Socioeconomic Impact of Foot and Mouth Disease Outbreaks on Smallholder Cattle Farmers in Yogyakarta, Indonesia
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Data Collection
2.2. Variable Measurement
2.3. Statistical Analysis
3. Results
4. Discussion
4.1. Livestock Management Practices in Response to FMD Prevalence
4.2. Farmer Characteristics as Determinants of FMD Prevalence
4.3. Impact of FMD on Farmers’ Socioeconomic Conditions
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Organization for Animal Health Official Disease Status. Available online: https://www.woah.org/en/what-we-do/animal-health-and-welfare/official-disease-status/ (accessed on 27 November 2022).
- González Gordon, L.; Porphyre, T.; Muhanguzi, D.; Muwonge, A.; Boden, L.; Bronsvoort, B.M.d.C. A Scoping Review of Foot-and-mouth Disease Risk, Based on Spatial and Spatio-temporal Analysis of Outbreaks in Endemic Settings. Transbound. Emerg. Dis. 2022, 69, 3198–3215. [Google Scholar] [CrossRef] [PubMed]
- Blacksell, S.D.; Siengsanan-Lamont, J.; Kamolsiripichaiporn, S.; Gleeson, L.J.; Windsor, P.A. A History of FMD Research and Control Programmes in Southeast Asia: Lessons from the Past Informing the Future. Epidemiol. Infect. 2019, 147, e171. [Google Scholar] [CrossRef] [PubMed]
- Nason, J. Foot and Mouth Disease Reported in Indonesia. Beef Central. Available online: https://www.beefcentral.com/news/foot-and-mouth-disease-outbreak-reported-in-indonesia/ (accessed on 27 November 2022).
- Chen, R.; Gardiner, E.; Quigley, A. Foot and Mouth Disease Outbreak in Indonesia: Summary and Implications. Glob. Biosecurity 2022, 4, 175. [Google Scholar] [CrossRef]
- Feng, B.; Gao, J. AnthraxKP: A Knowledge Graph-Based, Anthrax Knowledge Portal Mined from Biomedical Literature. Database 2022, 2022, baac037. [Google Scholar] [CrossRef]
- Sieng, S.; Patrick, I.W.; Walkden-Brown, S.W.; Sar, C. A Cost-benefit Analysis of Foot and Mouth Disease Control Program for Smallholder Cattle Farmers in Cambodia. Transbound. Emerg. Dis. 2022, 69, 2126–2139. [Google Scholar] [CrossRef]
- Ministry of Agriculture Republic Indonesia FMD Infected Map. Available online: https://crisiscenterpmk.ditjenpkh.pertanian.go.id/peta-terdampak-pmk/?l=en (accessed on 27 November 2022).
- United Nations FAO Calls for Action amid Foot-and-Mouth Disease Outbreaks. Available online: https://news.un.org/en/story/2025/05/1162896 (accessed on 17 May 2025).
- Soehadji, M.M.; Setyaningsih, H. The Experience of Indonesia in the Control and Eradication of Foot-and-Mouth Disease. In Proceedings of the Diagnosis and Epidemiology of Foot-and-Mouth Disease in Southeast Asia: Proceedings of an International Workshop, Lampang, Thailand, 6–9 September 1993; Australian Centre for International Agricultural Research Proceedings: Canberra, Australia, 1994. [Google Scholar]
- Windsor, P. Contribution of Australian Veterinarians to the Eradication and Control of FMD in Southeast Asia. In Proceedings of the Australian Veterinary History Record, Brisbane, Australia, 24–29 May 2015. [Google Scholar]
- Afriansyah, A.; Darmawan, A.R.; Pramudianto, A. Enforcing Law in Undelimited Maritime Areas: Indonesian Border Experience. Int. J. Mar. Coast. Law 2022, 37, 282–299. [Google Scholar] [CrossRef]
- Lestari, V.S.; Sirajuddin, S.N.; Asnawi, A. Biosecurity Adoption on Cattle Farms in Indonesia. Eur. J. Sustain. Dev. 2014, 3, 403–408. [Google Scholar] [CrossRef]
- Widiati, R. Developing Beef Cattle Industry at Smallholders to Support Beef Self-Sufficiency. Indones. Bull. Anim. Vet. Sci. 2015, 24, 191–200. [Google Scholar] [CrossRef]
- Iyai, D.A.; Nurhayati, D.; Pakage, S.; Widayati, I. Impact of Conventional Cattle Farming Systems on Farmer Awareness, Livestock Output and Household Income. J. Ilmu Produksi Dan Teknol. Has. Peternak. 2020, 8, 144–150. [Google Scholar] [CrossRef]
