Molecular Identification and Antimicrobial Resistance Characteristics of Extended-Spectrum Beta-Lactamase Producing Klebsiella pneumoniae Isolated from Captive Wild and Migratory Birds
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area and Species Selection
2.2. Sample Collection
2.3. Isolation and Identification of K. pneumoniae
2.4. Genomic DNA Extraction
2.5. Molecular Detection of K. pneumoniae by PCR
2.6. Double-Disk Synergy Test (DDST) for ESBL Detection
2.7. Antimicrobial Susceptibility Testing
2.8. Identification of ß-lactamase Encoding Genes
2.9. Detection of AMR Genes
2.10. MAR Index and MDR
2.11. Statistical Analysis
3. Results
3.1. Prevalence and Distribution of K. pneumoniae
3.2. Antibiogram Profile
3.3. MAR and MDR
3.4. ß-lactamase Encoding and Antimicrobial Resistance Gene Frequency
3.5. Phenotype–Genotype Correlations
3.6. Association Between Resistance Genes and Phenotypic Antibiotic Resistance
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Orubu, E.S.F.; Zaman, M.H.; Rahman, T.; Wirtz, V.J. Veterinary antimicrobial resistance containment in Bangladesh: Evaluating the national action plan and scoping the evidence on implementation. J. Glob. Antimicrob. Resist. 2020, 21, 105–115. [Google Scholar] [CrossRef]
- Elsohaby, I.; Samy, A.; Elmoslemany, A.; Alorabi, M.; Alkafafy, M.; Aldoweriej, A.; Al-Marri, T.; Elbehiry, A.; Fayez, M. Migratory Wild Birds as a Potential Disseminator of Antimicrobial-Resistant Bacteria around Al-Asfar Lake, Eastern Saudi Arabia. Antibiotics 2021, 10, 260. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Lu, X.; Chen, S.; Liu, Y.; Peng, D.; Wang, Z.; Li, R. Molecular epidemiology and population genomics of tet(X4), blaNDM or mcr-1 positive Escherichia coli from migratory birds in southeast coast of China. Ecotoxicol. Environ. Saf. 2022, 244, 114032. [Google Scholar] [CrossRef] [PubMed]
- Mansoor, M.H.; Lu, X.; Woksepp, H.; Sattar, A.; Humak, F.; Ali, J.; Li, R.; Bonnedahl, J.; Mohsin, M. Detection and genomic characterization of Klebsiella pneumoniae and Escherichia coli harboring tet(X4) in black kites (Milvus migrans) in Pakistan. Sci. Rep. 2024, 14, 9054. [Google Scholar] [CrossRef] [PubMed]
- Qiu, Y.; Lv, C.; Chen, J.; Sun, Y.; Tang, T.; Zhang, Y.; Yang, Y.; Wang, G.; Xu, Q.; Zhang, X.; et al. The global distribution and diversity of wild-bird-associated pathogens: An integrated data analysis and modeling study. Med. 2025, 6, 100553. [Google Scholar] [CrossRef]
- Shah, A.; Alam, S.; Kabir, M.; Fazal, S.; Khurshid, A.; Iqbal, A.; Khan, M.M.; Khan, W.; Qayyum, A.; Hussain, M.; et al. Migratory birds as the vehicle of transmission of multi drug resistant extended spectrum β lactamase producing Escherichia fergusonii, an emerging zoonotic pathogen. Saudi J. Biol. Sci. 2022, 29, 3167–3176. [Google Scholar] [CrossRef]
