Low Levels of Supplementation for Post-Weaning Girolando Steers on Tropical Pasture During the Dry to Rainy Season Transition
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Locale, Animals and Experimental Design
2.2. Forage Evaluation
2.3. Collection, Processing and Analysis of Food Samples
2.4. Intake and Apparent Digestibility
2.5. Animal Performance
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Barbero, R.P.; Ribeiro, A.C.C.; Moura, A.M.; Longhini, V.Z.; Mattos, T.F.A.; Barbero, M.M.D. Production potential of beef cattle in tropical pastures: A review. Ciência Anim. Bras. 2021, 22, e-69609. [Google Scholar] [CrossRef]
- Almeida, D.M.; Silva, A.L.; Paulino, M.F.; Silva, T.E.; Detmann, E.; Marcondes, M.I. Performance of Bos indicus beef cattle supplemented with mineral or with concentrates in tropical Urochloa decumbens pastures: A meta-regression approach. Anim. Feed Sci. Technol. 2022, 283, 115178. [Google Scholar] [CrossRef]
- Bretas, I.L.; Dubeux, J.C.B., Jr.; Cruz, P.J.R.; Oduor, K.T.; Queiroz, L.D.; Valente, D.S.M.; Chizzotti, F.H.M. Precision livestock farming applied to grazingland monitoring and management—A review. Agron. J. 2024, 116, 1164–1186. [Google Scholar] [CrossRef]
- Greenwood, P.L. Review: An overview of beef production from pasture and feedlot globally, as demand for beef and the need for sustainable practices increase. Animal 2021, 15, 100295. [Google Scholar] [CrossRef]
- Tambara, A.A.C.; Härter, C.J.; Rabelo, C.H.S.; Kozloski, G.V. Effects of supplementation on production of beef cattle grazing tropical pastures in Brazil during the wet and dry seasons: A meta-analysis. Rev. Bras. Zootec. 2021, 50, e20210020. [Google Scholar] [CrossRef]
- Ali, A.I.M.; Wassie, S.E.; Korir, D.; Merbold, L.; Goopy, J.P.; Butterbach-Bahl, K.; Dickhoefer, U.; Schlecht, E. Supplementing Tropical Cattle for Improved Nutrient Utilization and Reduced Enteric Methane Emissions. Animals 2019, 9, 210. [Google Scholar] [CrossRef]
- Lins, T.O.J.D.; Silva, R.R.; Mendes, F.B.L.; Silva, F.F.; Bastos, E.S.; Paixão, T.R.; Silva, J.W.D.; Santos, M.C.; Figueiredo, G.C.; Alba, H.D.R.; et al. Feeding behavior of post-weaned crossbred steers supplemented in the dry season of the year. Trop. Anim. Health Prod. 2022, 54, 203. [Google Scholar] [CrossRef]
- Rutherford, N.H.; Lively, F.O.; Arnott, G. A Review of Beef Production Systems for the Sustainable Use of Surplus Male Dairy-Origin Calves Within the UK. Front. Vet. Sci. 2021, 8, 635497. [Google Scholar] [CrossRef]
- Jaborek, J.R.; Carvalho, P.H.V.; Felix, T.L. Post-weaning management of modern dairy cattle genetics for beef production: A review. J. Anim. Sci. 2023, 101, skac345. [Google Scholar] [CrossRef] [PubMed]
- Foraker, B.A.; Frink, J.L.; Woerner, D.R. Invited review: A carcass and meat perspective of crossbred beef × dairy cattle. Transl. Anim. Sci. 2022, 6, txac027. [Google Scholar] [CrossRef]
- Romanzini, E.P.; Barbero, R.P.; Reis, R.A.; Hadley, D.; Malheiros, E.B. Economic evaluation from beef cattle production industry with intensification in Brazil’s tropical pastures. Trop. Anim. Health Prod. 2020, 52, 2659–2666. [Google Scholar] [CrossRef] [PubMed]
- NRC—National Research Council. Nutrient Requirements of Beef Cattle, 8th ed.; National Academy Press: Washington, DC, USA, 2016.