- Dernburg, A.R.; Fabre, J.; Philippe, S.; Sulpice, P.; Calavas, D. A Study of the Knowledge, Attitudes, and Behaviors of French Dairy Farmers Toward the Farm Register. J. Dairy Sci. 2007, 90, 1767–1774. [Google Scholar] [CrossRef]
- Govindaraj, G.; Nagalingam, M.; Nethrayini, K.; Shalini, R.; Shome, R.; Bambal, R.; Sairiwal, L.; Rahman, H. Assessment of Brucellosis Knowledge, Attitude and Practice among Veterinarians in India. J. Exp. Biol. Agric. Sci. 2016, 4, S83–S94. [Google Scholar] [CrossRef]
- Bandura, A. Social Learning Theories; Prentice Hall: Hoboken, NJ, USA, 1976. [Google Scholar]
- Knight-Jones, T.J.D.; Rushton, J. The Economic Impacts of Foot and Mouth Disease—What Are They, How Big Are They and Where Do They Occur? Prev. Vet. Med. 2013, 112, 161–173. [Google Scholar] [CrossRef]
- Rodriguez, L.L.; Gay, C.G. Development of Vaccines toward the Global Control and Eradication of Foot-and-Mouth Disease. Expert. Rev. Vaccines 2011, 10, 377–387. [Google Scholar] [CrossRef]
- Verma, A.K.; Pal, B.C.; Singh, C.P.; Jain, U.; Yadav, S.K.; Mahima, M. Studies of the Outbreaks of Foot and Mouth Disease in Uttar Pradesh, India, Between 2000 and 2006. Asian J. Epidemiol. 2010, 3, 141–147. [Google Scholar] [CrossRef]
- Onono, J.O.; Wieland, B.; Rushton, J. Constraints to Cattle Production in a Semiarid Pastoral System in Kenya. Trop. Anim. Health Prod. 2013, 45, 1415–1422. [Google Scholar] [CrossRef]
- Shankar, B.; Morzaria, S.; Fiorucci, A.; Hak, M. Animal Disease and Livestock-Keeper Livelihoods in Southern Cambodia. Int. Dev. Plan. Rev. 2012, 34, 39–63. [Google Scholar] [CrossRef]
- Young, J.R.; Suon, S.; Andrews, C.J.; Henry, L.A.; Windsor, P.A. Assessment of Financial Impact of Foot and Mouth Disease on Smallholder Cattle Farmers in Southern Cambodia. Transbound. Emerg. Dis. 2013, 60, 166–174. [Google Scholar] [CrossRef]
- Rast, L.; Windsor, P.A.; Khounsy, S. Limiting the Impacts of Foot and Mouth Disease in Large Ruminants in Northern Lao People’s Democratic Republic by Vaccination: A Case Study. Transbound. Emerg. Dis. 2010, 57, 147–153. [Google Scholar] [CrossRef] [PubMed]
- Putra, R.R.S.; Liu, Z.; Lund, M. The Impact of Biogas Technology Adoption for Farm Households—Empirical Evidence from Mixed Crop and Livestock Farming Systems in Indonesia. Renew. Sustain. Energy Rev. 2017, 74, 1371–1378. [Google Scholar] [CrossRef]
- Martindah, E. Risk Factors, Attitude and Knowledge of Farmers in Controlling Anthrax. Indones. Bull. Anim. Vet. Sci. 2018, 27, 135. [Google Scholar] [CrossRef]
- Nguyen, T.P.L.; Seddaiu, G.; Roggero, P.P. Declarative or Procedural Knowledge? Knowledge for Enhancing Farmers’ Mitigation and Adaptation Behaviour to Climate Change. J. Rural. Stud. 2019, 67, 46–56. [Google Scholar] [CrossRef]
- Liao, X.; Nguyen, T.P.L.; Sasaki, N. Use of the Knowledge, Attitude, and Practice (KAP) Model to Examine Sustainable Agriculture in Thailand. Reg. Sustain. 2022, 3, 41–52. [Google Scholar] [CrossRef]
- Wessman, W.L. The Nature of Thought: Maturity of Mind; University Press of America: New York, NY, USA, 2006. [Google Scholar]
- Hulme, M. “Gaps” in Climate Change Knowledge. Environ. Humanit. 2018, 10, 330–337. [Google Scholar] [CrossRef]
- Ajzen, I.; Fishbein, M. Attitudes and the Attitude-Behavior Relation: Reasoned and Automatic Processes. Eur. Rev. Soc. Psychol. 2000, 11, 1–33. [Google Scholar] [CrossRef]
- Bourdieu, P. The Logic of Practice; Stanford University Press: Redwood City, CA, USA, 1990. [Google Scholar]
- Abera, A.; Yirgu, T.; Uncha, A. Determinants of Rural Livelihood Diversification Strategies among Chewaka Resettlers’ Communities of Southwestern Ethiopia. Agric. Food Secur. 2021, 10, 30. [Google Scholar] [CrossRef]