- Islam, A.; Amin, E.; Munro, S.; Hossain, M.E.; Islam, S.; Hassan, M.M.; Al Mamun, A.; Samad, M.A.; Shirin, T.; Rahman, M.Z.; et al. Potential risk zones and climatic factors influencing the occurrence and persistence of avian influenza viruses in the environment of live bird markets in Bangladesh. One Health 2013, 17, 100644. [Google Scholar] [CrossRef]
- Shoaib, M.; Tang, M.; Aqib, A.I.; Zhang, X.; Wu, Z.; Wen, Y.; Hou, X.; Xu, J.; Hao, R.; Wang, S.; et al. Dairy farm waste: A potential reservoir of diverse antibiotic resistance and virulence genes in aminoglycoside- and beta-lactam-resistant Escherichia coli in Gansu Province, China. Environ. Res. 2024, 263, 120190. [Google Scholar] [CrossRef]
- Kathi, S. Enterobacter spp. Virulence Factors and Biofilm Components: Synthesis, Structure, Function, and Inhibitors. In ESKAPE Pathogens; Springer: Singapore, 2024; pp. 349–365. [Google Scholar] [CrossRef]
- Yehia, N.; Salem, H.M.; Mahmmod, Y.; Said, D.; Samir, M.; Mawgod, S.A.; Sorour, H.K.; AbdelRahman, M.A.; Selim, S.; Saad, A.M.; et al. Common viral and bacterial avian respiratory infections: An updated review. Poult. Sci. 2023, 102, 102553. [Google Scholar] [CrossRef]
- Knobl, P.; Viveiros, J.F.; Franco, L.S.; Davies, Y.M.; Cunha, M.P.V.; Menão, M.C.; Sato, M.I.Z.; de Moura Gomes, V.T.; Moreno, A.M.; Hidasi, H.W.; et al. Identificação de klebsiella spp. nas fezes de psitacídeos cativos. Atas Saúde Ambient. ASA 2017, 5, 189–193. [Google Scholar]
- Lepuschitz, S.; Hauser, K.; Schriebl, A.; Schlagenhaufen, C.; Stöger, A.; Chakeri, A.; Vötsch, K.; Pekard-Amenitsch, S.; Springer, B.; Allerberger, F.; et al. Fecal Klebsiella pneumoniae Carriage Is Intermittent and of High Clonal Diversity. Front. Microbiol. 2020, 11, 581081. [Google Scholar] [CrossRef] [PubMed]
- El Fertas-Aissani, R.; Messai, Y.; Alouache, S.; Bakour, R. Virulence Profiles and Antibiotic Susceptibility Patterns of Klebsiella Pneumoniae Strains Isolated from Different Clinical Specimens. Pathologie Biologie 2013, 61, 209–216. [Google Scholar] [CrossRef] [PubMed]
- Adhikari, B.; Jun, S.-R.; Kwon, Y.M.; Kiess, A.S.; Adhikari, P. Effects of Housing Types on Cecal Microbiota of Two Different Strains of Laying Hens During the Late Production Phase. Front. Vet. Sci. 2020, 7, 331. [Google Scholar] [CrossRef] [PubMed]
- Davies, Y.M.; Cunha, M.P.V.; Dropa, M.; Lincopan, N.; Gomes, V.T.M.; Moreno, L.Z.; Sato, M.I.Z.; Moreno, A.M.; Knöbl, T. Pandemic Clones of CTX-M-15 Producing Klebsiella pneumoniae ST15, ST147, and ST307 in Companion Parrots. Microorganisms 2022, 10, 1412. [Google Scholar] [CrossRef]
- Broberg, C.A.; Palacios, M.; Miller, V.L. Klebsiella: A long way to go towards understanding this enigmatic jetsetter. F1000Prime Rep. 2014, 6, 64. [Google Scholar] [CrossRef]
