Seminal Plasma Extracellular Vesicles: Key Mediators of Intercellular Communication in Mammalian Reproductive Systems
Simple Summary
Abstract
1. Introduction
2. Overview of Seminal Plasma Extracellular Vesicles
3. Harnessing Seminal Plasma Extracellular Vesicle Contents as Non-Invasive Biomarkers for Livestock Fertility Assessment and Male Infertility Diagnosis
Phenotype | Species | Subtype | Biomarker | Reference |
---|---|---|---|---|
Fertility | bull | protein | SP10, ADAM7, and SPAM 1 | [33] |
miRNA | miR-195 | [34] | ||
boar | protein | EZRIN * | [35] | |
miRNA | miR-26a * | [36] | ||
buffalo | protein | PDIA4 and GSN | [37] | |
rabbit | miRNA | miR-190b-5p, miR-193b-5p, let-7b-3p, and miR-378-3p | [18] | |
Sperm motility | boar | gene-lipid linkages | CerG1 (d22:0/24:0)-RCAN3, Cer (d18:1/24:0)-SCFD2, and CerG1 (d18:0/24:1)-SCFD2 | [38] |
protein | GART, ADCY7, and CDC42 | [39] | ||
miRNA | miR-122-5p, miR-486, miR-451, miR-345-3p, miR-362, and miR-500-5p | [40] | ||
miRNA | miR-205, miR-493-5p, and miR-378b-3p | [41] | ||
miRNA | miR-222 * | [42] | ||
circRNA | circCREBBP * | [43] | ||
buffalo | protein | ACRBP, SPACA1, PRDX5, SPACA4, DYNLL2, ZAN, IZUMO1, and ADAM2 | [15] | |
Conception rates | boar | protein | GPX5 * | [44] |
Semen quality | human | protein | LTF, CRISP3, SERPINA3, ELSPBP1, GSTM3, AGP2, SAP, ANPEP, MME, and FAS | [45] |
miRNA | miR-10b-3p, miR-122-5p, miR-205-5p, miR-222-3p, miR-34c-5p, miR-509-3-5p, miR-888-5p, miR-892a, miR-363-3p, miR-941, miR-146a-5p, and miR-744-5p | |||
miRNA | miR-7110, miR-4800, miR-4488, miR-3916, and miR-4508 | [46] | ||
circRNA | hsa_circ_0009013, hsa_circ_0123184, hsa_circ_0114168, hsa_circ_0139507, and hsa_circ_0139505 | |||
piRNA | piR-hsa-26399, piR-hsa-28160, piR-hsa-28478, and piR-hsa-1077 | |||
rRNA | URS00008C6BF7, URS00008C9E2E, URS0000914753, URS0000CA0D60, and URS00008CE4BC | |||
lncRNA | URS0000D56E09, URS0000D5AE24, URS0000A7764F, ENST00000631211.1, and ENST00000629969.1 | |||
Live birth rate | human | circRNA | hsa_circ_0103367, hsa_circ_0008611, hsa_circ_0008109, hsa_circ_0004177, hsa_circ_0009684, hsa_circ_0013829, hsa_circ_0035429, hsa_circ_0114168, hsa_circ_0001488, and hsa_circ_0118471 | [47] |
piRNA | piR-hsa-28478 and piR-hsa-1077 | |||
Azoospermia | human | miRNA | miR-10a-5p, miR-146a-5p, miR-31-5p, miR-181b-5p | [48,49] |
Non-obstructive azoospermia | human | tsRNA | tRF-Val-AAC-010 and tRF-Pro-AGG-003 | [50] |
Oligoasthenospermia | human | circRNA | has_circ_0004721, has_circ_0002452, has_circ_0079245, has_circ_0005584, has_circ_0003823, has_circ_8826, has_circ_0125759, has_circ_0109282, and has_circ_0009142 | [51] |
Spermatogenic ability | human | piRNA | piR-has-61927 | [52] |
protein | ANXA2 and KIF5B | [53] | ||
Unilateral varicocele | human | miRNA | miR-210-3p | [54] |
Prostate cancer | human | protein | KLK3, KLK2, MSMB, NEFH, PSCA, PABPC1, TGM4, ALOX15B, and ANO7 | [55] |
protein | CRP and H2B2E | [56] | ||
mRNA | CASP3, DDX11, DLC1, ETV1, PTGS1, TP53, and VEGF | |||
miRNA | miR-141-3p | |||
miRNA | miR-27a-3p, miR-27b-3p, miR-155-5p, and miR-378a-3p | [57] | ||
tsRNA | 5′-tRNA-Glu-TTC-9-1_L30 and 5′-tRNA-Val-CAC-3-1_L30 | [58] |
4. Seminal Plasma Extracellular Vesicles Promote Sperm Maturation
5. The Regulatory Role of Seminal Plasma Extracellular Vesicles in Sperm Function
6. Function of Seminal Plasma Extracellular Vesicles in Female Reproductive Tract
7. Conclusions
- (1)
- Integrating single-EV sequencing with Tissue EV isolation approaches to characterize SPEV subpopulations originating from distinct male reproductive glands, to elucidate novel regulatory pathways in mammalian reproductive systems.
- (2)
- Leveraging contemporary advances in fertility biomarker discovery, conducting large-scale population validation studies to establish standardized fertility assessment tools, with particular emphasis on biomarkers that have been validated as functional regulators in mammalian reproductive systems.
- (3)
- Systematically dissecting the ceRNA-mediated molecular crosstalk between SPEVs and reproductive tissues, ultimately leading to the discovery of precision therapeutic targets for fertility enhancement.