- Haydock, K.P.; Shaw, N.H. The comparative yield method for estimating dry matter yield of pasture. Aust. J. Exp. Agric. Anim. Husb. 1975, 15, 663–670. [Google Scholar] [CrossRef]
- Sollenberger, L.E.; Cherney, D.J.R. Evaluating Forage Production and Quality. In Forages: The Science of Grassland Agriculture, 5th ed.; Barnes, R.F., Nelson, C.J., Miller, D., Eds.; Iowa State University Press: Ames, IA, USA, 1995; Volume II, pp. 97–110. [Google Scholar]
- Wilm, H.G.; Costello, D.F.; Klipple, G.E. Estimating forage yield by the double sampling method. J. Am. Soc. Agron. 1944, 36, 194–203. [Google Scholar] [CrossRef]
- Campbell, A.G. Grazed pastures parameters: I. Pasture dry matter production and availability in a stocking rate and grazing management experiment with dairy cows. J. Agric. Sci. 1966, 67, 209–210. [Google Scholar] [CrossRef]
- Prohmann, P.E.F.; Branco, A.F.; Cecato, U.; Jobim, C.C.; Guimarães, K.C.; Ferreira, R.A. Suplementação de bovinos em pastagens de Coastcross (Cynodondactylon (L.) Pers) no inverno. Rev. Bras. Zootec. 2004, 33, 801–810. [Google Scholar] [CrossRef]
- Paulino, M.F.; Acedo, T.S.; Detmann, E. Bovinocultura de Precisão Em Pastagens. In Annals of the Simpósio de Produção de Gado de Corte; Research Gate: Viçosa, Brazil, 2006; pp. 392–394. [Google Scholar]
- Johnson, A.D. Sample Preparation and Chemical Analysis of Vegetation. In Measurement of Grassland Vegetation and Animal Production; Manetje, L.T., Ed.; Commonwealth Agricultural Bureaux: Aberustwyth, UK, 1978; pp. 96–102. [Google Scholar]
- Association of Official Analytical Chemistry (AOAC). Official Methods of Analysis, 15th ed.; Association of Official Analytical Chemistry (AOAC): Arlington, VA, USA, 1990. [Google Scholar]
- Mertens, D.R. Gravimetric determination of amylase-treated neutral detergent fiber in feeds with refluxing in beakers or crucibles: Collaborative study. J. AOAC Int. 2002, 85, 1217–1240. [Google Scholar]
- Hall, M.B. Calculation of Non-Structural Carbohydrate Content of Feeds That Contain Non-Protein Nitrogen; Fact Sheet DS97; University of Florida: Gainesville, FL, USA, 2000. [Google Scholar]
- Weiss, W.P. Energy Prediction Equations for Ruminant Feeds. In Cornell Nutrition Conference for Feed Manufacturers; New York State College of Agriculture & Life Sciences, Cornell University: Rochester, NY, USA, 1999; pp. 176–185. [Google Scholar]
- Detmann, E.; Souza, M.A.; Valadares Filho, S.C.; Queiroz, A.C.; Berchielli, T.T.; Saliba, E.O.S.; Cabral, L.S.; Pina, D.S.; Ladeira, M.M.; Azevedo, J.A.G. Métodos Para Análise de Alimentos, 1st ed.; Editora UFV: Viçosa, Brazil, 2012. [Google Scholar]
- Smith, A.M.; Reid, J.T. Use of chromic oxide as an indicator of fecal output for the purpose of determining the intake of a pasture herbage by grazing cows. J. Dairy Sci. 1955, 38, 515–524. [Google Scholar] [CrossRef]
