A Review of Probiotic Supplementation and Its Impact on the Health and Well-Being of Domestic Cats
Simple Summary
Abstract
1. Introduction
2. Microbiota of Felines
3. Measurements of the Well-Being of Cats
4. Health Benefits of Probiotic Supplementation in Domestic Cats
5. Health Benefits of Probiotic Supplementation in Cats with Health Issues
6. Mechanisms of Action of Probiotics
7. Limitations and Future Perspectives
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
USD | United States Dollar |
SCFAs | Short-chain fatty acids |
B. | Bacillus |
L. | Lactobacillus |
Lpb. | Lactiplantibacillus |
Lcb. | Lacticaseibacillus |
Str. | Streptococcus |
E. | Enterococcus |
Es. | Escherichia |
Bif. | Bifidobacterium |
S. | Saccharomyces |
P. | Pediococcus |
R. | Ruminococcus |
C. | Clostridium |
A. | Acidaminococcus |
Ba. | Bacteroides |
IBD | Inflammatory bowel disease |
ALT | Alanine aminotransferase |
N:L | Neutrophil-to-lymphocyte |
WBC | White blood cells |
CFU | Colony-forming unit |
GOS | Galacto-oligosaccharides |
AAGSs | Antibiotic-associated gastrointestinal signs |
FOS | Fructo-oligosaccharides |
LAB | Lactic acid bacteria |
BCS | Body condition score |
Ig | Immunoglobulin |
DNC | Dietary nutritional combination |
IgG | Immunoglobulin G |
IgA | Immunoglobulin A |
IgM | Immunoglobulin M |
Control group | CON |
GI | Gastrointestinal |
TNF-α | Tumor necrosis factor-alpha |
IFN-γ | Interferon gamma |
IL-2 | Interleukin-2 |
BLFP | B. licheniformis-fermented products |
FMT | Fecal microbiota transplantation |
HDPs | Host defense peptides |
References
- López Martí, Á.; Montero Palma, C.; López Martí, H.; Ranchal Sánchez, A. Efficacy of Probiotic, Prebiotic, Synbiotic and Postbiotic Supplementation on Gastrointestinal Health in Cats: Systematic Review and Meta-Analysis. J. Small Anim. Pract. 2025, 66, 219–235. [Google Scholar] [CrossRef] [PubMed]
- Estepa-Becerra, J.A.; Cajiao-Pachón, M.N.; Monsalve-Barrero, S. Canine and Feline Population Management Within the One Welfare Framework: A Retrospective Look Bogotá 2004 to 2021. Rev. MVZ Córdoba 2023, 28, 27. [Google Scholar] [CrossRef]
- Peña-Corona, S.I.; Gomez-Vazquez, J.P.; López-Flores, E.A.; Vargas Estrada, D.; Arvizu-Tovar, L.O.; Pérez-Rivero, J.J.; Juárez Rodríguez, I.; Sierra Resendiz, A.; Soberanis-Ramos, O. Use of an Extrapolation Method to Estimate the Population of Cats and Dogs Living at Homes in Mexico in 2022. Vet. México OA 2022, 9, 5. [Google Scholar] [CrossRef]
- Biezus, G.; Machado, G.; Ferian, P.E.; da Costa, U.M.; da Silva Pereira, L.H.H.; Withoeft, J.A.; Nunes, I.A.C.; Muller, T.R.; de Cristo, T.G.; Casagrande, R.A. Prevalence of and Factors Associated with Feline Leukemia Virus (FeLV) and Feline Immunodeficiency Virus (FIV) in Cats of the State of Santa Catarina, Brazil. Comp. Immunol. Microbiol. Infect. Dis. 2019, 63, 17–21. [Google Scholar] [CrossRef]
- Gizzarelli, M.; Calabro, S.; Vastolo, A.; Molinaro, G.; Balestrino, I.; Cutrignelli, M.I. Clinical Findings in Healthy Dogs Fed with Diets Characterized by Different Carbohydrate Sources. Front. Vet. Sci. 2021, 8, 667318. [Google Scholar] [CrossRef]
- Lee, T.-W.; Chao, T.-Y.; Chang, H.-W.; Cheng, Y.-H.; Wu, C.-H.; Chang, Y.-C. The Effects of Bacillus licheniformis–Fermented Products on the Microbiota and Clinical Presentation of Cats with Chronic Diarrhea. Animals 2022, 12, 2187. [Google Scholar] [CrossRef]
- Grzeskowiak, Ł.; Endo, A.; Beasley, S.; Salminen, S. Microbiota and Probiotics in Canine and Feline Welfare. Anaerobe 2015, 34, 14–23. [Google Scholar] [CrossRef] [PubMed]
- Gore, A.M.; Satyaraj, E.; Labuda, J.; Engler, R.; Sun, P.; Kerr, W.; Conboy-Schmidt, L. Supplementation of Diets with Bovine Colostrum Influences Immune and Gut Function in Kittens. Front. Vet. Sci. 2021, 8, 675712. [Google Scholar] [CrossRef] [PubMed]
- Heinrich, N.A.; McKeever, P.J.; Eisenschenk, M.C. Adverse Events in 50 Cats with Allergic Dermatitis Receiving Ciclosporin. Vet. Dermatol. 2011, 22, 511–520. [Google Scholar] [CrossRef]
- Hartmann, K.; Möstl, K.; Lloret, A.; Thiry, E.; Addie, D.D.; Belák, S.; Boucraut-Baralon, C.; Egberink, H.; Frymus, T.; Hofmann-Lehmann, R. Vaccination of Immunocompromised Cats. Viruses 2022, 14, 923. [Google Scholar] [CrossRef] [PubMed]