- Bobbadi, S.; Chinnam, B.K.; Nelapati, S.; Tumati, S.R.; Kandhan, S.; Gottapu, C.; Boddu, S.V. Occurrence and genetic diversity of ESBL producing Klebsiella species isolated from livestock and livestock products. J. Food Saf. 2020, 40, e12738. [Google Scholar] [CrossRef]
- Wang, X.; Zhao, J.; Ji, F.; Wang, M.; Wu, B.; Qin, J.; Dong, G.; Zhao, R.; Wang, C. Genomic Characteristics and Molecular Epidemiology of Multidrug-Resistant Klebsiella pneumoniae Strains Carried by Wild Birds. Microbiol. Spectr. 2023, 11, e02691-22. [Google Scholar] [CrossRef]
- Lee, C.-R.; Lee, J.H.; Park, K.S.; Kim, Y.B.; Jeong, B.C.; Lee, S.H. Global Dissemination of Carbapenemase-Producing Klebsiella pneumoniae: Epidemiology, Genetic Context, Treatment Options, and Detection Methods. Front. Microbiol. 2016, 7, 895. [Google Scholar] [CrossRef]
- McDougall, F.K.; Wyres, K.L.; Judd, L.M.; Boardman, W.S.; Holt, K.E.; Power, M.L. Novel strains of Klebsiella africana and Klebsiella pneumoniae in fruit bats (Pteropus poliocephalus). Res. Microbiol. 2021, 172, 103879. [Google Scholar] [CrossRef]
- Martin, M.J.; Stribling, W.; Ong, A.C.; Maybank, R.; Kwak, Y.I.; Rosado-Mendez, J.A.; Preston, L.N.; Lane, K.F.; Julius, M.; Jones, A.R.; et al. A panel of diverse Klebsiella pneumoniae clinical isolates for research and development. bioRxiv 2022, 9, 000967. [Google Scholar] [CrossRef]
- Raza, S.; Mohsin, M.; Madni, W.A.; Sarwar, F.; Saqib, M.; Aslam, B. First Report of bla CTX-M-15 -Type ESBL-Producing Klebsiella pneumoniae in Wild Migratory Birds in Pakistan. EcoHealth 2017, 14, 182–186. [Google Scholar] [CrossRef] [PubMed]
- Liza, N.A.; Hossain, H.; Rahman Chowdhury, M.S.; Al Naser, J.; Lasker, R.M.; Rahman, A.; Haque, M.A.; Al Mamun, M.; Hossain, M.M.; Rahman, M.M. Molecular epidemiology and antimicrobial resistance of Extended-Spectrum β-Lactamase (ESBL)-producing Klebsiella pneumoniae in retail cattle meat. Vet. Med. Int. 2024, 2024, 3952504. [Google Scholar] [CrossRef] [PubMed]
- CLSI. Performance Standards for Antimicrobial Susceptibility Testing, 30th ed.; Clinical and Laboratory Standard Institute: Wayne, PA, USA, 2020; CLSI Supplement M100. [Google Scholar]
- Dallenne, C.; Da Costa, A.; Decré, D.; Favier, C.; Arlet, G. Development of a set of multiplex PCR assays for the detection of genes encoding important beta-lactamases in Enterobacteriaceae. J. Antimicrob. Chemother. 2010, 65, 490–495. [Google Scholar] [CrossRef] [PubMed]
- Siddiky, N.A.; Sarker, M.S.; Khan, M.S.R.; Begum, R.; Kabir, M.E.; Karim, M.R.; Rahman, M.T.; Mahmud, A.; Samad, M.A. Virulence and Antimicrobial Resistance Profiles of Salmonella Enterica Serovars Isolated from Chicken at Wet Markets in Dhaka, Bangladesh. Microorganisms 2021, 9, 952. [Google Scholar] [CrossRef]