- Valadares Filho, S.C.; Tedeschi, E.H.B.K.; Detmann, E.; Paulino, M.F.; Valadares, R.F.D.; Moraes, K.A.K.; Marcondes, M.I. Perspectivas do Uso de Indicadores Para Estimar O Consumo Individual de Bovinos Alimentados Em Grupo. In Annals of the Reunião Anual da Sociedade Brasileira de Zootecnia; Sociedade Brasileira de Zootecnia: João Pessoa, Brazil, 2006; pp. 238–262. [Google Scholar]
- Silva, J.F.C.; Leão, M.I. Fundamentos de Nutrição dos Ruminantes; Livroceres: Piracicaba, Brazil, 1979. [Google Scholar]
- Fernandes, G.A.; de Oliveira, A.S.; de Araújo, C.V.; Couto, V.R.M.; de Moraes, K.A.K.; de Moraes, E.H.B.K. Prediction of pasture intake by beef cattle in tropical conditions. Trop. Anim. Health Prod. 2022, 54, 13. [Google Scholar] [CrossRef] [PubMed]
- Barbizan, M.; Valente, E.E.L.; Damasceno, M.L.; Lopes, S.A.; Tanaka, E.S.; Barros Junior, C.P.; Melo, B.V.R. Balanced protein/energy supplementation plan for beef cattle on tropical pasture. Livest. Sci. 2020, 241, 104211. [Google Scholar] [CrossRef]
- Figueiras, J.F.; Detmann, E.; Franco, M.O.; Batista, E.D.; Reis, W.L.S.; Paulino, M.F.; Valadares Filho, S.C. Effects of Supplements with Different Protein Contents on Nutritional Performance of Grazing Cattle During the Rainy Season. Asian-Australas J. Anim. Sci. 2016, 29, 1710–1718. [Google Scholar] [CrossRef]
- Rouquette, F.M., Jr. Invited Review: The roles of forage management, forage quality, and forage allowance in grazing research. Prof. Anim. Sci. 2016, 32, 10–18. [Google Scholar] [CrossRef]
- Moraes, E.H.B.K.; Paulino, M.F.; Moraes, K.A.K.; Valadares Filho, S.C.; Detmann, E.; Couto, V.R.M. Estratégias de suplementação de bovinos de corte em pastejo durante o período de transição águas-seca. Semin. Ciências Agrárias 2017, 38, 895–908. [Google Scholar] [CrossRef]
- Tedeschi, L.O.; Molle, G.; Menendez, H.M.; Cannas, A.; Fonseca, M.A. The assessment of supplementation requirements of grazing ruminants using nutrition models. Transl. Anim. Sci. 2019, 3, 811–828. [Google Scholar] [CrossRef]
- Paula, N.F.; Paulino, M.F.; Couto, V.R.M.; Detmann, E.; Maciel, I.F.S.; Barros, L.V.; Lopes, S.A.; Valente, E.L.; Zervoudakis, J.T.; Martins, L.S. Efeitos do plano de suplementação sobre o consumo, digestibilidade, comportamento ingestivo, crescimento e características de carcaça de bovinos de corte em pastejo. Semin. Ciências Agrárias 2019, 40, 3233–3248. [Google Scholar] [CrossRef]
- Rotta, P.P. Exigências de Proteína Para Bovinos de Corte. In Exigências Nutricionais de Zebuínos Puros e Cruzados—BR-Corte, 3rd ed.; Valadares Filho, S.C., Costa e Silva, L.F., Gionbelli, M.P., Rotta, P.P., Marcondes, M.I., Chizzotti, M.L., Prados, L.F., Eds.; Editora UFV: Viçosa, Brazil, 2016; pp. 191–220. [Google Scholar]
- Sousa, L.C.O.; Palma, M.N.N.; Franco, M.O.; Detmann, E. Does frequency of protein supplementation affect performance of cattle under grazing in tropical pastures? Anim. Feed Sci. Technol. 2022, 289, 115316. [Google Scholar] [CrossRef]
- Batista, E.D.; Detmann, E.; Valadares Filho, S.C.; Titgemeyer, E.C.; Valadares, R.F.D. The effect of CP concentration in the diet on urea kinetics and microbial usage of recycled urea in cattle: A meta-analysis. Animal 2017, 11, 1303–1311. [Google Scholar] [CrossRef] [PubMed]