- de Oliveira Lemos, F.; Almosny, N.P.; Soares, A.M.B.; Alencar, N.X. Cryptosporidium Species Screening Using Kinyoun Technique in Domestic Cats with Diarrhea. J. Feline Med. Surg. 2012, 14, 113–117. [Google Scholar] [CrossRef] [PubMed]
- Tourret, J.; Willing, B.P.; Dion, S.; MacPherson, J.; Denamur, E.; Finlay, B.B. Immunosuppressive Treatment Alters Secretion of Ileal Antimicrobial Peptides and Gut Microbiota, and Favors Subsequent Colonization by Uropathogenic Escherichia coli. Transplantation 2017, 101, 74–82. [Google Scholar] [CrossRef] [PubMed]
- Gaillard, V.; Chastant, S.; England, G.; Forman, O.; German, A.J.; Suchodolski, J.S.; Villaverde, C.; Chavatte-Palmer, P.; Péron, F. Environmental Risk Factors in Puppies and Kittens for Developing Chronic Disorders in Adulthood: A Call for Research on Developmental Programming. Front. Vet. Sci. 2022, 9, 944821. [Google Scholar] [CrossRef]
- Guardabassi, L.; Prescott, J.F. Antimicrobial stewardship in small animal veterinary practice: From theory to practice. Vet. Clin. N. Am. Small Anim. Pract. 2015, 45, 361–376. [Google Scholar] [CrossRef]
- Suchodolski, J.S. Companion animals symposium: Microbes and gastrointestinal health of dogs and cats. J. Anim. Sci. 2011, 89, 1520–1530. [Google Scholar] [CrossRef] [PubMed]
- Schmitz, S.S. Value of Probiotics in Canine and Feline Gastroenterology. Vet. Clin. N. Am. Small Anim. Pract. 2021, 51, 171–217. [Google Scholar] [CrossRef]
- Dong, H.; Wang, W.; Chen, Q.; Chang, X.; Wang, L.; Chen, S.; Chen, L.; Wang, R.; Ge, S.; Xiong, W. Effects of Lactoferrin and Lactobacillus Supplementation on Immune Function, Oxidative Stress, and Gut Microbiota in Kittens. Animals 2024, 14, 1949. [Google Scholar] [CrossRef]
- Morelli, L.; Capurso, L. FAO/WHO guidelines on probiotics: 10 years later. J. Clin. Gastroenterol. 2012, 46 (Suppl. S1), S1–S2. [Google Scholar] [CrossRef]
- Sivamaruthi, B.S.; Kesika, P.; Chaiyasut, C. Influence of Probiotic Supplementation on Health Status of the Dogs: A Review. Appl. Sci. 2021, 11, 11384. [Google Scholar] [CrossRef]
- Lee, D.; Goh, T.W.; Kang, M.G.; Choi, H.J.; Yeo, S.Y.; Yang, J.; Hu, C.S.; Kim, Y.Y.; Kim, Y. Perspectives and Advances in Probiotics and the Gut Microbiome in Companion Animals. J. Anim. Sci. Technol. 2022, 64, 197–217. [Google Scholar] [CrossRef]
- Shleeva, M.O.; Kondratieva, D.A.; Kaprelyants, A.S. Bacillus licheniformis: A Producer of Antimicrobial Substances, Including Antimycobacterials, Feasible for Medical Applications. Pharmaceutics 2023, 15, 1893. [Google Scholar] [CrossRef]
- Abriouel, H.; Franz, C.M.; Ben Omar, N.; Galvez, A. Diversity and Applications of Bacillus Bacteriocins. FEMS Microbiol. Rev. 2011, 35, 201–232. [Google Scholar] [CrossRef]
- Basi-Chipalu, S.; Sthapit, P.; Dhital, S. A Review on Characterization, Applications and Structure–Activity Relationships of Bacillus Species-Produced Bacteriocins. Drug Discov. Ther. 2022, 16, 55–62. [Google Scholar] [CrossRef]
- Urdaci, M.C.; Bressollier, P.; Pinchuk, I. Bacillus clausii Probiotic Strains: Antimicrobial and Immunomodulatory Activities. J. Clin. Gastroenterol. 2004, 38 (Suppl. S6), S86–S90. [Google Scholar] [CrossRef] [PubMed]
- Sivamaruthi, B.S.; Kesika, P.; Daungchana, N.; Sisubalan, N.; Chaiyasut, C. Composition, Bioactivities, Microbiome, Safety Concerns, and Impact of Essential Oils on the Health Status of Domestic Animals. Appl. Sci. 2024, 14, 6882. [Google Scholar] [CrossRef]
- Binda, C.; Lopetuso, L.R.; Rizzatti, G.; Gibiino, G.; Cennamo, V.; Gasbarrini, A. Actinobacteria: A Relevant Minority for the Maintenance of Gut Homeostasis. Dig. Liver Dis. 2018, 50, 421–428. [Google Scholar] [CrossRef]
- Hiippala, K.; Jouhten, H.; Ronkainen, A.; Hartikainen, A.; Kainulainen, V.; Jalanka, J.; Satokari, R. The Potential of Gut Commensals in Reinforcing Intestinal Barrier Function and Alleviating Inflammation. Nutrients 2018, 10, 988. [Google Scholar] [CrossRef]
- Honneffer, J.B.; Minamoto, Y.; Suchodolski, J.S. Microbiota Alterations in Acute and Chronic Gastrointestinal Inflammation of Cats and Dogs. World J. Gastroenterol. 2014, 20, 16489–16497. [Google Scholar] [CrossRef]
- Mondo, E.; Marliani, G.; Accorsi, P.A.; Cocchi, M.; di Leone, A. Role of Gut Microbiota in Dog and Cat’s Health and Diseases. Open Vet. J. 2019, 9, 253–258. [Google Scholar] [CrossRef] [PubMed]
- Sebastián-Domingo, J.-J.; Sánchez-Sánchez, C. De la Flora Intestinal al Microbioma. Rev. Esp. Enferm. Dig. 2018, 110, 51–56. [Google Scholar] [CrossRef] [PubMed]