- (4)
- Further investigating the molecular mechanisms through which SPEVs mediate modulation in uterine microenvironments during embryo implantation, providing novel insights for improving embryo implantation rates.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, D.; Wang, Z.; Luo, X.; Guo, H.; Qiu, G.; Gong, Y.; Gao, H.; Cui, S. Cysteine Dioxygenase and Taurine Are Essential for Embryo Implantation by Involving in E2-ERα and P4-PR Signaling in Mouse. J. Anim. Sci. Biotechnol. 2023, 14, 6. [Google Scholar] [CrossRef] [PubMed]
- Njagi, P.; Groot, W.; Arsenijevic, J.; Dyer, S.; Mburu, G.; Kiarie, J. Financial Costs of Assisted Reproductive Technology for Patients in Low- and Middle-Income Countries: A Systematic Review. Hum. Reprod. Open 2023, 2023, hoad007. [Google Scholar] [CrossRef] [PubMed]
- Niederberger, C.; Pellicer, A.; Cohen, J.; Gardner, D.K.; Palermo, G.D.; O’Neill, C.L.; Chow, S.; Rosenwaks, Z.; Cobo, A.; Swain, J.E.; et al. Forty Years of IVF. Fertil. Steril. 2018, 110, 185–324.e5. [Google Scholar] [CrossRef] [PubMed]
- Bashiri, Z.; Amidi, F.; Amiri, I.; Zandieh, Z.; Maki, C.B.; Mohammadi, F.; Amiri, S.; Koruji, M. Male Factors: The Role of Sperm in Preimplantation Embryo Quality. Reprod. Sci. 2021, 28, 1788–1811. [Google Scholar] [CrossRef]
- Xie, C.; Huang, C.; Yan, L.; Yao, R.; Xiao, J.; Yang, M.; Chen, H.; Tang, K.; Zhou, D.; Lin, P.; et al. Recipients’ and Environmental Factors Affecting the Pregnancy Rates of a Large, Fresh In Vitro Fertilization-Embryo Transfer Program for Dairy Cows in a Commercial Herd in China. Vet. Sci. 2024, 11, 410. [Google Scholar] [CrossRef]
- Ahmadi, H.; Csabai, T.; Gorgey, E.; Rashidiani, S.; Parhizkar, F.; Aghebati-Maleki, L. Composition and Effects of Seminal Plasma in the Female Reproductive Tracts on Implantation of Human Embryos. Biomed. Pharmacother. 2022, 151, 113065. [Google Scholar] [CrossRef]
- Pang, P.-C.; Chiu, P.C.N.; Lee, C.-L.; Chang, L.-Y.; Panico, M.; Morris, H.R.; Haslam, S.M.; Khoo, K.-H.; Clark, G.F.; Yeung, W.S.B.; et al. Human Sperm Binding Is Mediated by the Sialyl-Lewis(x) Oligosaccharide on the Zona Pellucida. Science 2011, 333, 1761–1764. [Google Scholar] [CrossRef]
- Marlin, R.; Nugeyre, M.-T.; Tchitchek, N.; Parenti, M.; Lefebvre, C.; Hocini, H.; Benjelloun, F.; Cannou, C.; Nozza, S.; Dereuddre-Bosquet, N.; et al. Seminal Plasma Exposures Strengthen Vaccine Responses in the Female Reproductive Tract Mucosae. Front. Immunol. 2019, 10, 430. [Google Scholar] [CrossRef]
- Kalluri, R.; LeBleu, V.S. The Biology, Function, and Biomedical Applications of Exosomes. Science 2020, 367, eaau6977. [Google Scholar] [CrossRef]
- Ronquist, G.; Brody, I.; Gottfries, A.; Stegmayr, B. An Mg2+ and Ca2+-Stimulated Adenosine Triphosphatase in Human Prostatic Fluid—Part II. Andrologia 1978, 10, 427–433. [Google Scholar] [CrossRef]
- van Niel, G.; D’Angelo, G.; Raposo, G. Shedding Light on the Cell Biology of Extracellular Vesicles. Nat. Rev. Mol. Cell Biol. 2018, 19, 213–228. [Google Scholar] [CrossRef] [PubMed]
- Johnstone, R.M.; Adam, M.; Hammond, J.R.; Orr, L.; Turbide, C. Vesicle Formation during Reticulocyte Maturation. Association of Plasma Membrane Activities with Released Vesicles (Exosomes). J. Biol. Chem. 1987, 262, 9412–9420. [Google Scholar] [CrossRef] [PubMed]
- Shamsi, R.R.; Jozani, R.J.; Asadpour, R.; Rahbar, M.; Taravat, M. Seminal Plasma-Derived Exosome Preserves the Quality Parameters of the Post-Thaw Semen of Bulls with Low Freezeability. Biopreserv. Biobank. 2024. Online ahead of print. [Google Scholar] [CrossRef]
- Zhang, Z.; Xu, X.; Chen, F.; Liu, Q.; Li, Z.; Zheng, X.; Zhao, Y. Multi-Omics Sequencing Dissects the Atlas of Seminal Plasma Exosomes from Semen Containing Low or High Rates of Sperm with Cytoplasmic Droplets. Int. J. Mol. Sci. 2025, 26, 1096. [Google Scholar] [CrossRef]
- Yu, K.; Xiao, K.; Sun, Q.-Q.; Liu, R.-F.; Huang, L.-F.; Zhang, P.-F.; Xu, H.-Y.; Lu, Y.-Q.; Fu, Q. Comparative Proteomic Analysis of Seminal Plasma Exosomes in Buffalo with High and Low Sperm Motility. BMC Genom. 2023, 24, 8. [Google Scholar] [CrossRef]
- Leahy, T.; Rickard, J.P.; Pini, T.; Gadella, B.M.; de Graaf, S.P. Quantitative Proteomic Analysis of Seminal Plasma, Sperm Membrane Proteins, and Seminal Extracellular Vesicles Suggests Vesicular Mechanisms Aid in the Removal and Addition of Proteins to the Ram Sperm Membrane. Proteomics 2020, 20, e1900289. [Google Scholar] [CrossRef]