- Lanz, R.; Kuhnert, P.; Boerlin, P. Antimicrobial Resistance and Resistance Gene Determinants in Clinical Escherichia Coli from Different Animal Species in Switzerland. Vet Microbiol 2003, 91, 73–84. [Google Scholar] [CrossRef]
- Al Naser, J.; Hossain, H.; Chowdhury, S.R.; Liza, N.A.; Lasker, R.M.; Rahman, A.; Haque, A.; Hossain, M.; Rahman, M. Exploring of spectrum beta lactamase producing multidrug-resistant Salmonella enterica serovars in goat meat markets of Bangladesh. Vet. Anim. Sci. 2024, 25, 100367. [Google Scholar] [CrossRef]
- Al Emon, A.; Hossain, H.; Chowdhury, M.S.R.; Rahman, M.A.; Tanni, F.Y.; Asha, M.N.; Akter, H.; Hossain, M.M.; Islam, M.R.; Rahman, M.M. Prevalence, antimicrobial susceptibility profiles and resistant gene identification of bovine subclinical mastitis pathogens in Bangladesh. Heliyon 2024, 10, e34567. [Google Scholar] [CrossRef]
- Asha, M.N.; Chowdhury, S.R.; Hossain, H.; Rahman, A.; Al Emon, A.; Tanni, F.Y.; Islam, R.; Hossain, M.; Rahman, M. Antibacterial potential of lactic acid bacteria isolated from raw cow milk in Sylhet district, Bangladesh: A molecular approach. Vet. Med. Sci. 2024, 10, e1463. [Google Scholar] [CrossRef]
- Rahman, M.; Hossain, H.; Chowdhury, S.R.; Hossain, M.; Saleh, A.; Binsuwaidan, R.; Noreddin, A.; Helmy, Y.A.; El Zowalaty, M.E. Molecular Characterization of Multidrug-Resistant and Extended-Spectrum β-Lactamases-Producing Salmonella enterica Serovars Enteritidis and Typhimurium Isolated from Raw Meat in Retail Markets. Antibiotics 2024, 13, 586. [Google Scholar] [CrossRef]
- Moradigaravand, D.; Senok, A.; Al-Dabal, L.; Khansaheb, H.H.; Habous, M.; Alsuwaidi, H.; Alsheikh-Ali, A. Unveiling the dynamics of antimicrobial utilization and resistance in a large hospital network over five years: Insights from health record data analysis. PLoS Digit. Health 2023, 2, e0000424. [Google Scholar] [CrossRef]
- Shariati, A.; Noei, M.; Askarinia, M.; Khoshbayan, A.; Farahani, A.; Chegini, Z. Inhibitory effect of natural compounds on quorum sensing system in Pseudomonas aeruginosa: A helpful promise for managing biofilm community. Front. Pharmacol. 2024, 15, 1350391. [Google Scholar] [CrossRef] [PubMed]
- Khan, B.N.; Tabasum, S.; Ashfaq, Y.; Mukhtar, A.; Haider, M.A.; Fatima, M.; Gang, S.; Tufail, A. Assessment of Antibiotic Resistance Profiles of Pathogenic Bacteria Isolates from Migratory Birds in the River Ravi Stopover Site. Pak. Biomed. J. 2024, 7, 21–26. [Google Scholar] [CrossRef]
- Sharma, A.; Thakur, A.; Thakur, N.; Kumar, V.; Chauhan, A.; Bhardwaj, N.; Sr, A.T. Changing trend in the antibiotic resistance pattern of Klebsiella pneumonia isolated from endotracheal aspirate samples of ICU patients of a tertiary care hospital in North India. Cureus 2023, 15, e36317. [Google Scholar] [CrossRef] [PubMed]