- House, R.J.; Hanges, P.J.; Javidan, M.; Dorfman, P.W.; Gupta, V. Culture, Leadership, and Organizations. The Globe Study of 62 Societies; Sage Publications: London, UK, 2004. [Google Scholar]
- Khandker, S.; Koolwal, G.B.; Samad, H. Handbook on Impact Evaluation; The World Bank: Washington, DC, USA, 2009; ISBN 978-0-8213-8028-4. [Google Scholar]
- Becker, S.O.; Ichino, A. Estimation of Average Treatment Effects Based on Propensity Scores. Stata J. 2002, 2, 358–377. [Google Scholar] [CrossRef]
- Caliendo, M.; Kopeinig, S. Some Practical Guidance for the Implementation of Propensity Score Matching. J. Econ. Surv. 2008, 22, 31–72. [Google Scholar] [CrossRef]
- Imbens, G.W.; Rubin, D.B. Causal Inference for Statistics, Social, and Biomedical Sciences; Cambridge University Press: Cambridge, UK, 2015; ISBN 9780521885881. [Google Scholar]
- Rosenbaum, P.R.; Rubin, D.B. The Central Role of the Propensity Score in Observational Studies for Causal Effects. Biometrika 1983, 70, 41–55. [Google Scholar] [CrossRef]
- Stuart, E.A. Matching Methods for Causal Inference: A Review and a Look Forward. Stat. Sci. 2010, 25, 1. [Google Scholar] [CrossRef]
- Austin, P.C. An Introduction to Propensity Score Methods for Reducing the Effects of Confounding in Observational Studies. Multivar. Behav. Res. 2011, 46, 399–424. [Google Scholar] [CrossRef]
- Dehejia, R.H.; Wahba, S. Propensity Score-Matching Methods for Nonexperimental Causal Studies. Rev. Econ. Stat. 2002, 84, 151–161. [Google Scholar] [CrossRef]
- Auty, H.; Mellor, D.; Gunn, G.; Boden, L.A. The Risk of Foot and Mouth Disease Transmission Posed by Public Access to the Countryside During an Outbreak. Front. Vet. Sci. 2019, 6, 381. [Google Scholar] [CrossRef] [PubMed]
- Sougou, N.M.; Bassoum, O.; Faye, A.; Leye, M.M.M. Women’s Autonomy in Health Decision-Making and Its Effect on Access to Family Planning Services in Senegal in 2017: A Propensity Score Analysis. BMC Public Health 2020, 20, 872. [Google Scholar] [CrossRef]
- Rasmussen, P.; Shaw, A.P.; Jemberu, W.T.; Knight-Jones, T.; Conrady, B.; Apenteng, O.O.; Cheng, Y.; Muñoz, V.; Rushton, J.; Torgerson, P.R. Economic Losses Due to Foot-and-Mouth Disease (FMD) in Ethiopian Cattle. Prev. Vet. Med. 2024, 230, 106276. [Google Scholar] [CrossRef]
- Govindaraj, G.; Ganeshkumar, B.; Nethrayini, K.R.; Shalini, R.; Balamurugan, V.; Pattnaik, B.; Rahman, H. Farm Community Impacts of Foot-and-Mouth Disease Outbreaks in Cattle and Buffaloes in Karnataka State, India. Transbound. Emerg. Dis. 2017, 64, 849–860. [Google Scholar] [CrossRef]
- Alhaji, N.B.; Amin, J.; Aliyu, M.B.; Mohammad, B.; Babalobi, O.O.; Wungak, Y.; Odetokun, I.A. Economic Impact Assessment of Foot-and-Mouth Disease Burden and Control in Pastoral Local Dairy Cattle Production Systems in Northern Nigeria: A Cross-Sectional Survey. Prev. Vet. Med. 2020, 177, 104974. [Google Scholar] [CrossRef] [PubMed]
- Wittwer, G. The Economic Impacts of a Hypothetical Foot and Mouth Disease Outbreak in Australia. Aust. J. Agric. Resour. Econ. 2024, 68, 23–43. [Google Scholar] [CrossRef]
- Baluka, S.A. Economic Effects of Foot and Mouth Disease Outbreaks along the Cattle Marketing Chain in Uganda. Vet. World 2016, 9, 544–553. [Google Scholar] [CrossRef]
- Mohamad, A.; Shaari, N.F.; Hamzah, H.Z. Impact of Foot and Mouth Disease on Cattle Production in Peninsular Malaysia. J. Sustain. Sci. Manag. 2023, 18, 143–150. [Google Scholar] [CrossRef]
- National Disaster Management Authority Penanganan PMK: Biosecurity Untuk Perlindungan Ternak Dan Kesehatan Masyarakat di Wilayah Yogyakarta. Available online: https://bnpb.go.id/berita/penanganan-pmk-biosecurity-untuk-perlindungan-ternak-dan-kesehatan-masyarakat-di-wilayah-yogyakarta (accessed on 6 February 2023).
