Rumen-Protected Fat and Rumen-Protected Choline Co-Supplementation: Impacts on Performance and Meat Quality of Growing Lambs
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Design and Treatments
2.2. Animal Feeding Management
2.3. Hematological Sampling and Determination
2.4. Carcass Characteristics in Lambs
2.5. Assessment of Meat Quality Parameters
- CFA is the target fatty acid concentration in the sample (mg/g muscle tissue).
- AFA is the chromatographic peak area of the target fatty acid.
- AIS is the peak area of the internal standard (C21:0).
- CIS is the concentration of the added internal standard (μg).
- RFFA is the relative response factor of the target fatty acid (determined by standard calibration).
- W sample is the weight of the muscle sample (g).
- RFFA is the relative response factor of the target fatty acid.
- AFA is the peak area of the target fatty acid in the standard.
- Cstd is the concentration of the internal standard in the calibration solution (μg/mL).
- Astd is the peak area of the internal standard.
- CFA is the concentration of the target fatty acid standard (μg/mL).
2.6. Statistical Analysis
3. Results
3.1. Growth and Carcass Characteristics
3.2. Effects on the Serum Biochemical Indices
3.3. Effects on Meat Quality Parameters
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, H.; Peng, W.; Mao, K.; Yang, Y.; Wu, Q.; Wang, K.; Zeng, M.; Han, X.; Han, J.; Zhou, H. The Changes in Fecal Bacterial Communities in Goats Offered Rumen-Protected Fat. Microorganisms 2024, 12, 822. [Google Scholar] [CrossRef]
- Arshad, U.; Santos, J.E.P. Graduate Student Literature Review: Exploring choline’s important roles as a nutrient for transition dairy cows. J. Dairy Sci. 2024, 107, 4357–4369. [Google Scholar] [CrossRef]
- Enjalbert, F.; Combes, S.; Zened, A.; Meynadier, A. Rumen microbiota and dietary fat: A mutual shaping. J. Appl. Microbiol. 2017, 123, 782–797. [Google Scholar] [CrossRef]
- Huffman, R.P.; Stock, R.A.; Sindt, M.H.; Shain, D.H. Effect of fat type and forage level on performance of finishing cattle. J. Anim. Sci. 1992, 70, 3889–3898. [Google Scholar] [CrossRef]
- Andersen, J.B.; Ridder, C.; Larsen, T. Priming the Cow for Mobilization in the Periparturient Period: Effects of Supplementing the Dry Cow with Saturated Fat or Linseed. J. Dairy Sci. 2008, 91, 1029–1043. [Google Scholar] [CrossRef]
- Martin, C.; Bernard, L.; Michalet-Doreau, B. Influence of sampling time and diet on amino acid composition of protozoal and bacterial fractions from bovine ruminal contents. J. Anim. Sci. 1996, 74, 1157–1163. [Google Scholar] [CrossRef]
- Cartier, P.; Chillard, Y.; Paquet, D. Inhibiting and Activating Effects of Skim Milks and Proteose-Peptone Fractions on Spontaneous Lipolysis and Purified Lipoprotein Lipase Activity in Bovine Milk. J. Dairy Sci. 1990, 73, 1173–1177. [Google Scholar] [CrossRef]