- Suchodolski, J.S. Intestinal Microbiota of Dogs and Cats: A Bigger World than We Thought. Vet. Clin. N. Am. Small Anim. Pract. 2011, 41, 261–272. [Google Scholar] [CrossRef]
- Zeng, H.; Umar, S.; Rust, B.; Lazarova, D.; Bordonaro, M. Secondary Bile Acids and Short Chain Fatty Acids in the Colon: A Focus on Colonic Microbiome, Cell Proliferation, Inflammation, and Cancer. Int. J. Mol. Sci. 2019, 20, 1214. [Google Scholar] [CrossRef]
- Ziese, A.-L.; Suchodolski, J.S. Impact of Changes in Gastrointestinal Microbiota in Canine and Feline Digestive Diseases. Vet. Clin. N. Am. Small Anim. Pract. 2021, 51, 155–169. [Google Scholar] [CrossRef]
- Canani, R.B.; Costanzo, M.D.; Leone, L.; Pedata, M.; Meli, R.; Calignano, A. Potential Beneficial Effects of Butyrate in Intestinal and Extraintestinal Diseases. World J. Gastroenterol. 2011, 17, 1519–1528. [Google Scholar] [CrossRef]
- Lubbs, D.; Vester, B.; Fastinger, N.; Swanson, K. Dietary Protein Concentration Affects Intestinal Microbiota of Adult Cats: A Study Using DGGE and qPCR to Evaluate Differences in Microbial Populations in the Feline Gastrointestinal Tract. J. Anim. Physiol. Anim. Nutr. 2009, 93, 113–121. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, D.H.; Nguyen, T.S.; Le, T.H.H.; Nguyen, Q.U.; Le Bui, N.; Chu, D.T.; Van Vinh, H. Evaluation of the Safety and Immune Stimulatory Effects of Multi-Strain Lab Mix Product on Laboratory Animals. Heliyon 2024, 10, e24691. [Google Scholar] [CrossRef]
- Lennon, S.; Lackie, T.; Miltko, A.; Kearns, Z.C.; Paquette, M.R.; Bloomer, R.J.; Wang, A.; van der Merwe, M. Safety and Efficacy of a Probiotic Cocktail Containing P. acidilactici and L. plantarum for Gastrointestinal Discomfort in Endurance Runners: Randomized Double-Blinded Crossover Clinical Trial. Appl. Physiol. Nutr. Metab. 2024, 49, 890–903. [Google Scholar] [CrossRef] [PubMed]
- Ritchie, L.E.; Steiner, J.M.; Suchodolski, J.S. Assessment of Microbial Diversity Along the Feline Intestinal Tract Using 16S rRNA Gene Analysis. FEMS Microbiol. Ecol. 2008, 66, 590–598. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Di, D.; Sun, Q.; Yao, X.; Wei, J.; Li, B.; Liu, K.; Shao, D.; Qiu, Y.; Liu, H.; et al. Comparative Analyses of the Gut Microbiota in Growing Ragdoll Cats and Felinae Cats. Animals 2022, 12, 2467. [Google Scholar] [CrossRef]
- Suchodolski, J.S.; Foster, M.L.; Sohail, M.U.; Leutenegger, C.; Queen, E.V.; Steiner, J.M.; Marks, S.L. The Fecal Microbiome in Cats with Diarrhea. PLoS ONE 2015, 10, e0127378. [Google Scholar] [CrossRef]
- Marsilio, S.; Pilla, R.; Sarawichitr, B.; Chow, B.; Hill, S.L.; Ackermann, M.R.; Estep, J.S.; Lidbury, J.A.; Steiner, J.M.; Suchodolski, J.S. Characterization of the Fecal Microbiome in Cats with Inflammatory Bowel Disease or Alimentary Small Cell Lymphoma. Sci. Rep. 2019, 9, 19208. [Google Scholar] [CrossRef]
- Zhang, H.; Ren, Y.; Wei, S.; Jin, H.; Wang, Y.; Jin, M. Dynamic development of gut microbiota and metabolism during and after weaning of kittens. Anim. Microbiome 2025, 7, 10. [Google Scholar] [CrossRef]
- De Filippo, C.; Cavalieri, D.; Di Paola, M.; Ramazzotti, M.; Poullet, J.B.; Massart, S.; Collini, S.; Pieraccini, G.; Lionetti, P. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc. Natl. Acad. Sci. USA 2010, 107, 14691–14696. [Google Scholar] [CrossRef]
- Ivarsson, E.; Roos, S.; Liu, H.Y.; Lindberg, J.E. Fermentable non-starch polysaccharides increases the abundance of Bacteroides–Prevotella–Porphyromonas in ileal microbial community of growing pigs. Animal 2014, 8, 1777–1787. [Google Scholar] [CrossRef] [PubMed]
- Deusch, O.; O’Flynn, C.; Colyer, A.; Swanson, K.S.; Allaway, D.; Morris, P. A longitudinal study of the feline faecal microbiome identifies changes into early adulthood irrespective of sexual development. PLoS ONE 2015, 10, e0144881. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Duan, Y.; Cai, F.; Cao, D.; Wang, L.; Qiao, Z.; Hong, Q.; Li, N.; Zheng, Y.; Su, M.; et al. Next-generation probiotics: Microflora intervention to human diseases. Biomed Res. Int. 2022, 2022, 5633403. [Google Scholar] [CrossRef]
- Ellis, J.J. Beyond “Doing Better”: Ordinal Rating Scales to Monitor Behavioural Indicators of Well-Being in Cats. Animals 2022, 12, 2897. [Google Scholar] [CrossRef] [PubMed]