- Dutta, P.K.; Biswas, H.; Ahmed, J.U.; Shakif-Ul-Azam, M.; Ahammed, B.M.J.; Dey, A.R. Knowledge, Attitude and Practices (KAP) towards Anthrax among Livestock Farmers in Selected Rural Areas of Bangladesh. Vet. Med. Sci. 2021, 7, 1648–1655. [Google Scholar] [CrossRef]
- Islam, M.S.; Hossain, M.J.; Mikolon, A.; Parveen, S.; Khan, M.S.U.; Haider, N.; Chakraborty, A.; Titu, A.M.N.; Rahman, M.W.; Sazzad, H.M.S.; et al. Risk Practices for Animal and Human Anthrax in Bangladesh: An Exploratory Study. Infect. Ecol. Epidemiol. 2013, 3, 21356. [Google Scholar] [CrossRef] [PubMed]
- Sieng, S.; Patrick, I.W.; Windsor, P.A.; Walkden-Brown, S.W.; Sar, C.; Smith, R.G.B.; Kong, R. Knowledge, Attitudes and Practices of Smallholder Farmers on Foot and Mouth Disease Control in Two Cambodian Provinces. Transbound. Emerg. Dis. 2022, 69, 1983–1998. [Google Scholar] [CrossRef] [PubMed]
- Sangrat, W.; Thanapongtharm, W.; Poolkhet, C. Identification of Risk Areas for Foot and Mouth Disease in Thailand Using a Geographic Information System-Based Multi-Criteria Decision Analysis. Prev. Vet. Med. 2020, 185, 105183. [Google Scholar] [CrossRef]
- Asnawi, A.; Nurlaelah, S.; Hastang; Abdullah, A. Constraints and Role of Women in Beef Cattle Farming to Access Financing in South Sulawesi, Indonesia. IOP Conf. Ser. Earth Environ. Sci. 2020, 492, 012145. [Google Scholar] [CrossRef]
- Saini, V.; Saini, R. Livestock Sector: A Tool for Women Empowerment. Pharma Innov. J. 2021, 10, 139–143. [Google Scholar]
- Waiswa, D.; Jolly, A. Implications of Gender Discrimination for Household Food Security among Small Holder Dairy Farmers in Nakaloke, Mbale District, Uganda. Res. J. Agric. For. Sci. Int. Sci. Community Assoc. 2021, 9, 1–11. [Google Scholar]
- Young, J.R.; Rast, L.; Suon, S.; Bush, R.D.; Henry, L.A.; Windsor, P.A. The Impact of Best Practice Health and Husbandry Interventions on Smallholder Cattle Productivity in Southern Cambodia. Anim. Prod. Sci. 2014, 54, 629. [Google Scholar] [CrossRef]
- Wolf, C. Producer Livestock Disease Management Incentives and Decisions. Int. Food Agribus. Manag. Rev. 2005, 8, 46–61. [Google Scholar]
- Guntoro, B.; Qui, N.H.; Triatmojo, A. Challenges and Roles of Extension Workers on Cyber Extension as Information Media. KnE Life Sci. 2022, 2022, 547–555. [Google Scholar] [CrossRef]
- Sulastri, E.; Triatmojo, A.; A’yun, A.Q.; Tatipikalawan, J.M. Effect of Extension Program on Improving Farmers’ Knowledge in the Narrowing Coastal Area of Segara Anakan Lagoon, Indonesia. J. Ilmu Ternak Dan Vet. 2024, 29, 161–171. [Google Scholar] [CrossRef]
- Ministry of Agriculture Republic Indonesia. Decision of the Minister of Agriculture of the Republic of Indonesia Number 518/KPTS/PK.300/M/7/2022 on the Provision of Compensation and Assistance in Certain Emergency Conditions of Foot and Mouth Disease; Decree of the Ministry of Agriculture Republic Indonesia: Jakarta, Indoneisa, 2022; pp. 1–19. [Google Scholar]
- Directorate General of Livestock And Animal Health, Ministry of Agriculture Republic Indonesia. Petunjuk Teknis Pemberian Bantuan Dalam Keadaan Tertentu Darurat Penyakit Mulut Dan Kuku; Decree of the Directorate General of Livestock And Animal Health, Ministry of Agriculture Republic Indonesia: Jakarta, Indonesia, 2022; pp. 1–22. [Google Scholar]