- Lazzarini, I.; Detmann, E.; Valadares Filho, S.C.; Paulino, M.F.; Batista, E.D.; Rufino, L.M.A.; Reis, W.L.S.; Franco, M.O. Nutritional Performance of Cattle Grazing during Rainy Season with Nitrogen and Starch Supplementation. Asian-Australas J. Anim. Sci. 2016, 29, 1120–1128. [Google Scholar] [CrossRef]
- Franco, M.O.; Detmann, E.; Valadares Filho, S.C.; Batista, E.D.; Rufino, L.M.A.; Barbosa, M.M.; Lopes, A.R. Intake, digestibility, and rumen and metabolic characteristics of cattle fed low-quality tropical forage and supplemented with nitrogen and different levels of starch. Asian-Australas J. Anim. Sci. 2017, 30, 797–803. [Google Scholar] [CrossRef] [PubMed]
- Missio, R.L.; Souza, S.S.; Paris, W.; Cavazzana, J.F.; Severo, M.M.; Severo, I.K.; Poggere, J.M.; Costa, O.A.D.; Borquis, R.R.A.; Menezes, L.F.G. Influence of low and medium intake supplements in the growing phase of steers grazing in the tropical pasture and finished in feedlot. Ciência Rural 2024, 54, e20220661. [Google Scholar] [CrossRef]
- Boval, M.; Edouard, N.; Sauvant, D. A meta-analysis of nutrient intake, feed efficiency and performance in cattle grazing on tropical grasslands. Animal 2015, 9, 973–982. [Google Scholar] [CrossRef] [PubMed]
- Costa, C.M.; Difante, G.S.; Costa, A.B.G.; Gurgel, A.L.C.; Ferreira, M.A., Jr.; Santos, G.T. Grazing intensity as a management strategy in tropical grasses for beef cattle production: A meta-analysis. Animal 2021, 15, 100192. [Google Scholar] [CrossRef] [PubMed]
- Sales, M.F.L.; Paulino, M.F.; Valadares Filho, S.C.; Figueiredo, D.M.; Porto, M.; Detmann, E. Supplementation levels for growing beef cattle grazing in the dry-rainy transition season. Rev. Bras. Zootec. 2011, 40, 904–911. [Google Scholar] [CrossRef]
U. brizantha cv. Marandu 1 | Supplement | |
---|---|---|
Ground sorghum grain | - | 560 |
Soybean meal | - | 200 |
Urea | - | 150 |
Mineral salt 2 | - | 90 |
Chemical composition (g/kg) | ||
Dry matter (g/kg as fed) | 282.1 | 893.0 |
Ash (g/kg of dry matter) | 97.6 | 107.0 |
Crude protein (g/kg of dry matter) | 95.3 | 583.5 |
Ether extract (g/kg of dry matter) | 17.5 | 36.6 |
apNDF 3 (g/kg of dry matter) | 652.5 | 160.0 |
NFC 4 (g/kg of dry matter) | 139.5 | 243.7 |
TDN 5 (g/kg of dry matter) | 569.3 | 586.5 |
Component (g/kg) | Supplementation Level | |
---|---|---|
1 g/kg BW 1 | 2 g/kg BW 1 | |
Dry matter (g/kg as fed) | 309.0 | 338.2 |
Ash (g/kg of dry matter) | 98.0 | 98.5 |
Crude protein (g/kg of dry matter) | 116.6 | 139.9 |
Ether extract (g/kg of dry matter) | 18.3 | 19.3 |
apNDF 2 (g/kg of dry matter) | 630.3 | 606.7 |
NFC 3 (g/kg of dry matter) | 143.6 | 148.6 |
TDN 4 (g/kg of dry matter) | 570.1 | 570.9 |
Forage to concentrate ratio (%) | ||
Forage | 95.58 | 90.80 |
Concentrate | 4.42 | 9.20 |
Variable | Value (kg/ha) |
---|---|
Dry matter total availability (DMTA) | 3364 |
Green dry matter availability (GDMA) | 2527 |
Potentially digestible DM (pdDM) | 2737 |