- Ferguson, J.D.; Sklan, D.; Chalupa, W.V.; Kronfeld, D.S. Effects of Hard Fats on In Vitro and In Vivo Rumen Fermentation, Milk Production, and Reproduction in Dairy Cows1. J. Dairy Sci. 1990, 73, 2864–2879. [Google Scholar] [CrossRef]
- Hadipour, A.; Mohit, A.; Jahanian, R. Effect of dietary supplementation of camel hump fat on performance, carcass characteristics, antibody responses and blood metabolites in fattening lambs. Small Rumin. Res. 2014, 119, 1–7. [Google Scholar] [CrossRef]
- Pewan, S.B.; Otto, J.R.; Kinobe, R.T.; Adegboye, O.A.; Malau-Aduli, A.E.O. Fortification of diets with omega-3 long-chain polyunsaturated fatty acids enhances feedlot performance, intramuscular fat content, fat melting point, and carcass characteristics of Tattykeel Australian White MARGRA lambs. Front. Vet. Sci. 2022, 9, 933038. [Google Scholar] [CrossRef]
- Nguyen, D.V.; Malau-Aduli, B.S.; Cavalieri, J.; Nichols, P.D.; Malau-Aduli, A.E.O. Supplementation with plant-derived oils rich in omega-3 polyunsaturated fatty acids for lamb production. Vet. Anim. Sci. 2018, 6, 29–40. [Google Scholar] [CrossRef]
- Zhou, Z.; Trevisi, E.; Luchini, D.N.; Loor, J.J. Differences in liver functionality indexes in peripartal dairy cows fed rumen-protected methionine or choline are associated with performance, oxidative stress status, and plasma amino acid profiles. J. Dairy Sci. 2017, 100, 6720–6732. [Google Scholar] [CrossRef]
- Bryant, T.C.; Rivera, J.D.; Galyean, M.L.; Duff, G.C.; Hallford, D.M.; Montgomery, T.H. Effects of dietary level of ruminally protected choline on performance and carcass characteristics of finishing beef steers and on growth and serum metabolites in lambs. J. Anim. Sci. 1999, 77, 2893–2903. [Google Scholar] [CrossRef]
- Jayaprakash, G.; Sathiyabarathi, M.; Robert, M.A.; Tamilmani, T. Rumen-protected choline: A significance effect on dairy cattle nutrition. Vet. World 2016, 9, 837–841. [Google Scholar] [CrossRef]
- Kawas, J.R.; Garcia-Mazcorro, J.F.; Fimbres-Durazo, H.; Ortega-Cerrilla, M.E. Effects of Rumen-Protected Choline on Growth Performance, Carcass Characteristics and Blood Lipid Metabolites of Feedlot Lambs. Animals 2020, 10, 1580. [Google Scholar] [CrossRef]
- Li, H.; Hongrong, W.; Lihuai, Y.; Mengzhi, W.; Shimin, L.; Lisha, S.; Chen, Q. Effects of supplementation of rumen-protected choline on growth performance, meat quality and gene expression in longissimus dorsi muscle of lambs. Arch. Anim. Nutr. 2015, 69, 340–350. [Google Scholar] [CrossRef]
- Jin, Y.; Huawei, L.; Wang, H. Dietary rumen-protected choline supplementation regulates blood biochemical profiles and urinary metabolome and improves growth performance of growing lambs. Anim. Biotechnol. 2023, 34, 563–573. [Google Scholar] [CrossRef]