- Carossino, M.; Dini, P.; Kalbfleisch, T.S.; Loynachan, A.T.; Canisso, I.F.; Shuck, K.M.; Timoney, P.J.; Cook, R.F.; Balasuriya, U.B.R. Downregulation of MicroRNA Eca-Mir-128 in Seminal Exosomes and Enhanced Expression of CXCL16 in the Stallion Reproductive Tract Are Associated with Long-Term Persistence of Equine Arteritis Virus. J. Virol. 2018, 92, e00015-18. [Google Scholar] [CrossRef]
- Sakr, O.G.; Gad, A.; Cañón-Beltrán, K.; Cajas, Y.N.; Prochazka, R.; Rizos, D.; Rebollar, P.G. Characterization and Identification of Extracellular Vesicles-Coupled miRNA Profiles in Seminal Plasma of Fertile and Subfertile Rabbit Bucks. Theriogenology 2023, 209, 76–88. [Google Scholar] [CrossRef]
- Vojtech, L.; Woo, S.; Hughes, S.; Levy, C.; Ballweber, L.; Sauteraud, R.P.; Strobl, J.; Westerberg, K.; Gottardo, R.; Tewari, M.; et al. Exosomes in Human Semen Carry a Distinctive Repertoire of Small Non-Coding RNAs with Potential Regulatory Functions. Nucleic Acids Res. 2014, 42, 7290–7304. [Google Scholar] [CrossRef]
- Rodriguez-Martinez, H.; Roca, J.; Alvarez-Rodriguez, M.; Martinez-Serrano, C.A. How does the boar epididymis regulate the emission of fertile spermatozoa? Anim. Reprod. Sci. 2022, 246, 106829. [Google Scholar] [CrossRef]
- Mancuso, F.; Calvitti, M.; Milardi, D.; Grande, G.; Falabella, G.; Arato, I.; Giovagnoli, S.; Vincenzoni, F.; Mancini, F.; Nastruzzi, C.; et al. Testosterone and FSH Modulate Sertoli Cell Extracellular Secretion: Proteomic Analysis. Mol. Cell Endocrinol. 2018, 476, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Liang, J.; Mei, J.; Chen, D.; Xiao, Z.; Hu, M.; Wei, S.; Wang, Z.; Huang, R.; Li, L.; Ye, T.; et al. The Role of Sertoli Cell-Derived miR-143-3p in Male Fertility Declines with Age. Mol. Ther. Nucleic Acids 2024, 35, 102369. [Google Scholar] [CrossRef] [PubMed]
- Banijamali, M.; Höjer, P.; Nagy, A.; Hååg, P.; Gomero, E.P.; Stiller, C.; Kaminskyy, V.O.; Ekman, S.; Lewensohn, R.; Karlström, A.E.; et al. Characterizing Single Extracellular Vesicles by Droplet Barcode Sequencing for Protein Analysis. J. Extracell. Vesicles 2022, 11, e12277. [Google Scholar] [CrossRef]
- Neila-Montero, M.; Alvarez, M.; Riesco, M.F.; Soriano-Úbeda, C.; Montes-Garrido, R.; Palacin-Martinez, C.; de Paz, P.; Anel, L.; Anel-Lopez, L. The Adaptation Time to the Extender as a Crucial Step for an Accurate Evaluation of Ram Sperm Quality during the Liquid Storage. Vet. Sci. 2024, 11, 132. [Google Scholar] [CrossRef]
- Roca, J.; Broekhuijse, M.L.W.J.; Parrilla, I.; Rodriguez-Martinez, H.; Martinez, E.A.; Bolarin, A. Boar Differences In Artificial Insemination Outcomes: Can They Be Minimized? Reprod. Domest. Anim. 2015, 2, 48–55. [Google Scholar] [CrossRef]
- Cannarella, R.; Condorelli, R.A.; Mongioì, L.M.; La Vignera, S.; Calogero, A.E. Molecular Biology of Spermatogenesis: Novel Targets of Apparently Idiopathic Male Infertility. Int. J. Mol. Sci. 2020, 21, 1728. [Google Scholar] [CrossRef]
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef]
- Valadi, H.; Ekström, K.; Bossios, A.; Sjöstrand, M.; Lee, J.J.; Lötvall, J.O. Exosome-Mediated Transfer of mRNAs and microRNAs Is a Novel Mechanism of Genetic Exchange between Cells. Nat. Cell Biol. 2007, 9, 654–659. [Google Scholar] [CrossRef]
- Naqvi, A.R.; Slots, J. Human and Herpesvirus microRNAs in Periodontal Disease. Periodontol. 2000 2021, 87, 325–339. [Google Scholar] [CrossRef]
- Dance, A. Circular Logic: Understanding RNA’s Strangest Form Yet. Nature 2024, 635, 511–513. [Google Scholar] [CrossRef]
- Liu, C.-X.; Chen, L.-L. Circular RNAs: Characterization, Cellular Roles, and Applications. Cell 2022, 185, 2016–2034. [Google Scholar] [CrossRef] [PubMed]
- Guo, W.; Ciwang, R.; Wang, L.; Zhang, S.; Liu, N.; Zhao, J.; Zhou, L.; Li, H.; Gao, X.; He, J. CircRNA-5335 Regulates the Differentiation and Proliferation of Sheep Preadipocyte via the miR-125a-3p/STAT3 Pathway. Vet. Sci. 2024, 11, 70. [Google Scholar] [CrossRef] [PubMed]
- Pal, A.; Karanwal, S.; Habib, M.A.; Josan, F.; Gaur, V.; Patel, A.; Garg, M.; Bhakat, M.; Datta, T.K.; Kumar, R. Extracellular Vesicles in Seminal Plasma of Sahiwal Cattle Bulls Carry a Differential Abundance of Sperm Fertility-Associated Proteins for Augmenting the Functional Quality of Low-Fertile Bull Spermatozoa. Sci. Rep. 2025, 15, 3587. [Google Scholar] [CrossRef] [PubMed]