- Lamon, T.K.; Lidbury, J.; Guadiano, P., 2nd; Colombo, E.; Budke, C. Assessing chronic stress in cats: Measuring hair cortisol using an ELISA. J. Vet. Diagn. Investig. 2025, 37, 217–222. [Google Scholar] [CrossRef]
- Doit, H.; Dean, R.S.; Duz, M.; Brennan, M.L. A systematic review of the quality of life assessment tools for cats in the published literature. Vet. J. 2021, 272, 105658. [Google Scholar] [CrossRef]
- Pavlova, E.V.; Alekseeva, G.S.; Erofeeva, M.N.; Vasilieva, N.A.; Tchabovsky, A.V.; Naidenko, S.V. The method matters: The effect of handling time on cortisol level and blood parameters in wild cats. J. Exp. Zool. 2018, 329, 112–119. [Google Scholar] [CrossRef]
- Pavlova, E.V.; Ivanov, E.A.; Kirluk, V.E.; Rozhnov, V.V.; Naidenko, S.V. Assessment of physiological status of felids as an indicator of their welfare in the wild. Stud. Ecol. Bioeth. 2015, 13, 107–122. [Google Scholar] [CrossRef]
- Yur, F.; Çamaş, H. Investigation of values of some clinically important blood parameters in Van cats. Turk. J. Vet. Res. 2018, 2, 1–4. [Google Scholar]
- Henning, J.; Nielsen, T.; Fernandez, E.; Hazel, S. Cats just want to have fun: Associations between play and welfare in domestic cats. Anim. Welf. 2023, 32, e9. [Google Scholar] [CrossRef] [PubMed]
- Lamon, T.K.; Slater, M.R.; Moberly, H.K.; Budke, C.M. Welfare and quality of life assessments for shelter cats: A scoping review. Appl. Anim. Behav. Sci. 2023, 258, 105797. [Google Scholar] [CrossRef]
- Cannas, S.; Alessi, S.; Scarpazza, F.; Palestrini, C. Assessment of cats’ behavior during a cat show. J. Vet. Behav. 2023, 62, 53–63. [Google Scholar] [CrossRef]
- Mariti, C.; Guerrini, F.; Vallini, V.; Bowen, J.; Bowen, J.; Fatjó, J.; Diverio, S.; Sighieri, C.; Gazzano, A. The perception of cat stress by Italian owners. J. Vet. Behav. 2017, 20, 74–81. [Google Scholar] [CrossRef]
- Jewell, D.; Jackson, M.; Hall, J.; Badri, D. Feeding microbiome-targeting ingredients increases fecal plant-origin antioxidants and anti-inflammatory compounds, and decreases branched-chained amino acids in cats. Curr. Dev. Nutr. 2020, 4, 690. [Google Scholar] [CrossRef]
- Bugrov, N.; Rudenko, P.; Lutsay, V.; Gurina, R.; Zharov, A.; Khairova, N.; Molchanova, M.; Krotova, E.; Shopinskaya, M.; Bolshakova, M.; et al. Fecal microbiota analysis in cats with intestinal dysbiosis of varying severity. Pathogens 2022, 11, 234. [Google Scholar] [CrossRef]
- Marshall-Jones, Z.V.; Baillon, M.-L.A.; Croft, J.M.; Butterwick, R.F. Effects of Lactobacillus acidophilus DSM13241 as a Probiotic in Healthy Adult Cats. Am. J. Vet. Res. 2006, 67, 1005–1012. [Google Scholar] [CrossRef]
- Garcia-Mazcorro, J.F.; Lanerie, D.J.; Dowd, S.E.; Paddock, C.G.; Grützner, N.; Steiner, J.M.; Ivanek, R.; Suchodolski, J.S. Effect of a Multi-Species Synbiotic Formulation on Fecal Bacterial Microbiota of Healthy Cats and Dogs as Evaluated by Pyrosequencing. FEMS Microbiol. Ecol. 2011, 78, 542–554. [Google Scholar] [CrossRef] [PubMed]
- Biagi, G.; Cipollini, I.; Bonaldo, A.; Grandi, M.; Pompei, A.; Stefanelli, C.; Zaghini, G. Effect of Feeding a Selected Combination of Galacto-Oligosaccharides and a Strain of Bifidobacterium pseudocatenulatum on the Intestinal Microbiota of Cats. Am. J. Vet. Res. 2013, 74, 90–95. [Google Scholar] [CrossRef] [PubMed]
- Stokes, J.E.; Price, J.M.; Whittemore, J.C. Randomized, Controlled, Crossover Trial of Prevention of Clindamycin-Induced Gastrointestinal Signs Using a Synbiotic in Healthy Research Cats. J. Vet. Intern. Med. 2017, 31, 1406–1413. [Google Scholar] [CrossRef]
- Fusi, E.; Rizzi, R.; Polli, M.; Cannas, S.; Giardini, A.; Bruni, N.; Marelli, S.P. Effects of Lactobacillus acidophilus D2/CSL (CECT 4529) Supplementation on Healthy Cat Performance. Vet. Rec. Open 2019, 6, e000368. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, B.M.; Ribeiro, L.B.; Olivo, P.M.; Osmari, M.P.; Vasconcellos, R.S.; Bankuti, F.I.; Pozza, M.S.S. Microencapsulation of Probiotic Strains by Lyophilization Is Efficient in Maintaining the Viability of Microorganisms and Modulation of Fecal Microbiota in Cats. Int. J. Microbiol. 2020, 2020, 1293481. [Google Scholar] [CrossRef]
- Kabakçı, R.; Çufaoğlu, G.; Şen, G. Effect of Kefir Consumption on Intestinal Microbiota and Some Blood Parameters in Angora Cats. Turk. J. Vet. Anim. Sci. 2022, 46, 376–384. [Google Scholar] [CrossRef]