- Do, H.; Nguyen, H.-T.-M.; Van Ha, P.; Dang Van, K. A Cost-Benefit Analysis of Vietnam’s 2006–2010 Foot-and-Mouth Disease Control Program. Prev. Vet. Med. 2022, 206, 105703. [Google Scholar] [CrossRef] [PubMed]
- Lyons, N.A.; Afzal, M.; Toirov, F.; Irshad, A.; Bartels, C.J.M.; Rushton, J. Economic Considerations for Advancement Through the Progressive Control Pathway: Cost–Benefit Analysis of an FMD Disease-Free Zone in Punjab Province, Pakistan. Front. Vet. Sci. 2021, 8, 703473. [Google Scholar] [CrossRef]
- Nampanya, S.; Khounsy, S.; Abila, R.; Dy, C.; Windsor, P.A. Household Financial Status and Gender Perspectives in Determining the Financial Impact of Foot and Mouth Disease in Lao PDR. Transbound. Emerg. Dis. 2016, 63, 398–407. [Google Scholar] [CrossRef]
- Kerfua, S.D.; Railey, A.F.; Marsh, T.L. Household Production and Consumption Impacts of Foot and Mouth Disease at the Uganda-Tanzania Border. Front. Vet. Sci. 2023, 10, 1156458. [Google Scholar] [CrossRef]
- Casey-Bryars, M.; Reeve, R.; Bastola, U.; Knowles, N.J.; Auty, H.; Bachanek-Bankowska, K.; Fowler, V.L.; Fyumagwa, R.; Kazwala, R.; Kibona, T.; et al. Waves of Endemic Foot-and-Mouth Disease in Eastern Africa Suggest Feasibility of Proactive Vaccination Approaches. Nat. Ecol. Evol. 2018, 2, 1449–1457. [Google Scholar] [CrossRef] [PubMed]
- Iriarte, M.V.; Gonzáles, J.L.; Gil, A.D.; de Jong, M.C.M. Animal Movements and FMDV Transmission during the High-Risk Period of the 2001 FMD Epidemic in Uruguay. Transbound. Emerg. Dis. 2023, 2023, 8883502. [Google Scholar] [CrossRef]
- Moreno, F.; Galvis, J.; Gómez, F. Correction: A Foot and Mouth Disease Ranking of Risk Using Cattle Transportation. PLoS ONE 2023, 18, e0294615. [Google Scholar] [CrossRef]
- Pomeroy, L.W.; Moritz, M.; Garabed, R. Network Analyses of Transhumance Movements and Simulations of Foot-and-Mouth Disease Virus Transmission among Mobile Livestock in Cameroon. Epidemics 2019, 28, 100334. [Google Scholar] [CrossRef] [PubMed]
- Guntoro, B.; Triatmojo, A.; Ariyadi, B.; Hoang Qui, N. Risk Analysis in Cattle Farmers’ Prevention Practices of Anthrax and Foot and Mouth Disease in Yogyakarta Province, Indonesia. Adv. Anim. Vet. Sci. 2022, 11, 987–997. [Google Scholar] [CrossRef]
- Wiratsudakul, A.; Sekiguchi, S. The Implementation of Cattle Market Closure Strategies to Mitigate the Foot-and-Mouth Disease Epidemics: A Contact Modeling Approach. Res. Vet. Sci. 2018, 121, 76–84. [Google Scholar] [CrossRef]
- de Menezes, T.C.; Luna, I.; de Miranda, S.H.G. Network Analysis of Cattle Movement in Mato Grosso Do Sul (Brazil) and Implications for Foot-and-Mouth Disease. Front. Vet. Sci. 2020, 7, 219. [Google Scholar] [CrossRef] [PubMed]
- Compston, P.; Limon, G.; Häsler, B. A Systematic Review of the Methods Used to Analyze the Economic Impact of Endemic Foot-and-mouth Disease. Transbound. Emerg. Dis. 2022, 69, e2249–e2260. [Google Scholar] [CrossRef] [PubMed]
