Isolation and Pathogenicity of an Emerging Highly Virulent CSFV 2.1c Strain in South China
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Clinical Samples and Virus Isolation
2.2. Immunofluorescence Assay (IFA)
2.3. Primer Design and Cloning and Sequencing of Whole-Genome Sequences
2.4. Phylogenetic Analysis and Sequence Alignment
2.5. Animal Experiments with the GD-2024 Strain
2.6. Histopathology
2.7. Statistical Analysis
3. Results
3.1. Identification of a New CSFV Strain
3.2. Analysis of Full-Length Genomic Sequences
3.3. Sequence Analysis of UTRs
3.4. Amino Acid Analysis of E2
3.5. Pathogenicity Analysis of GD-2024
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Edwards, S.; Fukusho, A.; Lefèvre, P.C.; Lipowski, A.; Pejsak, Z.; Roehe, P.; Westergaard, J. Classical swine fever: The global situation. Vet. Microbiol. 2000, 73, 103–119. [Google Scholar] [CrossRef] [PubMed]
- Simmonds, P.; Becher, P.; Bukh, J.; Gould, E.A.; Meyers, G.; Monath, T.; Muerhoff, S.; Pletnev, A.; Rico-Hesse, R.; Smith, D.B.; et al. ICTV Virus Taxonomy Profile: Flaviviridae. J. Gen. Virol. 2017, 98, 2–3. [Google Scholar] [CrossRef] [PubMed]
- Thiel, H.J.; Stark, R.; Weiland, E.; Rümenapf, T.; Meyers, G. Hog cholera virus: Molecular composition of virions from a pestivirus. J. Virol. 1991, 65, 4705–4712. [Google Scholar] [CrossRef] [PubMed]
- Rümenapf, T.; Unger, G.; Strauss, J.H.; Thiel, H.J. Processing of the envelope glycoproteins of pestiviruses. J. Virol. 1993, 67, 3288–3294. [Google Scholar] [CrossRef]
- Blome, S.; Staubach, C.; Henke, J.; Carlson, J.; Beer, M. Classical Swine Fever-An Updated Review. Viruses 2017, 9, 86. [Google Scholar] [CrossRef]
- Xing, C.; Lu, Z.; Jiang, J.; Huang, L.; Xu, J.; He, D.; Wei, Z.; Huang, H.; Zhang, H.; Murong, C.; et al. Sub-subgenotype 2.1c isolates of classical swine fever virus are dominant in Guangdong province of China, 2018. Infect. Genet. Evol. J. Mol. Epidemiol. Evol. Genet. Infect. Dis. 2019, 68, 212–217. [Google Scholar] [CrossRef]
- Liu, C.; Li, M.; Yin, X.; Zhang, H.; Xiang, L.; Zhai, H.; Wang, C.; Kan, Y.; Yao, L.; Tian, Z.; et al. Complete Genome Sequences of Three Sub-genotype 2.1b Isolates of Classical Swine Fever Virus in China. J. Vet. Res. 2018, 62, 7–15. [Google Scholar] [CrossRef]
- Choe, S.; Le, V.P.; Shin, J.; Kim, J.H.; Kim, K.S.; Song, S.; Cha, R.M.; Park, G.N.; Nguyen, T.L.; Hyun, B.H.; et al. Pathogenicity and Genetic Characterization of Vietnamese Classical Swine Fever Virus: 2014–2018. Pathogens 2020, 9, 169. [Google Scholar] [CrossRef]
- Lin, M.; Trottier, E.; Mallory, M. Enzyme-linked immunosorbent assay based on a chimeric antigen bearing antigenic regions of structural proteins Erns and E2 for serodiagnosis of classical swine fever virus infection. Clin. Diagn. Lab. Immunol. 2005, 12, 877–881. [Google Scholar] [CrossRef]
- Jemersić, L.; Greiser-Wilke, I.; Barlic-Maganja, D.; Lojkić, M.; Madić, J.; Terzić, S.; Grom, J. Genetic typing of recent classical swine fever virus isolates from Croatia. Vet. Microbiol. 2003, 96, 25–33. [Google Scholar] [CrossRef]
- Deng, M.C.; Huang, C.C.; Huang, T.S.; Chang, C.Y.; Lin, Y.J.; Chien, M.S.; Jong, M.H. Phylogenetic analysis of classical swine fever virus isolated from Taiwan. Vet. Microbiol. 2005, 106, 187–193. [Google Scholar] [CrossRef] [PubMed]