- Belà, B.; Di Simone, D.; Pignataro, G.; Fusaro, I.; Gramenzi, A. Effects of Lactobacillus reuteri NBF 2 DSM 32264 Consumption on Body Weight, Body Condition Score, Fecal Parameters, and Intestinal Microbiota of Healthy Persian Cats. Vet. Sci. 2024, 11, 61. [Google Scholar] [CrossRef]
- Liang, S.; Gu, X.; Sun, J.; Wang, X.; Tao, H.; Wang, Z.; Zhong, Y.; Wang, J.; Han, B. Application of Lactobacillus plantarum and Pediococcus lactis on Lipid Metabolism, Anti-Inflammatory, and Fecal Microbiota in Cats. Microorganisms 2024, 12, 2446. [Google Scholar] [CrossRef]
- Zhang, M.; Cui, Y.; Mei, X.; Li, L.; Wang, H.; Li, Y.; Wu, Y. Effect of Dietary Composite Probiotic Supplementation on the Microbiota of Different Oral Sites in Cats. Vet. Sci. 2024, 11, 351. [Google Scholar] [CrossRef]
- de Oliveira Matheus, L.F.; Risolia, L.W.; Ernandes, M.C.; de Souza, J.M.; Oba, P.M.; Vendramini, T.H.A.; Pedrinelli, V.; Henríquez, L.B.F.; de Oliveira Massoco, C.; Pontieri, C.F.F.; et al. Effects of Saccharomyces cerevisiae Cell Wall Addition on Feed Digestibility, Fecal Fermentation, Microbiota, and Immunological Parameters in Adult Cats. BMC Vet. Res. 2021, 17, 351. [Google Scholar] [CrossRef]
- Lonigro, N.; Martello, E.; Bruni, N.; Bigliati, M.; Costale, A.; Lippi, I.; Meineri, G.; Perondi, F. Impact of Saccharomyces cerevisiae DSM 34246 (Canobios-BL) var. boulardii Supplementation on Nutritional Status and Fecal Parameters in Healthy Breeding Adult Cats. Vet. Sci. 2025, 12, 44. [Google Scholar] [CrossRef]
- Veir, J.K.; Knorr, R.; Cavadini, C.; Sherrill, S.J.; Benyacoub, J.; Satyaraj, E.; Lappin, M.R. Effect of Supplementation with Enterococcus faecium (SF68) on Immune Functions in Cats. Vet. Ther. 2007, 8, 229–238. [Google Scholar]
- Wang, F.; Mei, X.; Wang, Q.; Zhao, P.; Zhou, Y.; Tang, L.; Wang, B.; Xu, S.; Li, X.; Jin, Q.; et al. Compound Bacillus Alleviates Diarrhea by Regulating Gut Microbes, Metabolites, and Inflammatory Responses in Pet Cats. Anim. Microbiome 2023, 5, 49. [Google Scholar] [CrossRef] [PubMed]
- Han, B.; Liang, S.; Sun, J.; Tao, H.; Wang, Z.; Liu, B.; Wang, X.; Liu, J.; Wang, J. The Effect of Lactobacillus plantarum on the Fecal Microbiota, Short Chain Fatty Acids, Odorous Substances, and Blood Biochemical Indices of Cats. Microorganisms 2024, 12, 91. [Google Scholar] [CrossRef]
- Ruggiero, A.; Meineri, G.; Vastolo, A.; Adami, R.; Lonigro, N.; Cutrignelli, M.I. Preliminary Evaluation of the Effect of Dietary Supplementation of Bacillus clausii for Adult Healthy Cats. Ital. J. Anim. Sci. 2025, 24, 568–575. [Google Scholar] [CrossRef]
- Onuma, M.; Ataka, K.; Murakami, A. Evaluating the safety and functionality of a novel compound containing prebiotics, probiotics, and postbiotics in healthy cats and dogs. Open Vet. J. 2025, 15, 1969–1981. [Google Scholar] [CrossRef]
- Sun, J.; Gu, X.; Wang, J.; Wang, X.; Wang, Z.; Tao, H.; Wang, J.; Han, B. Yogurt in Combination with Inactivated Pediococcus lactis Modulated Feline Lipid Metabolism, Anti-Inflammation and Fecal Microbiota. Animals 2025, 15, 1531. [Google Scholar] [CrossRef]
- Zhu, S.; Guo, Z.; Liu, L.; Gao, Y.; Bai, L.; Chen, Y.; Zha, M. Complex Probiotics Relieve Constipation Through Regulation of the Intestinal Microbiota in Kittens. Microorganisms 2025, 13, 563. [Google Scholar] [CrossRef]
- Zhu, S.; Zha, M.; Xia, Y. Complex Probiotics Suppress Inflammation by Regulating Intestinal Metabolites in Kittens. Animals 2025, 15, 272. [Google Scholar] [CrossRef]
- Bybee, S.N.; Scorza, A.V.; Lappin, M.R. Effect of the Probiotic Enterococcus faecium SF68 on Presence of Diarrhea in Cats and Dogs Housed in an Animal Shelter. J. Vet. Intern. Med. 2011, 25, 856–860. [Google Scholar] [CrossRef] [PubMed]
- Kathrani, A.; Larsen, J.A.; Kass, P.H.; Fascetti, A.J. Effect of Short-Term Probiotic Enterococcus faecium SF68 Dietary Supplementation in Overweight and Obese Cats without Comorbidities. Vet. Rec. Open 2016, 3, e000164. [Google Scholar] [CrossRef] [PubMed]
- Remaks, J.D.; Vientos-Plotts, A.I.; Rindt, H.; McAdams, Z.; Ericsson, A.C.; Reinero, C.R. Multistrain Probiotics Fail to Modulate the Asthmatic Phenotype, Respiratory Microbiota, and Immune Responses in Cats. Am. J. Vet. Res. 2024, 85, ajvr.23.12.0271. [Google Scholar] [CrossRef]
- Ryu, M.-O.; Lee, S.-Y.; Kim, S.-H.; Youn, H.-Y.; Seo, K.-W. Fecal Microbiota Transplantation via Commercial Oral Capsules for Chronic Enteropathies in Dogs and Cats. J. Vet. Clin. 2024, 41, 150–156. [Google Scholar] [CrossRef]