- Sutawi, S.; Wahyudi, A.; Malik, A.; Suyatno, S.; Hidayati, A.; Rahayu, I.D.; Hartatie, E.S. Re-Emergence of Foot and Mouth Disease Outbreak in Indonesia: A Review. Adv. Anim. Vet. Sci. 2023, 11, 264–271. [Google Scholar] [CrossRef]
Region | Frequency |
---|---|
Kulon Progo | 176 |
Bantul | 212 |
Gunungkidul | 496 |
Sleman | 108 |
Total | 992 |
Variable | Definition and Measurement | Category |
---|---|---|
Outcome variables | ||
Social | KAP | Score (continuous) |
Economic | Treatment cost a | IDR |
Dependent variable | ||
Effect | Cattle infected with FMD | Dummy (1 = yes; 0 = otherwise) |
Independent variables | ||
Age | Age of the farmers | Years (continuous) |
Education | Formal education level | Years (continuous) |
Household size | Size of household | Number of people (continuous) |
Land size | The total area of land managed by the farmers | m2 |
Women’s involvement in decision-making | Women’s involvement in decision-making | Dummy (1 = yes; 0 = otherwise) |
Income | The total family revenue for the months surveyed | Indonesian rupiah (IDR) |
Farmer group | Member of a farmers’ organization | Dummy (1 = yes; 0 = otherwise) |
Cattle ownership | The total number of cattle kept by the farmers | TLU b (continuous) |
Farming system types | The type of beef cattle business c | Categoric |
Farming experience | Cattle farmers’ experience | Years (continuous) |
Variable | Total Mean (S.E.) | Min | Max | Group’s Mean | ||
---|---|---|---|---|---|---|
Infected (n = 202) | Non-Infected (n = 790) | Differences (S.E.) | ||||
Age |
54.10 (0.411) | 18 | 85 |
53.71 (0.862) |
54.19 (0.467) | 0.481 (1.022) |
Education |
8.53 (0.117) | 0 | 19 |
9.27 (0.275) | 8.34 (0.128) | −0.929 ** (0.289) |
Household size |
3.75 (0.047) | 1 | 9 |
3.56 (0.094) | 3.8 (0.054) | 0.234 * (0.117) |
Land size |
513.11 (33.739) | 6 | 9024 | 391.81 (47.496) | 544.12 (40.526) | 152.316 (83.684) |
Women’s involvement in decision-making |
0.76 (0.014) | 0 | 1 | 0.62 (0.034) | 0.8 (0.014) | 0.172 ** (0.033) |
Income | 1,681,540.59 (46,077.21) | 250,000 | 9,800,000 |
2,135,983.50 (119,115.41) | 1,565,341.26 (48,376.19) | −570,642.230 ** (113,033.81) |
Farmer group |
0.59 (0.016) | 0 | 1 | 0.87 (0.024) | 0.51 (0.018) | −0.352 ** (0.037) |
Cattle ownership |
1.27 (0.028) | 0 | 9 |
1.42 (0.069) | 1.23 (0.030) | −0.192 * (0.069) |
Farming system types |
2.55 (0.024) | 1 | 3 |
2.49 (0.054) |
2.56 (0.026) | 0.076 (0.059) |
Farming experience |
20.26 (0.488) | 1 | 75 |
20.51 (1.028) |
20.19 (0.554) | −0.319 (1.213) |
Elements | Response (%) | ||
---|---|---|---|
Yes | No | ||
Knowledge | |||
1. | Do you know the FMD-affecting agent? | 812 (81.85) | 180 (18.15) |
2. | The symptoms of FMD do not include salivary secretion, gum lesions, nail lesions, or udder lesions. | 486 (48.99) | 506 (51.01) |
3. | The FMD cannot kill your livestock. | 493 (49.70) | 499 (50.30) |
4. | Can FMD generate significant economic losses? | 903 (91.03) | 89 (8.97) |
5. | Methods of prevention, such as vaccination, isolation, and biosecurity, cannot be employed to prevent FMD. | 635 (64.01) | 357 (35.99) |
6. | Do you have any information on the transmission of FMD? | 541 (54.54) | 451 (45.46) |