- Chauhan, V.; Kashyap, P.; Chera, J.S.; Pal, A.; Patel, A.; Karanwal, S.; Badrhan, S.; Josan, F.; Solanki, S.; Bhakat, M.; et al. Differential Abundance of microRNAs in Seminal Plasma Extracellular Vesicles (EVs) in Sahiwal Cattle Bull Related to Male Fertility. Front. Cell Dev. Biol. 2024, 12, 1473825. [Google Scholar] [CrossRef]
- Xu, Z.; Xie, Y.; Wu, C.; Gu, T.; Zhang, X.; Yang, J.; Yang, H.; Zheng, E.; Huang, S.; Xu, Z.; et al. The Effects of Boar Seminal Plasma Extracellular Vesicles on Sperm Fertility. Theriogenology 2024, 213, 79–89. [Google Scholar] [CrossRef]
- Chen, W.; Xie, Y.; Xu, Z.; Shang, Y.; Yang, W.; Wang, P.; Wu, Z.; Cai, G.; Hong, L. Identification and Functional Analysis of miRNAs in Extracellular Vesicles of Semen Plasma from High- and Low-Fertility Boars. Animals 2024, 15, 40. [Google Scholar] [CrossRef]
- Badrhan, S.; Karanwal, S.; Pal, A.; Chera, J.S.; Chauhan, V.; Patel, A.; Bhakat, M.; Datta, T.K.; Kumar, R. Differential Protein Repertoires Related to Sperm Function Identified in Extracellular Vesicles (EVs) in Seminal Plasma of Distinct Fertility Buffalo (Bubalus Bubalis) Bulls. Front. Cell Dev. Biol. 2024, 12, 1400323. [Google Scholar] [CrossRef]
- Ding, N.; Zhang, Y.; Wang, J.; Liu, J.; Zhang, J.; Zhang, C.; Zhou, L.; Cao, J.; Jiang, L. Lipidomic and Transcriptomic Characteristics of Boar Seminal Plasma Extracellular Vesicles Associated with Sperm Motility. Biochim. Biophys. Acta Mol. Cell Biol. Lipids. 2025, 1870, 159561. [Google Scholar] [CrossRef]
- Zhang, Y.; Ding, N.; Cao, J.; Zhang, J.; Liu, J.; Zhang, C.; Jiang, L. Proteomics and Metabolic Characteristics of Boar Seminal Plasma Extracellular Vesicles Reveal Biomarker Candidates Related to Sperm Motility. J. Proteome Res. 2024, 23, 3764–3779. [Google Scholar] [CrossRef]
- Zhao, Y.; Qin, J.; Sun, J.; He, J.; Sun, Y.; Yuan, R.; Li, Z. Motility-Related microRNAs Identified in Pig Seminal Plasma Exosomes by High-Throughput Small RNA Sequencing. Theriogenology 2024, 215, 351–360. [Google Scholar] [CrossRef]
- Dlamini, N.H.; Nguyen, T.; Gad, A.; Tesfaye, D.; Liao, S.F.; Willard, S.T.; Ryan, P.L.; Feugang, J.M. Characterization of Extracellular Vesicle-Coupled miRNA Profiles in Seminal Plasma of Boars with Divergent Semen Quality Status. Int. J. Mol. Sci. 2023, 24, 3194. [Google Scholar] [CrossRef] [PubMed]
- Ding, Y.; Ding, N.; Zhang, Y.; Xie, S.; Huang, M.; Ding, X.; Dong, W.; Zhang, Q.; Jiang, L. MicroRNA-222 Transferred From Semen Extracellular Vesicles Inhibits Sperm Apoptosis by Targeting BCL2L11. Front. Cell Dev. Biol. 2021, 9, 736864. [Google Scholar] [CrossRef] [PubMed]
- Ding, N.; Zhang, Y.; Huang, M.; Liu, J.; Wang, C.; Zhang, C.; Cao, J.; Zhang, Q.; Jiang, L. Circ-CREBBP Inhibits Sperm Apoptosis via the PI3K-Akt Signaling Pathway by Sponging miR-10384 and miR-143-3p. Commun. Biol. 2022, 5, 1339. [Google Scholar] [CrossRef]
- Huang, J.; Li, S.; Yang, Y.; Li, C.; Zuo, Z.; Zheng, R.; Chai, J.; Jiang, S. GPX5-Enriched Exosomes Improve Sperm Quality and Fertilization Ability. Int. J. Mol. Sci. 2024, 25, 10569. [Google Scholar] [CrossRef]
- Sergeyev, O.; Bezuglov, V.; Soloveva, N.; Smigulina, L.; Denisova, T.; Dikov, Y.; Shtratnikova, V.; Vavilov, N.; Williams, P.L.; Korrick, S.; et al. Intraindividual Variability of Semen Quality, Proteome, and sncRNA Profiles in a Healthy Cohort of Young Adults. Andrology 2024, 13, 840–859. [Google Scholar] [CrossRef]
- Oluwayiose, O.A.; Houle, E.; Whitcomb, B.W.; Suvorov, A.; Rahil, T.; Sites, C.K.; Krawetz, S.A.; Visconti, P.; Pilsner, J.R. Altered Non-Coding RNA Profiles of Seminal Plasma Extracellular Vesicles of Men with Poor Semen Quality Undergoing in Vitro Fertilization Treatment. Andrology 2023, 11, 677–686. [Google Scholar] [CrossRef]
- Oluwayiose, O.A.; Houle, E.; Whitcomb, B.W.; Suvorov, A.; Rahil, T.; Sites, C.K.; Krawetz, S.A.; Visconti, P.E.; Pilsner, J.R. Non-Coding RNAs from Seminal Plasma Extracellular Vesicles and Success of Live Birth among Couples Undergoing Fertility Treatment. Front. Cell Dev. Biol. 2023, 11, 1174211. [Google Scholar] [CrossRef]
- Larriba, S.; Sánchez-Herrero, J.F.; Pluvinet, R.; López-Rodrigo, O.; Bassas, L.; Sumoy, L. Seminal Extracellular Vesicle sncRNA Sequencing Reveals Altered miRNA/isomiR Profiles as Sperm Retrieval Biomarkers for Azoospermia. Andrology 2024, 12, 137–156. [Google Scholar] [CrossRef]
- Plata-Peña, L.; López-Rodrigo, O.; Bassas, L.; Larriba, S. Experimental Validation of Seminal miR-31-5p as Biomarker for Azoospermia and Evaluation of the Effect of Preanalytical Variables. Andrology 2023, 11, 668–676. [Google Scholar] [CrossRef]