- Arshad, U.; Zenobi, M.G.; Staples, C.R.; Santos, J.E.P. Meta-analysis of the effects of supplemental rumen-protected choline during the transition period on performance and health of parous dairy cows. J. Dairy Sci. 2020, 103, 282–300. [Google Scholar] [CrossRef]
- Zom, R.L.; van Baal, J.; Goselink, R.M.; Bakker, J.A.; de Veth, M.J.; van Vuuren, A.M. Effect of rumen-protected choline on performance, blood metabolites, and hepatic triacylglycerols of periparturient dairy cattle. J. Dairy Sci. 2011, 94, 4016–4027. [Google Scholar] [CrossRef]
- Arshad, U.; Husnain, A.; Poindexter, M.B.; Zimpel, R.; Nelson, C.D.; Santos, J.E.P. Rumen-protected choline reduces hepatic lipidosis by increasing hepatic triacylglycerol-rich lipoprotein secretion in dairy cows. J. Dairy Sci. 2023, 106, 7630–7650. [Google Scholar] [CrossRef]
- Haddad, S.G.; Younis, H.M. The effect of adding ruminally protected fat in fattening diets on nutrient intake, digestibility and growth performance of Awassi lambs. Anim. Feed. Sci. Technol. 2004, 113, 61–69. [Google Scholar] [CrossRef]
- Jacometo, C.B.; Zhou, Z.; Luchini, D.; Corrêa, M.N.; Loor, J.J. Maternal supplementation with rumen-protected methionine increases prepartal plasma methionine concentration and alters hepatic mRNA abundance of 1-carbon, methionine, and transsulfuration pathways in neonatal Holstein calves. J. Dairy Sci. 2017, 100, 3209–3219. [Google Scholar] [CrossRef]
- Manriquez, D.; Chen, L.; Melendez, P.; Pinedo, P. The effect of an organic rumen-protected fat supplement on performance, metabolic status, and health of dairy cows. BMC Vet. Res. 2019, 15, 450. [Google Scholar] [CrossRef]
- Geelen, S.N.; Sloet van Oldruitenborgh-Oosterbaan, M.M.; Beynen, A.C. Dietary fat supplementation and equine plasma lipid metabolism. Equine Vet. J. Suppl. 1999, 31, 475–478. [Google Scholar] [CrossRef]
- Ngidi, M.E.; Loerch, S.C.; Fluharty, F.L.; Palmquist, D.L. Effects of calcium soaps of long-chain fatty acids on feedlot performance, carcass characteristics and ruminal metabolism of steers. J. Anim. Sci. 1990, 68, 2555–2565. [Google Scholar] [CrossRef]
- Behan, A.A.; Loh, T.C.; Fakurazi, S.; Kaka, U.; Kaka, A.; Samsudin, A.A. Effects of Supplementation of Rumen Protected Fats on Rumen Ecology and Digestibility of Nutrients in Sheep. Animals. 2019, 9, 400. [Google Scholar] [CrossRef]
- Marques, T.C.; Monteiro, H.F.; Melo, D.B.; Coelho, W.M., Jr.; Salman, S.; Marques, L.R.; Leão, K.M.; Machado, V.S.; Menta, P.; Dubey, D.; et al. Effect of rumen-protected choline on dairy cow metabolism, immunity, lactation performance, and vaginal discharge microbiome. J. Dairy Sci. 2024, 107, 2864–2882. [Google Scholar] [CrossRef]