7. | FMD is transmissible through the death of diseased animals, secretions, spores, and humans. | 518 (52.22) | 474 (47.78) |
8. | FMD can be transferred between animals and humans (zoonosis). | 300 (30.24) | 692 (69.76) |
9. | Biosecurity is a precaution used to prevent the spread of FMD. | 94 (9.48) | 898 (90.52) |
10. | Bacterial spores can survive for many years in the soil. | 271 (27.32) | 721 (72.68) |
11. | Animal products such as meat, milk, and processed foods can potentially spread FMD. | 501 (50.50) | 491 (49.50) |
Attitudes | |||
1. | The FMD epidemic is hazardous. | 880 (88.71) | 112 (11.29) |
2. | Vaccinations cannot be used to boost the immune system. | 436 (43.95) | 556 (56.05) |
3. | Biosecurity practices on farms, such as disinfectants, visitation control, and movement restrictions, can reduce FMD transmission. | 883 (89.01) | 109 (10.99) |
4. | Treatment and isolation of infected animals help control FMD. | 907 (91.43) | 85 (8.57) |
5. | The transmission of FMD can be controlled by burning deceased animals instead of slaughtering suspected livestock. | 635 (64.01) | 357 (35.99) |
6. | Consuming meat, milk, and processed products from infected animals is potentially hazardous. | 747 (75.30) | 245 (24.70) |
Practices | |||
1. | Are you concerned with the treatment and disease control program on your farm? | 528 (53.23) | 464 (46.77) |
2. | Do you use disinfectants to sterilize the farmland’s surroundings? | 615 (62.00) | 377 (38.00) |
3. | Do you cremate or bury FMD-infected animals? | 626 (63.10) | 366 (36.90) |
4. | Do you treat sick animals using indigenous treatments such as herbal medicine? | 441 (44.46) | 551 (55.54) |
5. | Do you seek treatment at a veterinary facility if FMD is suspected? | 852 (85.89) | 140 (14.11) |
6. | Do you vaccinate livestock to prevent disease? | 754 (76.01) | 238 (23.99) |
7. | Do you wash your hands and boots after handling an animal? | 934 (94.15) | 58 (5.85) |
8. | Has a drainage system been installed on your farm? | 707 (71.27) | 285 (28.73) |
9. | Do you control employee or visitor access to your farm? | 805 (81.15) | 187 (18.85) |
Variables | Infected | Non-Infected | Total | ||
---|---|---|---|---|---|
Social | |||||
Knowledge | Less | Freq. | 69 | 508 | 577 |
% | 34.20 | 64.30 | 58.17 | ||
Good | Freq. | 133 | 282 | 415 | |
% | 65.80 | 45.70 | 41.83 | ||
Attitude | Negative | Freq. | 39 | 135 | 174 |
% | 19.30 | 17.10 | 17.54 | ||
Positive | Freq. | 163 | 655 | 818 | |
% | 80.70 | 82.90 | 82.46 | ||
Practice | Less | Freq. | 11 | 280 | 291 |
% | 5.40 | 35.40 | 29.33 | ||
Good | Freq. | 191 | 510 | 701 | |
% | 94.60 | 64.60 | 70.67 | ||
Economic | |||||
Treatment costs (IDR) | 316,548 | 41,162 |
Variable | Coefficient | S.E. | Z-Value | p > |z| |
---|---|---|---|---|
Age | −0.0019444 | 0.004 | −0.39 | 0.696 |
Education | 0.0204105 | 0.015 | 1.36 | 0.175 |
Household size | −0.0491321 | 0.036 | −1.34 | 0.179 |
Land size | −0.000165 | 0.000 | −2.66 | 0.008 ** |
Women’s involvement in decision-making | −0.3105893 | 0.107 | −2.89 | 0.004 ** |
Income | 0.000101 × 10−3 | 0.000 | 3.02 | 0.003 ** |
Farmer group | 0.8431656 | 0.116 | 7.24 | 0.000 ** |
Cattle ownership | 0.0842355 | 0.052 | 1.61 | 0.09 * |