- Han, X.; Hao, L.; Shi, Z.; Li, Y.; Wang, L.; Li, Z.; Zhang, Q.; Hu, F.; Cao, Y.; Pang, K.; et al. Seminal Plasma Extracellular Vesicles tRF-Val-AAC-010 Can Serve as a Predictive Factor of Successful Microdissection Testicular Sperm Extraction in Patients with Non-Obstructive Azoospermia. Reprod. Biol. Endocrinol. 2022, 20, 106. [Google Scholar] [CrossRef]
- Yue, D.; Yang, R.; Xiong, C.; Yang, R. Functional Prediction and Profiling of Exosomal circRNAs Derived from Seminal Plasma for the Diagnosis and Treatment of Oligoasthenospermia. Exp. Ther. Med. 2022, 24, 649. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Xie, Y.; Li, Y.; Zhang, C.; Lv, L.; Yao, J.; Deng, C.; Sun, X.; Zou, X.; Liu, G. Outcome Prediction of Microdissection Testicular Sperm Extraction Based on Extracellular Vesicles piRNAs. J. Assist. Reprod. Genet. 2021, 38, 1429–1439. [Google Scholar] [CrossRef] [PubMed]
- Panner Selvam, M.K.; Agarwal, A.; Sharma, R.; Samanta, L.; Gupta, S.; Dias, T.R.; Martins, A.D. Protein Fingerprinting of Seminal Plasma Reveals Dysregulation of Exosome-Associated Proteins in Infertile Men with Unilateral Varicocele. World J. Mens. Health 2021, 39, 324–337. [Google Scholar] [CrossRef]
- Ma, Y.; Zhou, Y.; Xiao, Q.; Zou, S.-S.; Zhu, Y.-C.; Ping, P.; Chen, X.-F. Seminal Exosomal miR-210-3p as a Potential Marker of Sertoli Cell Damage in Varicocele. Andrology 2021, 9, 451–459. [Google Scholar] [CrossRef]
- Zhang, X.; Vos, H.R.; Tao, W.; Stoorvogel, W. Proteomic Profiling of Two Distinct Populations of Extracellular Vesicles Isolated from Human Seminal Plasma. Int. J. Mol. Sci. 2020, 21, 7957. [Google Scholar] [CrossRef]
- Chisholm, J.; Haas-Neill, S.; Margetts, P.; Al-Nedawi, K. Characterization of Proteins, mRNAs, and miRNAs of Circulating Extracellular Vesicles from Prostate Cancer Patients Compared to Healthy Subjects. Front. Oncol. 2022, 12, 895555. [Google Scholar] [CrossRef]
- Zhang, Y.; Ding, N.; Xie, S.; Ding, Y.; Huang, M.; Ding, X.; Jiang, L. Identification of Important Extracellular Vesicle RNA Molecules Related to Sperm Motility and Prostate Cancer. Extracell. Vesicles Circ. Nucl. Acids. 2021, 2, 104–126. [Google Scholar] [CrossRef]
- Ferre-Giraldo, A.; Castells, M.; Sánchez-Herrero, J.F.; López-Rodrigo, O.; de Rocco-Ponce, M.; Bassas, L.; Vigués, F.; Sumoy, L.; Larriba, S. Semen sEV tRF-Based Models Increase Non-Invasive Prediction Accuracy of Clinically Significant Prostate Cancer among Patients with Moderately Altered PSA Levels. Int. J. Mol. Sci. 2024, 25, 10122. [Google Scholar] [CrossRef]
- Conine, C.C.; Sun, F.; Song, L.; Rivera-Pérez, J.A.; Rando, O.J. Small RNAs Gained during Epididymal Transit of Sperm Are Essential for Embryonic Development in Mice. Dev. Cell. 2018, 46, 470–480.e3. [Google Scholar] [CrossRef]
- Zhou, W.; De Iuliis, G.N.; Dun, M.D.; Nixon, B. Characteristics of the Epididymal Luminal Environment Responsible for Sperm Maturation and Storage. Front. Endocrinol. 2018, 9, 59. [Google Scholar] [CrossRef]
- Chen, H.; Pu, L.; Tian, C.; Qi, X.; Song, J.; Liao, Y.; Mo, B.; Li, T. Exploring the Molecular Characteristics and Role of PDGFB in Testis and Epididymis Development of Tibetan Sheep. Vet. Sci. 2024, 11, 266. [Google Scholar] [CrossRef] [PubMed]
- Aitken, R.J.; Nixon, B.; Lin, M.; Koppers, A.J.; Lee, Y.H.; Baker, M.A. Proteomic Changes in Mammalian Spermatozoa during Epididymal Maturation. Asian J. Androl. 2007, 9, 554–564. [Google Scholar] [CrossRef] [PubMed]
- Candenas, L.; Chianese, R. Exosome Composition and Seminal Plasma Proteome: A Promising Source of Biomarkers of Male Infertility. Int. J. Mol. Sci. 2020, 21, 7022. [Google Scholar] [CrossRef]
- Simon, C.; Greening, D.W.; Bolumar, D.; Balaguer, N.; Salamonsen, L.A.; Vilella, F. Extracellular Vesicles in Human Reproduction in Health and Disease. Endocr. Rev. 2018, 39, 292–332. [Google Scholar] [CrossRef]
- Rejraji, H.; Sion, B.; Prensier, G.; Carreras, M.; Motta, C.; Frenoux, J.-M.; Vericel, E.; Grizard, G.; Vernet, P.; Drevet, J.R. Lipid Remodeling of Murine Epididymosomes and Spermatozoa during Epididymal Maturation. Biol. Reprod. 2006, 74, 1104–1113. [Google Scholar] [CrossRef]
- Kirchhoff, C.; Hale, G. Cell-to-Cell Transfer of Glycosylphosphatidylinositol-Anchored Membrane Proteins during Sperm Maturation. Mol. Hum. Reprod. 1996, 2, 177–184. [Google Scholar] [CrossRef]