- Chen, X.; Qiu, W.; Ma, X.; Ren, L.; Feng, M.; Hu, S.; Xue, C.; Chen, R. Roles and Mechanisms of Choline Metabolism in Nonalcoholic Fatty Liver Disease and Cancers. Front. Biosci. 2024, 29, 182. [Google Scholar] [CrossRef]
- Kang, H.J.; Piao, M.Y.; Park, S.J.; Na, S.W.; Kim, H.J.; Baik, M. Effects of heat stress and rumen-protected fat supplementation on growth performance, rumen characteristics, and blood parameters in growing Korean cattle steers. Asian Australas. J. Anim. Sci. 2019, 32, 826–833. [Google Scholar] [CrossRef]
- Kang, H.J.; Piao, M.Y.; Park, S.J.; Na, S.W.; Kim, H.J.; Baik, M. Effects of ambient temperature and rumen-protected fat supplementation on growth performance, rumen fermentation and blood parameters during cold season in Korean cattle steers. Asian-Australas. J. Anim. Sci. 2019, 32, 657–664. [Google Scholar] [CrossRef]
- Lytle, J.R.; Price, T.; Crouse, S.F.; Smith, D.R.; Walzem, R.L.; Smith, S.B. Consuming High-Fat and Low-Fat Ground Beef Depresses High-Density and Low-Density Lipoprotein Cholesterol Concentrations, and Reduces Small, Dense Low-Density Lipoprotein Particle Abundance. Nutrients 2023, 15, 337. [Google Scholar] [CrossRef]
- de Lima, J.A.M.; Bezerra, L.R.; Feitosa, T.J.O.; Oliveira, J.R.; de Oliveira, D.L.V.; Mazzetto, S.E.; Cavalcanti, M.T.; Pereira Filho, J.M.; Oliveira, R.L.; de Oliveira, J.P.F.; et al. Production, characterization, and dietary supplementation effect of rumen-protected fat on ruminal function and blood parameters of sheep. Trop. Anim. Health Prod. 2023, 55, 142. [Google Scholar] [CrossRef]
- Rodríguez-Guerrero, V.; Lizarazo, A.C.; Ferraro, S.; Miranda, L.A.; Mendoza, G.D.; Suárez, N. Effect of herbal choline and rumen-protected methionine on lamb performance and blood metabolites. S. Afr. J. Anim. Sci. 2018, 48, 427–434. [Google Scholar] [CrossRef]
- Khliji, S.; van de Ven, R.; Lamb, T.A.; Lanza, M.; Hopkins, D.L. Relationship between consumer ranking of lamb colour and objective measures of colour. Meat Sci. 2010, 85, 224–229. [Google Scholar] [CrossRef]
- Andrade, E.N.; Polizel Neto, A.; Roça, R.O.; Faria, M.H.; Resende, F.D.; Siqueira, G.R.; Pinheiro, R.S. Beef quality of young Angus×Nellore cattle supplemented with rumen-protected lipids during rearing and fatting periods. Meat Sci. 2014, 98, 591–598. [Google Scholar] [CrossRef]
- Ramírez-Zamudio, G.D.; da Cruz, W.F.G.; Schoonmaker, J.P.; de Resende, F.D.; Siqueira, G.R.; Machado Neto, O.R.; Gionbelli, T.R.S.; Teixeira, P.D.; Rodrigues, L.M.; Gionbelli, M.P.; et al. Effect of rumen-protected fat on performance, carcass characteristics and beef quality of the progeny from Nellore cows fed by different planes of nutrition during gestation. Livest. Sci. 2022, 258, 104851. [Google Scholar] [CrossRef]