- Veloo, Y.; Thahir, S.S.A.; Rajendiran, S.; Hock, L.K.; Ahmad, N.; Muthu, V.; Shaharudin, R. Multidrug-Resistant Gram-Negative Bacteria and Extended-Spectrum β-Lactamase-Producing Klebsiella pneumoniae from the Poultry Farm Environment. Microbiol. Spectr. 2022, 10, e0269421. [Google Scholar] [CrossRef]
- Darwich, L.; Vidal, A.; Seminati, C.; Albamonte, A.; Casado, A.; López, F.; Molina-López, R.A.; Migura-Garcia, L. High prevalence and diversity of extended-spectrum β-lactamase and emergence of OXA-48 producing Enterobacterales in wildlife in Catalonia. PLoS ONE 2019, 14, e0210686. [Google Scholar] [CrossRef]
- Liao, X.; Yang, R.-S.; Xia, J.; Chen, L.; Zhang, R.; Fang, L.-X.; Lei, F.; Song, G.; Jia, L.; Han, L.; et al. High colonization rate of a novel carbapenem-resistant Klebsiella lineage among migratory birds at Qinghai Lake, China. J. Antimicrob. Chemother. 2019, 74, 2895–2903. [Google Scholar] [CrossRef]
- Kerantzas, C.A.; Jacobs, W.R., Jr. Origins of combination therapy for tuberculosis: Lessons for future antimicrobial development and application. mBio 2017, 8, e01586-16. [Google Scholar] [CrossRef]
- Umadevi, S.; Kandhakumari, G.; Joseph, N.M.; Kumar, S.; Easow, J.M.; Stephen, S.; Singh, U.K. Prevalence and antimicrobial susceptibility pattern of ESBL producing Gram negative bacilli. J. Clin. Diagn. Res. 2011, 5, 236–239. [Google Scholar]
- Hordijk, J.; Schoormans, A.; Kwakernaak, M.; Duim, B.; Broens, E.; Dierikx, C.; Mevius, D.; Wagenaar, J.A. High prevalence of fecal carriage of extended spectrum β-lactamase/AmpC-producing Enterobacteriaceae in cats and dogs. Front. Microbiol. 2013, 4, 242. [Google Scholar] [CrossRef]
- Ansharieta, R.; Ramandinianto, S.C.; Effendi, M.H.; Plumeriastuti, H. Molecular identification of blaCTX-M and blaTEM genes encoding extended-spectrum β-lactamase (ESBL) producing Escherichia coli isolated from raw cow’s milk in East Java, Indonesia. Biodiversitas 2021, 22, 1600–1605. [Google Scholar] [CrossRef]
- Yanestria, S.M.; Dameanti, F.N.A.E.P.; Musayannah, B.G.; Pratama, J.W.A.; Witaningrum, A.M.; Effendi, M.H.; Ugbo, E.N. Antibiotic resistance pattern of extended-spectrum β-lactamase (ESBL) producing Escherichia coli isolated from broiler farm environment in Pasuruan district, Indonesia. Biodiversitas 2022, 23, 4460–4465. [Google Scholar] [CrossRef]
- Effendi, M.H.; Tyasningsih, W.; Yurianti, Y.A.; Rahmahani, J.; Harijani, N.; Plumeriastuti, H. Presence of multidrug resistance (MDR) and extended-spectrum beta-lactamase (ESBL) of Escherichia coli isolated from cloacal swab of broilers in several wet markets in Surabaya, Indonesia. Biodiversitas 2021, 22, 304–310. [Google Scholar] [CrossRef]
- Safika, S.; Nilasari, Z.; Pasaribu, F.H. Detection of antibiotic resistance coding gene in Klebsiella pneumoniae bacteria isolated from broiler chickens in West Java, Indonesia. J. Appl. Pharm. Sci. 2022, 12, 190–198. [Google Scholar] [CrossRef]