- Miller, D.; Brinkworth, M.; Iles, D. Paternal DNA Packaging in Spermatozoa: More than the Sum of Its Parts? DNA, Histones, Protamines and Epigenetics. Reproduction 2010, 139, 287–301. [Google Scholar] [CrossRef]
- Jones, R. Plasma Membrane Structure and Remodelling during Sperm Maturation in the Epididymis. J. Reprod. Fertil. Suppl. 1998, 53, 73–84. [Google Scholar]
- Zhou, W.; Stanger, S.J.; Anderson, A.L.; Bernstein, I.R.; De Iuliis, G.N.; McCluskey, A.; McLaughlin, E.A.; Dun, M.D.; Nixon, B. Mechanisms of Tethering and Cargo Transfer during Epididymosome-Sperm Interactions. BMC Biol. 2019, 17, 35. [Google Scholar] [CrossRef]
- D’Amours, O.; Frenette, G.; Caron, P.; Belleannée, C.; Guillemette, C.; Sullivan, R. Evidences of Biological Functions of Biliverdin Reductase A in the Bovine Epididymis. J. Cell Physiol. 2016, 231, 1077–1089. [Google Scholar] [CrossRef]
- Caballero, J.N.; Frenette, G.; Belleannée, C.; Sullivan, R. CD9-Positive Microvesicles Mediate the Transfer of Molecules to Bovine Spermatozoa during Epididymal Maturation. PLoS ONE 2013, 8, e65364. [Google Scholar] [CrossRef] [PubMed]
- Sharma, U.; Conine, C.C.; Shea, J.M.; Boskovic, A.; Derr, A.G.; Bing, X.Y.; Belleannee, C.; Kucukural, A.; Serra, R.W.; Sun, F.; et al. Biogenesis and Function of tRNA Fragments during Sperm Maturation and Fertilization in Mammals. Science 2016, 351, 391–396. [Google Scholar] [CrossRef] [PubMed]
- Reilly, J.N.; McLaughlin, E.A.; Stanger, S.J.; Anderson, A.L.; Hutcheon, K.; Church, K.; Mihalas, B.P.; Tyagi, S.; Holt, J.E.; Eamens, A.L.; et al. Characterisation of Mouse Epididymosomes Reveals a Complex Profile of microRNAs and a Potential Mechanism for Modification of the Sperm Epigenome. Sci. Rep. 2016, 6, 31794. [Google Scholar] [CrossRef]
- Nixon, B.; De Iuliis, G.N.; Hart, H.M.; Zhou, W.; Mathe, A.; Bernstein, I.R.; Anderson, A.L.; Stanger, S.J.; Skerrett-Byrne, D.A.; Jamaluddin, M.F.B.; et al. Proteomic Profiling of Mouse Epididymosomes Reveals Their Contributions to Post-Testicular Sperm Maturation. Mol. Cell Proteom. 2019, 18, S91–S108. [Google Scholar] [CrossRef]
- Yu, Z.-L.; Liu, X.-C.; Wu, M.; Shi, S.; Fu, Q.-Y.; Jia, J.; Chen, G. Untouched Isolation Enables Targeted Functional Analysis of Tumour-Cell-Derived Extracellular Vesicles from Tumour Tissues. J. Extracell. Vesicles 2022, 11, e12214. [Google Scholar] [CrossRef]
- Luo, J.; Zhu, S.; Kang, Y.; Liu, X.; Tan, X.; Zhao, J.; Ding, X.; Li, H. Isolation of CD63-Positive Epididymosomes from Human Semen and Its Application in Improving Sperm Function. J. Extracell. Vesicles 2024, 13, e70006. [Google Scholar] [CrossRef]
- Andrade, A.F.C.; Knox, R.V.; Torres, M.A.; Pavaneli, A.P.P. What is the relevance of seminal plasma from a functional and preservation perspective? Anim. Reprod. Sci. 2022, 246, 106946. [Google Scholar] [CrossRef]
- Hernández, M.; Roca, J.; Calvete, J.J.; Sanz, L.; Muiño-Blanco, T.; Cebrián-Pérez, J.A.; Vázquez, J.M.; Martínez, E.A. Cryosurvival and in vitro fertilizing capacity postthaw is improved when boar spermatozoa are frozen in the presence of seminal plasma from good freezer boars. J. Androl. 2014, 28, 689–697. [Google Scholar] [CrossRef]
- Heise, A.; Kähn, W.; Volkmann, D.H.; Thompson, P.N.; Gerber, D. Influence of seminal plasma on fertility of fresh and frozen-thawed stallion epididymal spermatozoa. Anim. Reprod. Sci. 2010, 118, 48–53. [Google Scholar] [CrossRef]
- Parrilla, I.; Martinez, E.A.; Gil, M.A.; Cuello, C.; Roca, J.; Rodriguez-Martinez, H.; Martinez, C.A. Boar seminal plasma: Current insights on its potential role for assisted reproductive technologies in swine. Anim. Reprod. 2020, 17, e20200022. [Google Scholar] [CrossRef]
- Schjenken, J.E.; Robertson, S.A. The female response to seminal fluid. Physiol. Rev. 2020, 100, 1077–1117. [Google Scholar] [CrossRef] [PubMed]
- Martinez, C.A.; Cambra, J.M.; Gil, M.A.; Parrilla, I.; Alvarez-Rodriguez, M.; Rodriguez-Martinez, H.; Cuello, C.; Martinez, E.A. Seminal plasma induces overexpression of genes associated with embryo development and implantation in Day-6 porcine blastocysts. Int. J. Mol. Sci. 2020, 21, 3662. [Google Scholar] [CrossRef] [PubMed]
- Morgan, H.; Eid, N.; Khoshkerdar, A.; Watkins, A. Defining the male contribution to embryo quality and offspring health in assisted reproduction in farm animals. Anim. Reprod. 2020, 17, e20200018. [Google Scholar] [CrossRef] [PubMed]
