folia Microbiol. 2010, 55, 635–640. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, Z.; Wang, C.; Zhai, X.; Wang, W.; Chen, X.; Zhang, T. Detection method for reverse transcription recombinase-aided amplification of avian influenza virus subtypes H5, H7, and H9. BMC Vet. Res. 2024, 20, 203. [Google Scholar] [CrossRef]
- Alifano, P.; Palumbo, C.; Pasanisi, D.; Talà, A. Rifampicin-resistance, rpoB polymorphism and RNA polymerasegenetic engineering. J. Biotech. 2015, 202, 60–77. [Google Scholar] [CrossRef]
- Zhang, X.; Ge, X.; Shen, F.; Qiao, J.; Zhang, Y.; Li, H. Diagnositic efficiency of RPA/RAA integrated CRISPR-Cas technique for COVID-19: A systematic review and meta-analysis. PLoS ONE 2022, 17, e0276728. [Google Scholar] [CrossRef]
- Wang, Z.H.; Zhang, W.; Zhang, X.Z.; Yao, X.R.; Huang, W.; Jia, H.; Liu, X.L.; Hou, S.H.; Wang, X.J. Development of a real-time recombinase-aided amplification (RT-RAA) molecular diagnosis assay for sensitivity and rapid detection of Toxoplasma gondii. Vet. Parasitol. 2021, 298, 109489. [Google Scholar] [CrossRef]
- Yin, S.; Liu, Y.; Yang, X.; Lubanga, N.; Tai, P.; Xiong, M.; Fan, B.; Yang, X.; Nie, Z.; Zhang, Q.; et al. Rapid visual detection of Helicobacter pylori and vacA subtypes by Dual-target RAA-LFD assay. Clin. Chim. Acta 2024, 564, 119927. [Google Scholar] [CrossRef]
- Zhao, J.; Li, Y.; Xue, Q.; Zhu, Z.; Zou, M.; Fang, F. A novel rapid visual detection assay for Toxoplasma gondii combining recombinase-aided amplification and lateral flow dipstick coupled with CRISPR-Cas 13a fluorescence (RAA-Cas13a-LFD). Parasite 2022, 29, 21. [Google Scholar] [CrossRef]
Number of Samples | Nasal Swabs | Bacterial Strains | |
---|---|---|---|
Number of samples | 121 | 48 | |
Positive number by Fluo-RAA | DNA extraction kit | 26 | 12 |
Boiling treatment | 26 | 12 | |
Positive number by LFD-RAA | DNA extraction kit | 24 | 12 |
Boiling treatment | 24 | 12 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Che, Y.; Wang, Y.; Wu, R.; Wang, L.; Wu, X.; Chen, Q.; Chen, R.; Zhou, L. Development and Application of Fluorescent and Lateral Flow Dipstick Recombinase-Aided Amplification for Rapid Detection of Glaesserella parasuis. Vet. Sci. 2025, 12, 750. https://doi.org/10.3390/vetsci12080750
Che Y, Wang Y, Wu R, Wang L, Wu X, Chen Q, Chen R, Zhou L. Development and Application of Fluorescent and Lateral Flow Dipstick Recombinase-Aided Amplification for Rapid Detection of Glaesserella parasuis. Veterinary Sciences. 2025; 12(8):750. https://doi.org/10.3390/vetsci12080750
Chicago/Turabian StyleChe, Yongliang, Yao Wang, Renjie Wu, Longbai Wang, Xuemin Wu, Qiuyong Chen, Rujing Chen, and Lunjiang Zhou. 2025. "Development and Application of Fluorescent and Lateral Flow Dipstick Recombinase-Aided Amplification for Rapid Detection of Glaesserella parasuis" Veterinary Sciences 12, no. 8: 750. https://doi.org/10.3390/vetsci12080750
APA StyleChe, Y., Wang, Y., Wu, R., Wang, L., Wu, X., Chen, Q., Chen, R., & Zhou, L. (2025). Development and Application of Fluorescent and Lateral Flow Dipstick Recombinase-Aided Amplification for Rapid Detection of Glaesserella parasuis. Veterinary Sciences, 12(8), 750. https://doi.org/10.3390/vetsci12080750