- Chaudhary, S.; Rai, T.; Arora, A.; Chandra, M. Multi Drug Resistant (MDR) Klebsiella pnuemoniae Isolated from Different Sources. Agric. Sci. Dig. 2024. [Google Scholar] [CrossRef]
- Begum, R.; Asha, N.A.; Dipu, D.C.C.; Roy, M.; Rahman, A.; Chowdhury, S.R.; Hossain, H.; Islam, R.; Uddin, B.; Rahman, M.; et al. Virulence and Antimicrobial Resistance Patterns of Salmonella spp. Recovered from Migratory and Captive Wild Birds. Vet. Med. Sci. 2024, 10, e70102. [Google Scholar] [CrossRef]
- Effah, C.Y.; Sun, T.; Liu, S.; Wu, Y. Klebsiella pneumoniae: An increasing threat to public health. Annals of Clinical Microbiology and Antimicrobials 2020, 19, 1. [Google Scholar] [CrossRef]
- Lee, H.-J.; Woo, Y.-K.; Choi, B.-K.; Jeong, O.-M.; Kim, J.-H.; Kim, D.-W.; Jeong, J.-Y.; Kwon, Y.-K.; Kang, M.-S. High prevalence of a gene cluster conferring resistance to streptomycin, sulfonamide, and tetracycline in Escherichia coli isolated from indigenous wild birds. J. Gen. Appl. Microbiol. 2021, 67, 81–84. [Google Scholar] [CrossRef]
- Di Francesco, A.; Salvatore, D.; Bertelloni, F.; Ebani, V.V. Tetracycline Resistance Genes in Wild Birds from a Wildlife Recovery Centre in Central Italy. Animals 2022, 13, 76. [Google Scholar] [CrossRef]
- Wang, D.; Ji, X.; Jiang, B.; Yuan, Y.; Liang, B.; Sun, S.; Zhu, L.; Liu, J.; Guo, X.; Yin, Y.; et al. Prevalence of Antibiotic Resistance and Virulence Genes in Escherichia coli Carried by Migratory Birds on the Inner Mongolia Plateau of Northern China from 2018 to 2023. Microorganisms 2024, 12, 1076. [Google Scholar] [CrossRef]
Name of PCR | Primer | Genes Targeted | Primer Sequence (5’–3’) | Amplicon Size | References |
---|---|---|---|---|---|
Uniplex PCR | rpoB | K. pneumoniae | F-CAACGGTGTGGTTACTGACG | 108 | [17] |
R-TCTACGAAGTGGCCGTTTTC | |||||
mPCR-I | blaTEM | TEM-1 & 2 | F-CATTTCCGTGTCGCCCTTATTC | 800 | [25] |
R-CGTTCATCCATAGTTGCCTGAC | |||||
blaSHV | SHV-1 | F-AGCCGCTTGAGCAAATTAAAC | 713 | ||
R-ATCCCGCAGATAAATCACCAC | |||||
blaOXA | OXA-1, 4 & 30 | F-GGCACCAGATTCAACTTTCAAG | 564 | ||
R-GACCCCAAGTTTCCTGTAAGTG | |||||
mPCR-II | tet (A) | tet (A) | F-GGCGGTCTTCTTCATCATGC | 502 | [26] |
R-CGGCAGGCAGAGCAAGTAGA | |||||
str(A) | str(A) | F-ATGGTGGACCCTAAAACTCT | 893 | ||
R-CGTCTAGGATCGAGACAAAG | |||||
Uniplex PCR | sul1 | sul1 | F-CGGCATCGTCAACATAACCT | 433 | [27] |
R-TGTGCGGATGAAGTCAGCTC |
Attributes (Locations) | No. of Isolates Tested | Positive Isolates | Prevalence % (95% CI) | χ2 Value | p-Value |
---|---|---|---|---|---|
Sunamganj Haor | 94 | 41 | 43.6 (33.4–54.2) | 7.97 | 0.047 |
Haripur | 19 | 12 | 63.2 (38.4–83.7) | ||
Sreemangal Zoo | 70 | 31 | 44.3 (32.4–56.7) | ||
Tilagor Eco-Park, Sylhet | 36 | 9 | 25.0 (12.1–42.2) | ||
Total | 219 | 93 | 42.47 (35.8–49.3) |
Species of Bird | x/N | Frequency % | 95% CI | p-Value |
---|---|---|---|---|
Dove | 2/4 | 50.0 | 6.8–93.2 | 0.48 |