- Beasley, J.M.; Dorjsuren, D.; Jain, S.; Rath, M.; Scheufen Tieghi, R.; Tropsha, A.; Simeonov, A.; Zakharov, A.V.; Muratov, E. Breaking the Phalanx: Overcoming Bacterial Drug Resistance with Quorum Sensing Inhibitors that Enhance Therapeutic Activity of Antibiotics. bioRxiv 2025, 2025.01.17.633658. [Google Scholar] [CrossRef]
- Thangaleela, S.; Sivamaruthi, B.S.; Kesika, P.; Chaiyasut, C. Role of Probiotics and Diet in the Management of Neurological Diseases and Mood States: A Review. Microorganisms 2022, 10, 2268. [Google Scholar] [CrossRef]
- Latif, A.; Shehzad, A.; Niazi, S.; Zahid, A.; Ashraf, W.; Iqbal, M.W.; Rehman, A.; Riaz, T.; Aadil, R.M.; Khan, I.M.; et al. Probiotics: Mechanism of Action, Health Benefits and Their Application in Food Industries. Front. Microbiol. 2023, 14, 1216674. [Google Scholar] [CrossRef] [PubMed]
- Yan, F.; Polk, D.B. Probiotics and Probiotic-Derived Functional Factors—Mechanistic Insights into Applications for Intestinal Homeostasis. Front. Immunol. 2020, 11, 1428. [Google Scholar] [CrossRef]
- Schmitz, S.; Suchodolski, J. Understanding the Canine Intestinal Microbiota and Its Modification by Pro-, Pre- and Synbiotics—What Is the Evidence? Vet. Med. Sci. 2016, 2, 71–94. [Google Scholar] [CrossRef] [PubMed]
- Simon, E.; Calinoiu, L.F.; Mitrea, L.; Vodnar, D.C. Probiotics, Prebiotics, and Synbiotics: Implications and Beneficial Effects Against Irritable Bowel Syndrome. Nutrients 2021, 13, 2112. [Google Scholar] [CrossRef]
- Sanders, M.E.; Merenstein, D.J.; Reid, G.; Gibson, G.R.; Rastall, R.A. Probiotics and Prebiotics in Intestinal Health and Disease: From Biology to the Clinic. Nat. Rev. Gastroenterol. Hepatol. 2019, 16, 605–616. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Liu, C.; Jiang, Q.; Yin, Y. Butyrate in Energy Metabolism: There Is Still More to Learn. Trends Endocrinol. Metab. 2021, 32, 159–169. [Google Scholar] [CrossRef]
- Liu, H.; Wang, J.; He, T.; Becker, S.; Zhang, G.; Li, D.; Ma, X. Butyrate: A Double-Edged Sword for Health? Adv. Nutr. 2018, 9, 21–29. [Google Scholar] [CrossRef]
- Puértolas-Balint, F.; Schroeder, B.O. Does an Apple a Day Also Keep the Microbes Away? The Interplay between Diet, Microbiota, and Host Defense Peptides at the Intestinal Mucosal Barrier. Front. Immunol. 2020, 11, 1164. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Zhang, W.; Wang, S.; Liu, H.; Zhang, D.; Wang, Y.; Ji, H. Swine-Derived Probiotic Lactobacillus plantarum Modulates Porcine Intestinal Endogenous Host Defense Peptide Synthesis through TLR2/MAPK/AP-1 Signaling Pathway. Front. Immunol. 2019, 10, 2691. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Ma, N.; Johnston, L.J.; Ma, X. Dietary Nutrients Mediate Intestinal Host Defense Peptide Expression. Adv. Nutr. 2020, 11, 92–102. [Google Scholar] [CrossRef]
- Pahumunto, N.; Duangnumsawang, Y.; Teanpaisan, R. Effects of Potential Probiotics on the Expression of Cytokines and Human Beta-Defensins in Human Gingival Epithelial Cells and In Vivo Efficacy in a Dog Model. Arch. Oral Biol. 2022, 142, 105513. [Google Scholar] [CrossRef]
- Magana, M.; Pushpanathan, M.; Santos, A.L.; Leanse, L.; Fernandez, M.; Ioannidis, A.; Giulianotti, M.A.; Apidianakis, Y.; Bradfute, S.; Ferguson, A.L.; et al. The Value of Antimicrobial Peptides in the Age of Resistance. Lancet Infect. Dis. 2020, 20, e216–e230. [Google Scholar] [CrossRef]
- Zasloff, M. Antimicrobial Peptides of Multicellular Organisms. Nature 2002, 415, 389–395. [Google Scholar] [CrossRef] [PubMed]
- De Souza Junior, S.M.; de Godoy, M.R.C. The Effects of Daily Supplementation of Selected Probiotic and Postbiotic on the Microbiome of Adult Cats. J. Anim. Sci. 2023, 101 (Suppl. S3), 109. [Google Scholar] [CrossRef]
- De Souza, S.M.; He, F.; de Godoy, M.R.; Davenport, G.M. Effects of Probiotic and Heat-Killed Probiotic Supplementation on Systemic Biomarkers of Oxidative Stress and Inflammation and Fermentative end Products of Adult Cats. J. Anim. Sci. 2022, 100 (Suppl. S3), 54. [Google Scholar] [CrossRef]
- Wang, W.; Dong, H.; Chang, X.; Chen, Q.; Wang, L.; Chen, S.; Chen, L.; Wang, R.; Ge, S.; Wang, P.; et al. Bifidobacterium lactis and Lactobacillus plantarum Enhance Immune Function and Antioxidant Capacity in Cats through Modulation of the Gut Microbiota. Antioxidants 2024, 13, 764. [Google Scholar] [CrossRef]