- Zhang, M.; Zhang, Z.; Zhang, X.; Lu, C.; Yang, W.; Xie, X.; Xin, H.; Lu, X.; Ni, M.; Yang, X.; et al. Effects of dietary Clostridium butyricum and rumen protected fat on meat quality, oxidative stability, and chemical composition of finishing goats. J. Anim. Sci. Biotechnol. 2024, 15, 3. [Google Scholar] [CrossRef]
- Rexford, D.R.; Wallis, E.S. Choline cholanate. J. Am. Chem. Soc. 1947, 69, 3148. [Google Scholar] [CrossRef]
- Siciliani, D.; Kortner, T.M.; Berge, G.M.; Hansen, A.K.; Krogdahl, Å. Effects of dietary lipid level and environmental temperature on lipid metabolism in the intestine and liver, and choline requirement in Atlantic salmon (Salmo salar L.) parr. J. Nutr. Sci. 2023, 12, e61. [Google Scholar] [CrossRef]
- Huo, Q.; Sun, X.; Wu, T.; Li, Z.; Jonker, A.; You, P.; Li, R.; Li, J.; Tian, W.; Li, C.; et al. Supplementation of graded levels of rumen-protected choline to a pelleted total mixed ration did not improve the growth and slaughter performance of fattening lambs. Front. Vet. Sci. 2022, 9, 1034895. [Google Scholar] [CrossRef]
- Watkins, P.J.; Frank, D. Heptadecanoic acid as an indicator of BCFA content in sheep fat. Meat Sci. 2019, 151, 33–35. [Google Scholar] [CrossRef] [PubMed]
- Scollan, N.D.; Enser, M.; Gulati, S.K.; Richardson, I.; Wood, J.D. Effects of including a ruminally protected lipid supplement in the diet on the fatty acid composition of beef muscle. Br. J. Nutr. 2003, 90, 709–716. [Google Scholar] [CrossRef] [PubMed]
- Razzaghi, A.; Valizadeh, R.; Naserian, A.A.; Mesgaran, M.D.; Carpenter, A.J.; Ghaffari, M.H. Effect of dietary sugar concentration and sunflower seed supplementation on lactation performance, ruminal fermentation, milk fatty acid profile, and blood metabolites of dairy cows. J. Dairy Sci. 2016, 99, 3539–3548. [Google Scholar] [CrossRef] [PubMed]
- Meng, Y.; Guo, D.; Lin, L.; Zhao, H.; Xu, W.; Luo, S.; Jiang, X.; Li, S.; He, X.; Zhu, R.; et al. Glycolytic enzyme PFKL governs lipolysis by promoting lipid droplet-mitochondria tethering to enhance β-oxidation and tumor cell proliferation. Nat. Metab. 2024, 6, 1092–1107. [Google Scholar] [CrossRef]
Ingredients, g/kg | CON | RPF | RPFC |
---|---|---|---|
Corn straw | 150 | 150 | 150 |
Barley | 600 | 580 | 580 |
Molasses | 30 | 30 | 30 |
Corn germ feed | 45 | 45 | 41 |
Soybean meal | 67 | 67 | 67 |
Cottonseed meal | 50 | 50 | 50 |
NaHCO3 | 10 | 10 | 10 |
Rumen-protected fat 1 | 0 | 20 | 20 |
CaCO3 | 13 | 13 | 13 |
Ca(HCO3)2 | 5 | 5 | 5 |
NaCl | 5 | 5 | 5 |
Gelatinized starch-urea 2 | 6 | 6 | 6 |
Rumen-protected choline 3 | 0 | 0 | 4 |
CaSO4 | 2 | 2 | 2 |
Yeast culture | 10 | 10 | 10 |
Premix 4 | 5 | 5 | 5 |
Total | 1000 | 1000 | 1000 |
Proximate composition, kg/100 kg | |||
DM | 89.89 | 90.63 | 91.32 |
CP | 16.22 | 16.97 | 15.88 |