- Chen, N.; Hu, H.; Zhang, Z.; Shuai, J.; Jiang, L.; Fang, W. Genetic diversity of the envelope glycoprotein E2 of classical swine fever virus: Recent isolates branched away from historical and vaccine strains. Vet. Microbiol. 2008, 127, 286–299. [Google Scholar] [CrossRef]
- Chen, N.; Li, D.; Yuan, X.; Li, X.; Hu, H.; Zhu, B.; Wan, X.; Fang, W. Genetic characterization of E2 gene of classical swine fever virus by restriction fragment length polymorphism and phylogenetic analysis. Virus Genes 2010, 40, 389–396. [Google Scholar] [CrossRef] [PubMed]
- Jiang, D.L.; Gong, W.J.; Li, R.C.; Liu, G.H.; Hu, Y.F.; Ge, M.; Wang, S.Q.; Yu, X.L.; Tu, C. Phylogenetic analysis using E2 gene of classical swine fever virus reveals a new subgenotype in China. Infect. Genet. Evol. J. Mol. Epidemiol. Evol. Genet. Infect. Dis. 2013, 17, 231–238. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Leng, C.; Feng, L.; Zhai, H.; Chen, J.; Liu, C.; Bai, Y.; Ye, C.; Peng, J.; An, T.; et al. A new subgenotype 2.1d isolates of classical swine fever virus in China, 2014. Infect. Genet. Evol. J. Mol. Epidemiol. Evol. Genet. Infect. Dis. 2015, 34, 94–105. [Google Scholar] [CrossRef]
- Gong, W.; Wu, J.; Lu, Z.; Zhang, L.; Qin, S.; Chen, F.; Peng, Z.; Wang, Q.; Ma, L.; Bai, A.; et al. Genetic diversity of subgenotype 2.1 isolates of classical swine fever virus. Infect. Genet. Evol. J. Mol. Epidemiol. Evol. Genet. Infect. Dis. 2016, 41, 218–226. [Google Scholar] [CrossRef]
- Hellen, C.U.; Sarnow, P. Internal ribosome entry sites in eukaryotic mRNA molecules. Genes Dev. 2001, 15, 1593–1612. [Google Scholar] [CrossRef]
- Fletcher, S.P.; Jackson, R.J. Pestivirus internal ribosome entry site (IRES) structure and function: Elements in the 5′ untranslated region important for IRES function. J. Virol. 2002, 76, 5024–5033. [Google Scholar] [CrossRef]
- Zhu, Z.; Wang, Y.; Yu, J.; Wan, L.; Chen, J.; Xiao, M. Classical swine fever virus NS3 is an IRES-binding protein and increases IRES-dependent translation. Virus Res. 2010, 153, 106–112. [Google Scholar] [CrossRef]
- Friebe, P.; Lohmann, V.; Krieger, N.; Bartenschlager, R. Sequences in the 5′ nontranslated region of hepatitis C virus required for RNA replication. J. Virol. 2001, 75, 12047–12057. [Google Scholar] [CrossRef]
- Björklund, H.V.; Stadejek, T.; Vilcek, S.; Belák, S. Molecular characterization of the 3′ noncoding region of classical swine fever virus vaccine strains. Virus Genes 1998, 16, 307–312. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wang, Q.; Lu, X.; Zhang, C.; Fan, X.; Pan, Z.; Xu, L.; Wen, G.; Ning, Y.; Tang, F.; et al. 12-nt insertion in 3′ untranslated region leads to attenuation of classic swine fever virus and protects host against lethal challenge. Virology 2008, 374, 390–398. [Google Scholar] [CrossRef] [PubMed]
- Sheng, C.; Chen, Y.; Xiao, J.; Xiao, J.; Wang, J.; Li, G.; Chen, J.; Xiao, M. Classical swine fever virus NS5A protein interacts with 3′-untranslated region and regulates viral RNA synthesis. Virus Res. 2012, 163, 636–643. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Li, Y.; Shen, L.; Huang, J.; Sun, Y.; Luo, Y.; Zhao, B.; Wang, C.; Yuan, J.; Qiu, H.J. The role of noncoding regions of classical swine fever virus C-strain in its adaptation to the rabbit. Virus Res. 2014, 183, 117–122. [Google Scholar] [CrossRef]