Probiotics | Cats’ Details | Dose and Duration | Observed Outcomes | References |
---|---|---|---|---|
L. acidophilus DSM13241 | Sex: Not mentioned. Age: 4–5.5 years. Breed: Domestic shorthair cats. | 2 × 108 CFU/day for 4.5 weeks. | Altered the balance of gut microflora in healthy cats and provided systemic immunomodulatory benefits. | [59] |
Proviable®-DC (Nutramax Laboratories Veterinary Sciences, Inc., Lancaster, SC, USA) [E. faecium (NCIMB 30183), Str. salivarius ssp. thermophilus (NCIMB 30189), Bif. longum (NCIMB 30179), L. acidophilus (NCIMB 30184), L. rhamnosus (NCIMB 30188), L. plantarum (NCIMB 30187), L. delbrueckii ssp. bulgaricus (NCIMB 30186)] | Sex: Not mentioned. Age: 0.7–6.7 years. Breed: Domestic shorthairs, domestic long hair, domestic medium hair, Persian, and mixed cats. | 5 × 109 CFU per capsule; one capsule per day for 21 days. | Increased the probiotic bacteria in feces without changing dominant bacterial phyla or causing adverse effects. | [60] |
1% Galacto-oligosaccharides and Bif. pseudocatenulatum (BP-B82) | Sex: Not mentioned. Age: 1–6 years. Breed: European domestic shorthair cats. | 1010 CFU/day for 15 days. | Improved the intestinal microbiota. | [61] |
Proviable®-DC synbiotic capsule | Sex: Castrated males (n = 9), spayed females (n = 7). Age: 7–10 years. Breed: Domestic shorthair cats. | 75 mg clindamycin with feed per day; after 1 h, 2 capsules of 5 × 109 CFU for 3 weeks. | Administering a synbiotic after clindamycin reduced hyporexia and vomiting, with benefits lasting at least six weeks, though it did not decrease antibiotic-associated diarrhea. | [62] |
L. acidophilus D2/CSL (CECT 4529) | Sex: Male (n = 3), female (n = 7). Age: >9 years. Breed: Maine Coon cats. | 5 × 109 CFU/kg feed per day for five weeks. | Improved fecal quality and gut health in healthy adult cats. | [63] |
L. acidophilus, L. casei, L. lactis, Bif. bifidum, E. faecium, and S. cerevisiae | Sex: Male (n = 9), female (n = 9). Age: 3 ± 0.84 years. Breed: Not mentioned. | 109 CFU of each strain per gram. 1 or 2 g/cat per day for 20 days. | Improved the fecal microbiota of cats by increasing the lactic acid bacteria counts. | [64] |
Commercial kefir | Sex: Male (n = 5), female (n = 2). Age: 3.3 ± 2.5 years. Breed: Angora cats. | 30 mL/kg of body weight for 14 days. | Enhanced intestinal microbiota diversity in Angora cats. | [65] |
L. reuteri NBF 2 DSM 32264 | Sex: Male (n = 4), female (n = 8). Age: >1 year. Breed: Persian cats. | 5 × 109 CFU/kg of feed for 35 days. | Improved fecal quality in Persian cats. Increased Lactobacilli concentration and reduced coliforms. | [66] |
L. plantarum L-27-2 or P. lactis L-14-1 | Sex: Male (n = 4), female (n = 8). Age: 2–5 years. Breed: British shorthair cats. | 1 × 109 CFU of each strain/kg of body weight/day for 28 days. | Improved gut health and obesity management. | [67] |
Bif. animalis subsp. lactis HN019, L. acidophilus NCFM, and L. casei LC-11 | Sex: Male (n = 6), female (n = 6). Age: 2–4 years. Breed: Chinese domestic cats, British shorthair cats. | 1 × 1010 CFU/kg feed per day for 42 days. | Improved the feline oral microbiota by promoting beneficial bacteria and inhibiting pathogens. | [68] |
S. cerevisiae (YAM) | Sex: Not mentioned. Age: 9.44 ± 5.35 years. Breed: Not mentioned. | 0.3 or 0.6% YAM in controlled diet. 3 times per day for 37 days. | The additive acts as a prebiotic by altering fecal fermentation and microbiota, without affecting the digestion of protein or dry matter. | [69] |
S. cerevisiae DSM 34246 (Canobios-BL) var. boulardii | Sex: Male (n = 4), female (n = 10). Age: 3–6 years. Breed: Chartreux cats. | 5 × 109 CFU/kg feed per day for 35 days. | Supports gut health and maintains physiological well-being in breeding cats. | [70] |
E. faecium strain SF68 (NCIMB10415) | Sex: Not mentioned. Age: 6 weeks. Breed: Not mentioned. | 5 × 108 CFU/day. | Increased the CD4+ lymphocyte percentages. | [71] |
B. amyloliquefaciens SC06 (BaSC06) and B. subtilis 10 (B10) | Sex: Not mentioned. Age: 1–2 years. Breed: Ragdoll cats. | 3 × 109 CFU/kg for 28 days. | Increased the levels of eugenitol and methyl sulfate in the serum. Increased the total SCFAs, acetic acid, and butyric acid in the stool. Lowered IL-1β and IL-6 levels in the serum. | [72] |