NDF | 29.36 | 28.78 | 28.11 |
ADF | 11.95 | 11.92 | 12.56 |
EE | 2.71 | 3.21 | 3.61 |
Ash | 7.97 | 8.77 | 8.65 |
ME, MJ/kg | 10.30 | 10.32 | 10.32 |
Item | CON | RPF | RPFC | SEM 4 | p-Value |
---|---|---|---|---|---|
Initial body weight, kg | 26.95 | 27.54 | 27.53 | 0.57 | 0.89 |
Final body weight, kg | 42.36 | 41.63 | 41.51 | 0.68 | 0.10 |
ADG 1, g/d | 245 | 224 | 222 | 1.05 | 0.08 |
DMI 2, kg/d | 1.36 ab | 1.32 a | 1.39 b | 0.01 | <0.01 |
F/G 3 | 5.55 | 5.89 | 6.26 | 0.14 | 0.13 |
Item | CON | RPF | RPFC | SEM | p-Value |
---|---|---|---|---|---|
Carcass weight, kg | 25.33 | 23.53 | 23.84 | 0.41 | 0.16 |
Live body weight pre-slaughter, kg | 45.71 | 43.58 | 43.76 | 0.61 | 0.31 |
Dressing percentage, % | 55.38 | 53.78 | 54.47 | 0.33 | 0.28 |
Backfat thickness, mm | 3.01 | 3.10 | 2.69 | 0.08 | 0.10 |
GR (Carcass fat content), mm | 3.54 | 3.39 | 3.11 | 0.08 | 0.08 |
Tail fat, kg | 0.34 | 0.29 | 0.30 | 0.02 | 0.38 |
Perirenal fat, kg | 1.11 | 0.76 | 0.99 | 0.07 | 0.10 |
Abdominal fat, kg | 1.16 | 0.94 | 1.09 | 0.05 | 0.21 |
Tail fat+ Perirenal fat+ Abdominal fat, kg | 2.61 | 1.99 | 2.38 | 0.11 | 0.07 |
(Tail fat + Perirenal fat+ Abdominal fat)/live body kg/100 kg | 6.16 | 4.78 | 5.73 | 0.21 | 0.06 |
(Tail fat+ Perirenal fat+ Abdominal fat)/carcass, kg/100 kg | 10.30 | 8.45 | 9.98 | 0.35 | 0.17 |
Item 1, μmol/L | CON | RPF | RPFC | SEM | p-Value |
---|---|---|---|---|---|
β-HB | 235.30 | 266.40 | 288.46 | 24.25 | 0.37 |
FFA | 528.24 | 636.03 | 582.01 | 46.73 | 0.12 |
CREA-S | 71.93 | 67.74 | 74.21 | 3.30 | 0.38 |
Glu-G | 3.39 | 3.27 | 3.55 | 0.14 | 0.55 |
HDL-C | 0.76 a | 1.14 b | 1.06 b | 0.07 | <0.01 |
LDL-C | 0.67 | 0.83 | 0.75 | 0.07 | 0.16 |
TC | 1.63 a | 2.25 b | 2.06 b | 0.14 | <0.01 |
UREA | 11.66 | 11.02 | 10.59 | 9.59 | 0.55 |
TG | 0.23 | 0.26 | 0.25 | 0.28 | 0.14 |
Item | CON | RPF | RPFC | SEM | p-Value |
---|---|---|---|---|---|
45 min pH | 6.32 | 6.23 | 6.28 | 0.04 | 0.71 |
24 h pH | 5.20 | 5.22 | 5.20 | 0.01 | 0.62 |
45 min L* | 29.48 | 28.97 | 29.29 | 0.24 | 0.72 |
45 min a* | 16.25 | 15.85 | 16.27 | 0.22 | 0.06 |
45 min b* | 6.08 ab | 5.79 a | 6.57 b | 0.11 | <0.01 |
24 h L* | 34.81 | 34.95 | 35.50 | 0.32 | 0.65 |
24 h a* | 20.39 | 20.35 | 20.12 | 0.22 | 0.87 |
24 h b* | 14.14 | 13.65 | 13.50 | 0.18 | 0.34 |
Drip loss, % | 2.39 | 2.74 | 2.24 | 0.20 | 0.59 |
Longissimus lumborum area, cm2 | 18.93 b | 14.59 a | 15.56 a | 0.56 | <0.01 |
FA, % | CON | RPF | RPFC | SEM | p-Value |
---|---|---|---|---|---|
C6:0 | 0.03 | 0.02 | 0.03 | 0.01 | 0.17 |
C8:0 | 0.01 | 0.01 | 0.01 | 0.001 | 0.57 |
C10:0 | 0.28 | 0.28 | 0.28 | 0.01 | 0.98 |
C12:0 | 0.30 | 0.35 | 0.38 | 0.04 | 0.36 |
C13:0 | 0.02 | 0.02 | 0.02 | 0.001 | 0.45 |
C14:0 | 5.81 | 6.17 | 6.66 | 0.31 | 0.40 |
C14:1 | 0.13 | 0.16 | 0.14 | 0.01 | 0.16 |