- Li, Y.; Wang, J.; Kanai, R.; Modis, Y. Crystal structure of glycoprotein E2 from bovine viral diarrhea virus. Proc. Natl. Acad. Sci. USA 2013, 110, 6805–6810. [Google Scholar] [CrossRef]
- Risatti, G.R.; Holinka, L.G.; Fernandez Sainz, I.; Carrillo, C.; Lu, Z.; Borca, M.V. N-linked glycosylation status of classical swine fever virus strain Brescia E2 glycoprotein influences virulence in swine. J. Virol. 2007, 81, 924–933. [Google Scholar] [CrossRef]
- Risatti, G.R.; Borca, M.V.; Kutish, G.F.; Lu, Z.; Holinka, L.G.; French, R.A.; Tulman, E.R.; Rock, D.L. The E2 glycoprotein of classical swine fever virus is a virulence determinant in swine. J. Virol. 2005, 79, 3787–3796. [Google Scholar] [CrossRef]
- Wensvoort, G.; Terpstra, C.; de Kluijver, E.P.; Kragten, C.; Warnaar, J.C. Antigenic differentiation of pestivirus strains with monoclonal antibodies against hog cholera virus. Vet. Microbiol. 1989, 21, 9–20. [Google Scholar] [CrossRef]
- van Rijn, P.A.; Bossers, A.; Wensvoort, G.; Moormann, R.J. Classical swine fever virus (CSFV) envelope glycoprotein E2 containing one structural antigenic unit protects pigs from lethal CSFV challenge. J. Gen. Virol. 1996, 77 Pt 11, 2737–2745. [Google Scholar] [CrossRef]
- Peng, W.P.; Hou, Q.; Xia, Z.H.; Chen, D.; Li, N.; Sun, Y.; Qiu, H.J. Identification of a conserved linear B-cell epitope at the N-terminus of the E2 glycoprotein of Classical swine fever virus by phage-displayed random peptide library. Virus Res. 2008, 135, 267–272. [Google Scholar] [CrossRef]
- Lin, M.; Lin, F.; Mallory, M.; Clavijo, A. Deletions of structural glycoprotein E2 of classical swine fever virus strain alfort/187 resolve a linear epitope of monoclonal antibody WH303 and the minimal N-terminal domain essential for binding immunoglobulin G antibodies of a pig hyperimmune serum. J. Virol. 2000, 74, 11619–11625. [Google Scholar] [CrossRef] [PubMed]
- Risatti, G.R.; Holinka, L.G.; Carrillo, C.; Kutish, G.F.; Lu, Z.; Tulman, E.R.; Sainz, I.F.; Borca, M.V. Identification of a novel virulence determinant within the E2 structural glycoprotein of classical swine fever virus. Virology 2006, 355, 94–101. [Google Scholar] [CrossRef] [PubMed]
- Mittelholzer, C.; Moser, C.; Tratschin, J.D.; Hofmann, M.A. Analysis of classical swine fever virus replication kinetics allows differentiation of highly virulent from avirulent strains. Vet. Microbiol. 2000, 74, 293–308. [Google Scholar] [CrossRef] [PubMed]
- Hao, G.; Zhang, H.; Chen, H.; Qian, P.; Li, X. Comparison of the Pathogenicity of Classical Swine Fever Virus Subgenotype 2.1c and 2.1d Strains from China. Pathogens 2020, 9, 821. [Google Scholar] [CrossRef]
- Gong, W.; Li, J.; Wang, Z.; Sun, J.; Mi, S.; Lu, Z.; Cao, J.; Dou, Z.; Sun, Y.; Wang, P.; et al. Virulence evaluation of classical swine fever virus subgenotype 2.1 and 2.2 isolates circulating in China. Vet. Microbiol. 2019, 232, 114–120. [Google Scholar] [CrossRef]
Primer | Primer Sequence (5′-3′) | Position in Genome | Product Size (bp) |
---|---|---|---|
F1 and R1 | ATACGAGGTTAGTTCGTTCTC CCCTATCTTCCTTGTCACATT | 1–2059 | 2059 |
F2 and R2 | CCCCAGAAACGGCTAGTATG AGTTGTAAACCGGCAGCAAG | 2022–3670 | 1639 |
F3 and R3 | AACAACCCAGTTAAGACCAT GTACCTCTTGGCATAACACC | 3640–5284 | 1645 |
F4 and R4 | CCTAAAGATAAGAAGAGGGTTG ATTCGGAGCGTACTGTAAAT | 5256–7496 | 2241 |