- Park, K.-H.; Kim, B.-J.; Kang, J.; Nam, T.-S.; Lim, J.M.; Kim, H.T.; Park, J.K.; Kim, Y.G.; Chae, S.-W.; Kim, U.-H. Ca2+ Signaling Tools Acquired from Prostasomes Are Required for Progesterone-Induced Sperm Motility. Sci. Signal. 2011, 4, ra31. [Google Scholar] [CrossRef]
- Zhang, X.; Liang, M.; Song, D.; Huang, R.; Chen, C.; Liu, X.; Chen, H.; Wang, Q.; Sun, X.; Song, J.; et al. Both Protein and Non-Protein Components in Extracellular Vesicles of Human Seminal Plasma Improve Human Sperm Function via CatSper-Mediated Calcium Signaling. Hum. Reprod. 2024, 39, 658–673. [Google Scholar] [CrossRef]
- Guo, H.; Chang, Z.; Zhang, Z.; Zhao, Y.; Jiang, X.; Yu, H.; Zhang, Y.; Zhao, R.; He, B. Extracellular ATPs Produced in Seminal Plasma Exosomes Regulate Boar Sperm Motility and Mitochondrial Metabolism. Theriogenology 2019, 139, 113–120. [Google Scholar] [CrossRef]
- Naz, R.K.; Rajesh, P.B. Role of Tyrosine Phosphorylation in Sperm Capacitation/Acrosome Reaction. Reprod. Biol. Endocrinol. 2004, 2, 75. [Google Scholar] [CrossRef]
- Petrunkina, A.M.; Waberski, D.; Günzel-Apel, A.R.; Töpfer-Petersen, E. Determinants of Sperm Quality and Fertility in Domestic Species. Reproduction 2007, 134, 3–17. [Google Scholar] [CrossRef]
- Publicover, S.; Harper, C.V.; Barratt, C. [Ca2+]i Signalling in Sperm—Making the Most of What You’ve Got. Nat. Cell Biol. 2007, 9, 235–242. [Google Scholar] [CrossRef]
- Fraser, L.R. The “Switching on” of Mammalian Spermatozoa: Molecular Events Involved in Promotion and Regulation of Capacitation. Mol. Reprod. Dev. 2010, 77, 197–208. [Google Scholar] [CrossRef]
- Xie, Y.; Xu, Z.; Wu, C.; Zhou, C.; Zhang, X.; Gu, T.; Yang, J.; Yang, H.; Zheng, E.; Xu, Z.; et al. Extracellular Vesicle-Encapsulated miR-21-5p in Seminal Plasma Prevents Sperm Capacitation via Vinculin Inhibition. Theriogenology 2022, 193, 103–113. [Google Scholar] [CrossRef] [PubMed]
- Pons-Rejraji, H.; Artonne, C.; Sion, B.; Brugnon, F.; Canis, M.; Janny, L.; Grizard, G. Prostasomes: Inhibitors of Capacitation and Modulators of Cellular Signalling in Human Sperm. Int. J. Androl. 2011, 34, 568–580. [Google Scholar] [CrossRef] [PubMed]
- Bechoua, S.; Rieu, I.; Sion, B.; Grizard, G. Prostasomes as Potential Modulators of Tyrosine Phosphorylation in Human Spermatozoa. Syst. Biol. Reprod. Med. 2011, 57, 139–148. [Google Scholar] [CrossRef]
- Murdica, V.; Giacomini, E.; Alteri, A.; Bartolacci, A.; Cermisoni, G.C.; Zarovni, N.; Papaleo, E.; Montorsi, F.; Salonia, A.; Viganò, P.; et al. Seminal Plasma of Men with Severe Asthenozoospermia Contain Exosomes That Affect Spermatozoa Motility and Capacitation. Fertil. Steril. 2019, 111, 897–908.e2. [Google Scholar] [CrossRef]
- Barranco, I.; Spinaci, M.; Nesci, S.; Mateo-Otero, Y.; Baldassarro, V.A.; Algieri, C.; Bucci, D.; Roca, J. Seminal Extracellular Vesicles Alter Porcine in Vitro Fertilization Outcome by Modulating Sperm Metabolism. Theriogenology 2024, 219, 167–179. [Google Scholar] [CrossRef]
- Tamessar, C.T.; Anderson, A.L.; Bromfield, E.G.; Trigg, N.A.; Parameswaran, S.; Stanger, S.J.; Weidenhofer, J.; Zhang, H.-M.; Robertson, S.A.; Sharkey, D.J.; et al. The Efficacy and Functional Consequences of Interactions between Human Spermatozoa and Seminal Fluid Extracellular Vesicles. Reprod. Fertil. 2024, 5, e230088. [Google Scholar]
- Veerman, R.E.; Teeuwen, L.; Czarnewski, P.; Gucluler Akpinar, G.; Sandberg, A.; Cao, X.; Pernemalm, M.; Orre, L.M.; Gabrielsson, S.; Eldh, M. Molecular Evaluation of Five Different Isolation Methods for Extracellular Vesicles Reveals Different Clinical Applicability and Subcellular Origin. J. Extracell. Vesicles 2021, 10, e12128. [Google Scholar] [CrossRef]
- Nederlof, I.; Meuleman, T.; van der Hoorn, M.L.P.; Claas, F.H.J.; Eikmans, M. The Seed to Success: The Role of Seminal Plasma in Pregnancy. J. Reprod. Immunol. 2017, 123, 24–28. [Google Scholar] [CrossRef]
- Robertson, S.A.; Care, A.S.; Moldenhauer, L.M. Regulatory T Cells in Embryo Implantation and the Immune Response to Pregnancy. J. Clin. Investig. 2018, 128, 4224–4235. [Google Scholar] [CrossRef]
- Huang, N.; Chi, H.; Qiao, J. Role of Regulatory T Cells in Regulating Fetal-Maternal Immune Tolerance in Healthy Pregnancies and Reproductive Diseases. Front. Immunol. 2020, 11, 1023. [Google Scholar] [CrossRef]
- Bai, R.; Latifi, Z.; Kusama, K.; Nakamura, K.; Shimada, M.; Imakawa, K. Induction of Immune-Related Gene Expression by Seminal Exosomes in the Porcine Endometrium. Biochem. Biophys. Res. Commun. 2018, 495, 1094–1101. [Google Scholar] [CrossRef] [PubMed]