L. plantarum | Sex: Female (n = 12) Age: about 2 years. Breed: Not mentioned. | 1 × 109 CFU/kg feed per day for 28 days. | Enhanced gut health and immune function in cats, potentially linked to lipid metabolism. | [73] |
B. clausii | Sex: Neutered males (n = 14). Age: 6.2 ± 2.8 years. Breed: Chartreux cats. | 1 × 106 CFU/day for 42 days. | Improved gut health and overall well-being in cats. | [74] |
Mixture of inactivated Bifidobacteria and lactic acid bacteria | Sex: Male (n = 3) Age: Average 5.33 years. Breed: Domestic shorthair cats. | 4.5 g per day. | Improved gut health and microbiota. | [75] |
Inactivated P. lactis | Sex: Male (n = 9); female (n = 9). Age: Approximately 3 years. Breed: Ragdoll, Russian Blue, and British shorthair intact cats. | Yogurt + 2% postbiotics, 50 g per day for 21 days. | Improved gut health and immunity. | [76] |
Bif. animalis subsp. lactis BX-259, Lpb. plantarum LP-301, and Lcb. rhamnosus LR-78 (1:1:1 ratio) | Sex: Male (n = 8); female (n = 16). Age: 3–4 months. Breed: Not mentioned. | 1.5 × 109 CFU/day for 14 days. | Improved intestinal microbiota and constipation and promoted intestinal health. Regulated the intestinal metabolites and reduced intestinal inflammation. | [77,78] |
Probiotics | Cat’s Details | Dose and Duration | Health Issue | Observed Outcomes | References |
---|---|---|---|---|---|
B. licheniformis-fermented products (BLFPs) | Sex: Castrated males (7); spayed females (5). Age: 3–15 years. Breed: Domestic shorthair, American shorthair, and Scottish fold. | 1.1 mg/kg BLFP in a capsule. One capsule per day for 7 days. | Chronic diarrhea | BLFPs reduced Clostridium perfringens levels and improved gastrointestinal symptoms and fecal microbiota. | [6] |
E. faecium SF68 | Sex: Male (n = 57); female (n = 73); not recorded (n = 87). Age: Not mentioned. Breed: Stray (n = 143); feral (n = 74). | 2.1 × 109 CFU/g. 1 g per day for 4 weeks, followed by a 1-week washout period, then supplemented with placebo, and vice versa. | Diarrhea | Cats supplemented with SF68 experienced fewer episodes of prolonged diarrhea compared with the control group and showed improved gastrointestinal health. | [79] |
E. faecium SF68 | Sex: Probiotic group: castrated males (n = 6), female (n = 4). Control group: castrated males (n = 2), female (n = 5). Age: Probiotic group (mean of 8.5 years). Control group (mean of 9.8 years). Breed: Not mentioned. | 5 × 108 CFU/g in 10 g of feed/day for 8 weeks. | Overweight and obesity | No major effect on appetite, weight, body fat, or metabolism in healthy, overweight cats. | [80] |
Multi-strain probiotics (Visbiome® Vet capsules) | Sex: Castrated males (n = 10), spayed females (n = 3). Age: 2–13 years. Breed: Domestic shorthairs, mixed breed, Bobtail, and Siamese. | 112.5 × 109 cells per 0.45 g per capsule per day for 2 weeks. | Asthma | No significant improvement in respiratory symptoms, immune response, airway eosinophilia, and microbial composition. | [81] |
Oral capsule fecal microbiota transplant (Kittybiome®) | Sex: Castrated male (n = 1), spayed females (n = 2). Age: 3–6 years. Breed: Ragdoll, Sphinx, and Exotic shorthair cat. | One month. | Chronic enteropathy | Demonstrated potential as a treatment for chronic enteropathies in cats that do not respond to standard therapies. | [82] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sivamaruthi, B.S.; Kesika, P.; Chaiyasut, C.; Fukngoen, P.; Sisubalan, N. A Review of Probiotic Supplementation and Its Impact on the Health and Well-Being of Domestic Cats. Vet. Sci. 2025, 12, 703. https://doi.org/10.3390/vetsci12080703
Sivamaruthi BS, Kesika P, Chaiyasut C, Fukngoen P, Sisubalan N. A Review of Probiotic Supplementation and Its Impact on the Health and Well-Being of Domestic Cats. Veterinary Sciences. 2025; 12(8):703. https://doi.org/10.3390/vetsci12080703
Chicago/Turabian StyleSivamaruthi, Bhagavathi Sundaram, Periyanaina Kesika, Chaiyavat Chaiyasut, Pranom Fukngoen, and Natarajan Sisubalan. 2025. "A Review of Probiotic Supplementation and Its Impact on the Health and Well-Being of Domestic Cats" Veterinary Sciences 12, no. 8: 703. https://doi.org/10.3390/vetsci12080703
APA StyleSivamaruthi, B. S., Kesika, P., Chaiyasut, C., Fukngoen, P., & Sisubalan, N. (2025). A Review of Probiotic Supplementation and Its Impact on the Health and Well-Being of Domestic Cats. Veterinary Sciences, 12(8), 703. https://doi.org/10.3390/vetsci12080703