F5 and R5 | ATACTGTGGCAGACTATGTGA ATTTCAGCAGAGCGGTGTCG | 7464–9652 | 2190 |
F6 and R6 | CAGAGGCACGATGGTTGTTG GGCCGTTAGGAAATTACCTTAGTC | 9619–12,296 | 2678 |
Nucleotides | Shimen (1.1) | Paderborn (2.1a) | HEBZ (2.1b) | HNSD-2012 (2.1c) | JSZL (2.1d) | CSFV39 (2.2) | Alfort/Tuebingen (2.3) | 94.4/IL/94/TWN (3.4) |
---|---|---|---|---|---|---|---|---|
5′UTR | 91.4 | 96.2 | 94.1 | 98.1 | 95.2 | 91.7 | 93.5 | 89.8 |
Npro | 85.9 | 91.3 | 90.3 | 97.4 | 91.9 | 86.5 | 87.3 | 83.5 |
C | 82.8 | 92.9 | 89.9 | 97.3 | 90.9 | 87.2 | 87.9 | 83.2 |
Erns | 84.3 | 95.2 | 93.5 | 97.2 | 93.4 | 88.7 | 89.4 | 82.4 |
E1 | 82.6 | 92 | 90.8 | 98.1 | 91.3 | 88.2 | 88 | 81 |
E2 | 82.7 | 91.8 | 89.5 | 97.9 | 89.3 | 86.1 | 86.2 | 82.2 |
P7 | 80.5 | 94.3 | 93.8 | 99.5 | 91.9 | 91 | 91 | 85.7 |
NS2 | 83.4 | 92.4 | 91.7 | 97.5 | 91.4 | 88.2 | 88.1 | 80.5 |
NS3 | 87.4 | 93.7 | 92.5 | 98 | 92.8 | 90.5 | 90.9 | 85.6 |
NS4A | 85.4 | 92.2 | 92.2 | 97.4 | 92.2 | 86.5 | 85.4 | 82.3 |
NS4B | 86.6 | 92.4 | 90.6 | 97.2 | 90.3 | 89.8 | 89.4 | 83.8 |
NS5A | 83 | 92.4 | 91.2 | 97.3 | 90.4 | 82.9 | 88.7 | 80.8 |
NS5B | 84.1 | 93.8 | 92.9 | 97.6 | 92.5 | 84.4 | 88.8 | 83.7 |
3′UTR | 85 | 93.1 | 91.2 | 96.5 | 93.8 | 84.5 | 91.2 | 83.6 |
Complete | 84.7 | 93 | 91.8 | 97.6 | 91.7 | 87.2 | 89 | 83.1 |
AA | Shimen (1.1) | Paderborn (2.1a) | HEBZ (2.1b) | HNSD-2012 (2.1c) | JSZL (2.1d) | CSFV39 (2.2) | Alfort/Tuebingen (2.3) | 94.4/IL/94/TWN (3.4) |
---|---|---|---|---|---|---|---|---|
Npro | 91.7 | 95.8 | 93.5 | 98.8 | 95.8 | 92.3 | 89.9 | 90.5 |
C | 89.9 | 92.9 | 91.9 | 99 | 91.9 | 89.9 | 90.9 | 84.8 |
Erns | 90.3 | 97.4 | 96.9 | 98.2 | 97.4 | 95.6 | 95.6 | 91.6 |
E1 | 93.8 | 96.4 | 95.9 | 99 | 95.4 | 95.4 | 96.4 | 90.8 |
E2 | 90.3 | 97.6 | 95.2 | 99.5 | 95.7 | 92 | 92.5 | 90.3 |
P7 | 90 | 98.6 | 95.7 | 99 | 94.3 | 95.7 | 95.7 | 94.3 |
NS2 | 89.3 | 96.7 | 96.3 | 98.9 | 94.5 | 95.2 | 93.9 | 88.2 |
NS3 | 98 | 99 | 98.4 | 99.3 | 99 | 98.4 | 98.7 | 98.4 |
NS4A | 95.3 | 95.3 | 95.3 | 98.4 | 96.9 | 96.9 | 96.9 | 95.3 |
NS4B | 96.3 | 98.8 | 98.6 | 99.4 | 98.8 | 97.1 | 98.6 | 94.8 |
NS5A | 87.9 | 95 | 94.2 | 98.4 | 93.6 | 87.9 | 92.4 | 86.5 |
NS5B | 92.6 | 98.5 | 96.9 | 99.4 | 97.4 | 93.3 | 96.5 | 90.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, X.; Wu, Y.; Song, Y.; Huang, F.; Lin, L.; Zhao, H.; Ren, B.; Li, Q.; Gong, L. Isolation and Pathogenicity of an Emerging Highly Virulent CSFV 2.1c Strain in South China. Vet. Sci. 2025, 12, 606. https://doi.org/10.3390/vetsci12070606
Gao X, Wu Y, Song Y, Huang F, Lin L, Zhao H, Ren B, Li Q, Gong L. Isolation and Pathogenicity of an Emerging Highly Virulent CSFV 2.1c Strain in South China. Veterinary Sciences. 2025; 12(7):606. https://doi.org/10.3390/vetsci12070606
Chicago/Turabian StyleGao, Xiaopeng, Yu Wu, Yi Song, Feibao Huang, Limiao Lin, Haishen Zhao, Bohua Ren, Qunhui Li, and Lang Gong. 2025. "Isolation and Pathogenicity of an Emerging Highly Virulent CSFV 2.1c Strain in South China" Veterinary Sciences 12, no. 7: 606. https://doi.org/10.3390/vetsci12070606
APA StyleGao, X., Wu, Y., Song, Y., Huang, F., Lin, L., Zhao, H., Ren, B., Li, Q., & Gong, L. (2025). Isolation and Pathogenicity of an Emerging Highly Virulent CSFV 2.1c Strain in South China. Veterinary Sciences, 12(7), 606. https://doi.org/10.3390/vetsci12070606