Hornbill | 4/5 | 80.0 | 28.4–99.5 | |
Purple Heron | 1/3 | 33.3 | 0.8–90.6 | |
Grey Heron | 3/6 | 50.0 | 11.8–88.2 | |
Black Crowned Night Heron | 4/6 | 66.7 | 22.3–95.7 | |
Red Jungle Fowl | 3/4 | 75.0 | 19.4–99.4 | |
Eagle | 2/6 | 33.3 | 4.3–77.7 | |
Mathura | 2/3 | 66.7 | 9.4–99.2 | |
Parrot | 4/7 | 57.1 | 18.4–90.1 | |
Grey Parrot | 3/7 | 42.9 | 9.9–81.6 | |
Peacock | 2/5 | 40.0 | 5.3–85.3 | |
Kalim | 3/6 | 50.0 | 11.8–88.2 | |
Myna | 1/6 | 16.7 | 0.4–64.1 | |
Kite | 0/3 | 0 | 0–70.8 * | |
Vulture | 1/3 | 33.3 | 0.8–90.6 | |
Macaw | 0/1 | 0 | 0–97.5 * | |
Golden Pigeon | 1/1 | 100.0 | 2.5–100.0 * | |
Unidentified species | 4/4 | 100.0 | 39.8–100.0 * |
Antibiotic | Resistance Gene | Dependent Variable (Phenotype) | Independent Variable (Genotype) | Odds Ratio (OR) | 95% CI (Lower–Upper) | p-Value |
---|---|---|---|---|---|---|
Tetracycline | tetA | TE Resistance (1 = Yes, 0 = No) | Presence of tetA (1 = Yes, 0 = No) | 5.75 | 1.4–23.9 | 0.016 |
Streptomycin | strA | S Resistance (1 = Yes, 0 = No) | Presence of strA (1 = Yes, 0 = No) | 2.04 | 0.68–6.2 | 0.203 |
Trimethoprim-Sulfamethoxazole | sul1 | SXT Resistance (1 = Yes, 0 = No) | Presence of sul1 (1 = Yes, 0 = No) | 6.25 | 1.5–26.2 | 0.012 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Islam, M.M.; Uddin, M.B.; Hossain, H.; Roy, M.; Begum, R.; Ghosh, P.K.; Rahman, M.M.; Cho, H.-S.; Hossain, M.M. Molecular Identification and Antimicrobial Resistance Characteristics of Extended-Spectrum Beta-Lactamase Producing Klebsiella pneumoniae Isolated from Captive Wild and Migratory Birds. Vet. Sci. 2025, 12, 556. https://doi.org/10.3390/vetsci12060556
Islam MM, Uddin MB, Hossain H, Roy M, Begum R, Ghosh PK, Rahman MM, Cho H-S, Hossain MM. Molecular Identification and Antimicrobial Resistance Characteristics of Extended-Spectrum Beta-Lactamase Producing Klebsiella pneumoniae Isolated from Captive Wild and Migratory Birds. Veterinary Sciences. 2025; 12(6):556. https://doi.org/10.3390/vetsci12060556
Chicago/Turabian StyleIslam, Muhammad Mujahidul, Md Bashir Uddin, Hemayet Hossain, Milton Roy, Ruhena Begum, Piash Kumer Ghosh, Md. Mahfujur Rahman, Ho-Seong Cho, and Md. Mukter Hossain. 2025. "Molecular Identification and Antimicrobial Resistance Characteristics of Extended-Spectrum Beta-Lactamase Producing Klebsiella pneumoniae Isolated from Captive Wild and Migratory Birds" Veterinary Sciences 12, no. 6: 556. https://doi.org/10.3390/vetsci12060556
APA StyleIslam, M. M., Uddin, M. B., Hossain, H., Roy, M., Begum, R., Ghosh, P. K., Rahman, M. M., Cho, H.-S., & Hossain, M. M. (2025). Molecular Identification and Antimicrobial Resistance Characteristics of Extended-Spectrum Beta-Lactamase Producing Klebsiella pneumoniae Isolated from Captive Wild and Migratory Birds. Veterinary Sciences, 12(6), 556. https://doi.org/10.3390/vetsci12060556