C15:0 | 0.62 | 0.58 | 0.65 | 0.03 | 0.38 |
C16:0 | 19.90 | 21.18 | 21.74 | 0.53 | 0.09 |
C16:1 | 2.19 a | 2.41 ab | 2.46 b | 0.08 | 0.04 |
C17:0 | 1.94 b | 1.62 a | 1.71 ab | 0.07 | <0.01 |
C17:1 | 0.95 b | 0.80 a | 0.88 ab | 0.04 | <0.01 |
C18:0 | 21.86 | 22.61 | 21.69 | 0.69 | 0.45 |
C18:1n-9t | 4.78 | 5.25 | 4.28 | 0.28 | 0.24 |
C18:1n-9c | 32.99 b | 30.86 a | 31.02 ab | 0.58 | 0.01 |
C18:2n-6t | 0.13 a | 0.22 b | 0.12 a | 0.03 | 0.03 |
C18:2n-6c | 4.75 | 4.32 | 4.29 | 0.22 | 0.17 |
C20:0/C18:3n-6 | 0.13 | 0.11 | 0.12 | 0.01 | 0.09 |
C18:3n-3 | 0.32 | 0.28 | 0.28 | 0.02 | 0.05 |
C20:2 | 0.04 | 0.04 | 0.04 | 0.003 | 0.30 |
C22:0/C20:3n-6 | 0.12 | 0.11 | 0.14 | 0.01 | 0.38 |
C20:3n-3/C22:1n-9 | 1.11 | 1.08 | 1.16 | 0.08 | 0.83 |
C23:0 | 0.06 | 0.03 | 0.08 | 0.01 | 0.15 |
C22:2/C20:5 | 0.03 | 0.03 | 0.03 | 0.003 | 0.12 |
C24:1 | 0.29 | 0.29 | 0.28 | 0.02 | 0.98 |
C22:3n-3 | 0.06 | 0.06 | 0.09 | 0.01 | 0.83 |
C22:5n-3 | 0.11 | 0.11 | 0.13 | 0.01 | 0.60 |
C22:6n-3 | 0.11 | 0.10 | 0.16 | 0.02 | 0.73 |
anteiso-C13:0 | 0.19 | 0.22 | 0.29 | 0.03 | 0.49 |
anteiso-C15:0 | 0.21 | 0.23 | 0.26 | 0.01 | 0.08 |
iso-C16:0 | 0.17 | 0.17 | 0.18 | 0.01 | 0.88 |
iso-C18:0 | 0.36 b | 0.26 a | 0.35 ab | 0.03 | 0.04 |
∑n-6 PUFA | 5.14 | 4.75 | 4.68 | 0.23 | 0.25 |
∑n-3 PUFA | 1.71 | 1.64 | 1.82 | 0.10 | 0.61 |
∑SFA | 51.99 a | 53.98 ab | 54.61 b | 0.66 | 0.04 |
∑MUFA | 41.33 | 39.87 | 39.07 | 0.57 | 0.06 |
∑PUFA | 6.66 | 6.23 | 6.31 | 0.30 | 0.31 |
∑MUFA/∑SFA | 0.79 b | 0.74 ab | 0.72 a | 0.02 | 0.04 |
∑PUFA/∑SFA | 0.13 | 0.12 | 0.12 | 0.01 | 0.18 |
EE | 5.42 | 5.49 | 5.41 | 0.11 | 0.63 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, H.; Li, F.; Li, F.; Ma, Z.; Wang, T.; Li, Q.; Wang, X.; Li, K. Rumen-Protected Fat and Rumen-Protected Choline Co-Supplementation: Impacts on Performance and Meat Quality of Growing Lambs. Vet. Sci. 2025, 12, 525. https://doi.org/10.3390/vetsci12060525
Liu H, Li F, Li F, Ma Z, Wang T, Li Q, Wang X, Li K. Rumen-Protected Fat and Rumen-Protected Choline Co-Supplementation: Impacts on Performance and Meat Quality of Growing Lambs. Veterinary Sciences. 2025; 12(6):525. https://doi.org/10.3390/vetsci12060525
Chicago/Turabian StyleLiu, Haitao, Fadi Li, Fei Li, Zhiyuan Ma, Tao Wang, Qinwu Li, Xinji Wang, and Kaidong Li. 2025. "Rumen-Protected Fat and Rumen-Protected Choline Co-Supplementation: Impacts on Performance and Meat Quality of Growing Lambs" Veterinary Sciences 12, no. 6: 525. https://doi.org/10.3390/vetsci12060525
APA StyleLiu, H., Li, F., Li, F., Ma, Z., Wang, T., Li, Q., Wang, X., & Li, K. (2025). Rumen-Protected Fat and Rumen-Protected Choline Co-Supplementation: Impacts on Performance and Meat Quality of Growing Lambs. Veterinary Sciences, 12(6), 525. https://doi.org/10.3390/vetsci12060525