Farming system types | 0.0048139 | 0.063 | 0.08 | 0.939 |
Farming experience | 0.0038256 | 0.003 | 1.03 | 0.304 |
Constant | −1.392829 | 0.428 | −3.25 | 0.001 ** |
Pseudo R2 | 0.1251 | |||
LR chi2 (10) | 125.45 | |||
Prob > chi2 | 0.0000 | |||
Observations | 958 |
Variable | Mean | t-Test a | Bias (%) | ||
---|---|---|---|---|---|
Infected (n = 202) | Non-Infected (n = 756) | T | p > |t| | ||
Age | 53.71 | 54.16 | −0.36 | 0.72 | −3.5 |
Education | 9.27 | 9.09 | 0.49 | 0.63 | 4.9 |
Household size | 3.56 | 3.54 | 0.14 | 0.89 | 1.4 |
Land size | 391.81 | 369.59 | 0.31 | 0.76 | 2.4 |
Income | 2,100,000 | 2,000,000 | 0.93 | 0.35 | 9.8 |
Cattle ownership | 1.42 | 1.36 | 0.66 | 0.51 | 7.2 |
Farming experience | 20.51 | 20.86 | −0.24 | 0.81 | −2.3 |
Outcome | Before Matching a | Average Treatment of the Treated (ATT) b | |||
---|---|---|---|---|---|
SM | NNM | RM | KM | ||
Social | 1.43034548 ** (0.63) | 1.431 ** (0.60) | 1.673 ** (0.85) | 1.977 ** (0.70) | 1.583 ** (0.60) |
Economic | 265,349.505 ** (26,951.96) | 270,000 ** (25,154.95) | 265,000 ** (26,951.96) | 258,000 ** (27,910.59) | 269,000 ** (24,663.81) |
Country | Estimated Losses | Main Losses | Notable Impacts |
---|---|---|---|
Global | USD 6.5–21 B (endemic); >USD 1.5 B (free) | Production, control, trade | The poorest are the most affected; market access [19] |
Ethiopia | USD 0.9 M/year; USD 11/case | Milk, draft power, fertility | Losses are higher in intensive systems [46] |
India | USD 208–1008/animal | Distress sale, mortality, milk | High social/psychological impact [47] |
Nigeria | USD 16 M total | Production, treatment | High benefit–cost ratio for control [48] |
Australia | AUD 10–85 B (scenario-based) | Trade, production | Losses depend on trade sanctions [49] |
Uganda | USD 196–1552/herd (salvage sale) | Milk, beef, market value | Smallholders most affected [50] |
Malaysia | MYR 390.24/herd | Mortality, weight loss | Breed-specific impacts [51] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Triatmojo, A.; Guntoro, B.; Strausz, P.; Muzayyanah, M.A.U.; Agustiar, R.; Kusza, S. Socioeconomic Impact of Foot and Mouth Disease Outbreaks on Smallholder Cattle Farmers in Yogyakarta, Indonesia. Vet. Sci. 2025, 12, 542. https://doi.org/10.3390/vetsci12060542
Triatmojo A, Guntoro B, Strausz P, Muzayyanah MAU, Agustiar R, Kusza S. Socioeconomic Impact of Foot and Mouth Disease Outbreaks on Smallholder Cattle Farmers in Yogyakarta, Indonesia. Veterinary Sciences. 2025; 12(6):542. https://doi.org/10.3390/vetsci12060542
Chicago/Turabian StyleTriatmojo, Agung, Budi Guntoro, Péter Strausz, Mujtahidah Anggriani Ummul Muzayyanah, Robi Agustiar, and Szilvia Kusza. 2025. "Socioeconomic Impact of Foot and Mouth Disease Outbreaks on Smallholder Cattle Farmers in Yogyakarta, Indonesia" Veterinary Sciences 12, no. 6: 542. https://doi.org/10.3390/vetsci12060542
APA StyleTriatmojo, A., Guntoro, B., Strausz, P., Muzayyanah, M. A. U., Agustiar, R., & Kusza, S. (2025). Socioeconomic Impact of Foot and Mouth Disease Outbreaks on Smallholder Cattle Farmers in Yogyakarta, Indonesia. Veterinary Sciences, 12(6), 542. https://doi.org/10.3390/vetsci12060542