Forage allowance DM (%) (FA DM) | 16.56 |
Leaf-to-stem ratio | 1.11 |
Leaf | 1334 |
Stem | 1193 |
Dead material | 837.2 |
Supplementation Level | s.e. 2 | p-Value 3 | ||
---|---|---|---|---|
1 g/kg BW 1 | 2 g/kg BW 1 | |||
Intake (kg/d) | ||||
Total DM 4 | 4.76 | 4.46 | 0.18 | 0.255 |
Total DM (%BW 1) | 2.25 | 2.08 | 0.05 | 0.092 |
Forage DM | 4.55 | 4.05 | 0.17 | 0.060 |
Forage DM (%BW 1) | 2.15 | 1.89 | 0.05 | 0.009 |
Supplement DM | 0.21 | 0.41 | 0.02 | <0.001 |
Crude protein | 0.54 | 0.58 | 0.02 | 0.344 |
Ether extract | 0.08 | 0.07 | 0.003 | 0.801 |
apNDF 5 | 2.82 | 2.54 | 0.11 | 0.085 |
apNDF (%BW 1) | 1.31 | 1.18 | 0.03 | 0.013 |
NFC 6 | 0.75 | 0.78 | 0.03 | 0.590 |
TDN 7 | 2.54 | 2.38 | 0.10 | 0.277 |
Apparent digestibility (%) | ||||
DM 4 | 58.68 | 58.73 | 0.48 | 0.935 |
Crude protein | 53.56 | 56.60 | 1.31 | 0.121 |
Ether extract | 66.67 | 66.73 | 2.22 | 0.983 |
apNDF 5 | 57.59 | 55.38 | 0.63 | 0.025 |
NFC 6 | 66.24 | 71.00 | 1.26 | 0.013 |
TDN 7 | 53.35 | 53.36 | 0.57 | 0.954 |
Supplementation Level | s.e. 2 | p-Value 3 | ||
---|---|---|---|---|
1 g/kg BW 1 | 2 g/kg BW 1 | |||
Initial BW 1 (kg) | 149.7 | 148.0 | 4.32 | 0.97 |
Final BW 1 (kg) | 297.4 | 298.4 | 5.00 | 0.94 |
Average daily gain (kg/d) | 0.57 | 0.58 | 0.0005 | 0.75 |
Feed conversion (kg/kg) | 8.86 | 7.45 | 0.99 | 0.07 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dueñez, W.Y.S.; Cediel-Devia, D.C.; Melgar, O.R.A.; Santos, M.d.C.; Souza, S.O.d.; Santos, L.V.; Ferreira, R.A.; Aponte, P.F.C.; Riobo, J.C.O.; Teixeira, F.A.; et al. Low Levels of Supplementation for Post-Weaning Girolando Steers on Tropical Pasture During the Dry to Rainy Season Transition. Vet. Sci. 2025, 12, 384. https://doi.org/10.3390/vetsci12040384
Dueñez WYS, Cediel-Devia DC, Melgar ORA, Santos MdC, Souza SOd, Santos LV, Ferreira RA, Aponte PFC, Riobo JCO, Teixeira FA, et al. Low Levels of Supplementation for Post-Weaning Girolando Steers on Tropical Pasture During the Dry to Rainy Season Transition. Veterinary Sciences. 2025; 12(4):384. https://doi.org/10.3390/vetsci12040384
Chicago/Turabian StyleDueñez, Wbeimar Yamit Sanchez, Diana Carolina Cediel-Devia, Osman Ronaldo Aguilar Melgar, Marceliana da Conceição Santos, Sinvaldo Oliveira de Souza, Laize Vieira Santos, Rayce Aparecida Ferreira, Pedro Fernando Caro Aponte, Jeferson Camilo Ortiz Riobo, Fábio Andrade Teixeira, and et al. 2025. "Low Levels of Supplementation for Post-Weaning Girolando Steers on Tropical Pasture During the Dry to Rainy Season Transition" Veterinary Sciences 12, no. 4: 384. https://doi.org/10.3390/vetsci12040384
APA StyleDueñez, W. Y. S., Cediel-Devia, D. C., Melgar, O. R. A., Santos, M. d. C., Souza, S. O. d., Santos, L. V., Ferreira, R. A., Aponte, P. F. C., Riobo, J. C. O., Teixeira, F. A., Hernández, V. G. P., Júnior, D. M. d. L., & Silva, R. R. (2025). Low Levels of Supplementation for Post-Weaning Girolando Steers on Tropical Pasture During the Dry to Rainy Season Transition. Veterinary Sciences, 12(4), 384. https://doi.org/10.3390/vetsci12040384