- Paktinat, S.; Hashemi, S.M.; Ghaffari Novin, M.; Mohammadi-Yeganeh, S.; Salehpour, S.; Karamian, A.; Nazarian, H. Seminal Exosomes Induce Interleukin-6 and Interleukin-8 Secretion by Human Endometrial Stromal Cells. Eur. J. Obstet. Gynecol. Reprod. Biol. 2019, 235, 71–76. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Jueraitetibaike, K.; Tang, T.; Wang, Y.; Jing, J.; Xue, T.; Ma, J.; Cao, S.; Lin, Y.; Li, X.; et al. Seminal Plasma and Seminal Plasma Exosomes of Aged Male Mice Affect Early Embryo Implantation via Immunomodulation. Front. Immunol. 2021, 12, 723409. [Google Scholar] [CrossRef]
- Zhang, X.; Greve, P.F.; Minh, T.T.N.; Wubbolts, R.; Demir, A.Y.; Zaal, E.A.; Berkers, C.R.; Boes, M.; Stoorvogel, W. Extracellular Vesicles from Seminal Plasma Interact with T Cells in Vitro and Drive Their Differentiation into Regulatory T-Cells. J. Extracell. Vesicles 2024, 13, e12457. [Google Scholar] [CrossRef]
- Prins, J.R.; Gomez-Lopez, N.; Robertson, S.A. Interleukin-6 in Pregnancy and Gestational Disorders. J. Reprod. Immunol. 2012, 95, 1–14. [Google Scholar] [CrossRef]
- Mor, G.; Aldo, P.; Alvero, A.B. The Unique Immunological and Microbial Aspects of Pregnancy. Nat. Rev. Immunol. 2017, 17, 469–482. [Google Scholar] [CrossRef]
- Blois, S.M.; Alba Soto, C.D.; Tometten, M.; Klapp, B.F.; Margni, R.A.; Arck, P.C. Lineage, Maturity, and Phenotype of Uterine Murine Dendritic Cells throughout Gestation Indicate a Protective Role in Maintaining Pregnancy. Biol. Reprod. 2004, 70, 1018–1023. [Google Scholar] [CrossRef]
- Tarazona, R.; Delgado, E.; Guarnizo, M.C.; Roncero, R.G.; Morgado, S.; Sánchez-Correa, B.; Gordillo, J.J.; Dejulián, J.; Casado, J.G. Human Prostasomes Express CD48 and Interfere with NK Cell Function. Immunobiology 2011, 216, 41–46. [Google Scholar] [CrossRef]
- Craciunas, L.; Gallos, I.; Chu, J.; Bourne, T.; Quenby, S.; Brosens, J.J.; Coomarasamy, A. Conventional and Modern Markers of Endometrial Receptivity: A Systematic Review and Meta-Analysis. Hum. Reprod. Update 2019, 25, 202–223. [Google Scholar] [CrossRef]
- Rodriguez-Caro, H.; Dragovic, R.; Shen, M.; Dombi, E.; Mounce, G.; Field, K.; Meadows, J.; Turner, K.; Lunn, D.; Child, T.; et al. In Vitro Decidualisation of Human Endometrial Stromal Cells Is Enhanced by Seminal Fluid Extracellular Vesicles. J. Extracell. Vesicles 2019, 8, 1565262. [Google Scholar] [CrossRef]
- Gholipour, H.; Amjadi, F.S.; Zandieh, Z.; Mehdizadeh, M.; Ajdary, M.; Delbandi, A.A.; Akbari Sene, A.; Aflatoonian, R.; Bakhtiyari, M. Investigation of the Effect of Seminal Plasma Exosomes from the Normal and Oligoasthenoteratospermic Males in the Implantation Process. Rep. Biochem. Mol. Biol. 2023, 12, 294–305. [Google Scholar] [CrossRef] [PubMed]
- Gholipour, H.; Bakhtiyari, M.; Amjadi, F.S.; Mehdizadeh, M.; Aflatoonian, R.; Zandieh, Z. Evaluation of the Effect of Seminal Plasma Exosomes from Unexplained Infertile Men on the Expression of Implantation-Related Genes. Hum. Reprod. 2022, 37. [Google Scholar] [CrossRef]
- Wang, H.; Lin, Y.; Chen, R.; Zhu, Y.; Wang, H.; Li, S.; Yu, L.; Zhang, K.; Liu, Y.; Jing, T.; et al. Human Seminal Extracellular Vesicles Enhance Endometrial Receptivity Through Leukemia Inhibitory Factor. Endocrinology 2024, 165, bqae035. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xie, Y.; Peng, C.; He, J.; Wang, Z.; Xiang, J. Seminal Plasma Extracellular Vesicles: Key Mediators of Intercellular Communication in Mammalian Reproductive Systems. Vet. Sci. 2025, 12, 585. https://doi.org/10.3390/vetsci12060585
Xie Y, Peng C, He J, Wang Z, Xiang J. Seminal Plasma Extracellular Vesicles: Key Mediators of Intercellular Communication in Mammalian Reproductive Systems. Veterinary Sciences. 2025; 12(6):585. https://doi.org/10.3390/vetsci12060585
Chicago/Turabian StyleXie, Yanshe, Chen Peng, Jiayi He, Zhengguang Wang, and Jizhong Xiang. 2025. "Seminal Plasma Extracellular Vesicles: Key Mediators of Intercellular Communication in Mammalian Reproductive Systems" Veterinary Sciences 12, no. 6: 585. https://doi.org/10.3390/vetsci12060585
APA StyleXie, Y., Peng, C., He, J., Wang, Z., & Xiang, J. (2025). Seminal Plasma Extracellular Vesicles: Key Mediators of Intercellular Communication in Mammalian Reproductive Systems. Veterinary Sciences, 12(6), 585. https://doi.org/10.3390/vetsci12060585