From Parts to Whole: A Systems Biology Approach to Decoding Milk Fever
Simple Summary
Abstract
1. Introduction
2. Reassessing Reductionism in Milk Fever Research
3. Hypocalcemia in Multiple Periparturient Diseases: The Common Role of Inflammation
4. Moving Beyond a Narrow Focus on Calcium
4.1. Origins of the Calcium-Centered Model
Early Observations and Empirical Shifts
5. Persistent Knowledge Gaps
6. Calcium Dynamics During Inflammation and Endotoxin Exposure
6.1. The Calci-Inflammatory Axis: Mechanisms and Emergent Nonlinear Dynamics in Calcium Homeostasis
6.2. Calcium Sequestration and Cellular Adaptations
6.3. Endotoxin Translocation and Systemic Effects
6.4. The Protective Role of HDL and Calcium Binding
7. Consequences of a Single-Factor Focus
7.1. Oversimplification of Disease Complexity
7.2. Practical Limitations and the Challenge of Reductionism in Complex Diseases
8. Why Reductionism Alone Struggles with Complex Diseases
8.1. The Challenge of Multi-Layered Interactions
8.2. Limitations of Traditional Approaches in Understanding Milk Fever
9. Emergent Properties in Complex Diseases
9.1. Nonlinear Feedback and Interconnected Pathways
9.2. Cross-Disciplinary Parallels
9.3. Dynamic and Adaptive Nature of Biological Systems
9.3.1. Continuous Physiological Adjustments
9.3.2. Risk of Secondary Complications
9.4. Limited Predictive Power
9.5. Moving Beyond Reductionism: Systems Biology and Integrative Approaches
10. Pioneering Systems Biology Approaches to Decoding the Century-Old Enigma of Milk Fever
10.1. Genomic Contributions to Understanding Milk Fever
10.2. Transcriptomic Perspectives on Calcium and Immune Regulation
10.3. Proteomic Insights into Pathophysiology
10.4. Metabolomics’ New Contributions That Expand the Understanding of Milk Fever
10.5. Integrative Insights: Inflammation and Immunity in Milk Fever
11. Discussion
12. Conclusions and Future Directions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Goff, J.P. Calcium and magnesium disorders. Vet. Clin. N. Am. Food Anim. Pract. 1984, 6, 71–86. [Google Scholar] [CrossRef] [PubMed]
- Horst, R.L.; Goff, J.P.; Reinhardt, T.A. Calcium metabolism and utilization in dairy cows. J. Dairy Sci. 1997, 80, 2289–2294. [Google Scholar]
- Clater, F. Every Man His Own Cattle Doctor: Or a Practical Treatise on the Diseases of Horned Cattle; W. Clowes and Sons: London, UK, 1814. [Google Scholar]
- Boeriche, A. Cholera: Its Causes, Symptoms and Treatment; A. Waldheim: Philadelphia, PA, USA, 1874. [Google Scholar]
- Little, W.; Wright, N.C. A review of some of the modern theories of milk fever. Vet. J. 1926, 82, 185–191. [Google Scholar] [CrossRef]
- Dryrre, H.; Greig, J.R. The specific chemotherapy of milk fever by the parenteral administration of Ca-boro-gluconate. Vet. Med. 1935, 30, 234–238. [Google Scholar]
- Fish, P. Parturient paresis in dairy cows: Clinical observations. J. Am. Vet. Med. Assoc. 1927, 70, 550–559. [Google Scholar]
- Fish, P. Investigations into blood calcium in parturient paresis. Am. J. Vet. Res. 1928, 1, 316–323. [Google Scholar]
- Goff, J.P. The monitoring, prevention, and treatment of milk fever and subclinical hypocalcemia in dairy cows. Vet. J. 2008, 176, 50–57. [Google Scholar] [CrossRef]
- Ametaj, B.N.; Zebeli, Q.; Iqbal, S. Nutrition, microbiota, and endotoxin-related diseases in dairy cows. Rev. Bras. Zootec. 2010, 39, 433–444. [Google Scholar] [CrossRef]
- Eckel, E.F.; Ametaj, B.N. Invited review: Role of bacterial endotoxins in the etiopathogenesis of periparturient diseases of transition dairy cows. Res. Vet. Sci. 2016, 109, 11–16. [Google Scholar] [CrossRef]
- Venjakob, P.L.; Staufenbiel, R.; Heuwieser, W.; Borchardt, S. Association between serum calcium dynamics around parturition and common postpartum diseases in dairy cows. J. Dairy Sci. 2021, 104, 2243–2253. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Dervishi, E.; Ametaj, B.N. Milk fever in dairy cows is preceded by activation of innate immunity and alterations in carbohydrate metabolism prior to disease occurrence. Res. Vet. Sci. 2018, 117, 167–177. [Google Scholar] [CrossRef] [PubMed]
- Manicka, S.; Johnson, K.; Levin, M.; Murrugarra, D. The nonlinearity of regulation in biological networks. NPJ Syst. Biol. Appl. 2023, 9, 10. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hu, C.; Jia, W. Multi-omics profiling: The way towards precision medicine in metabolic diseases. J. Mol. Cell Biol. 2021, 13, 576–593. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Block, E. Manipulating dietary anions and cations for prepartum dairy cows to reduce the incidence of milk fever. J. Dairy Sci. 1994, 77, 2938–2950. [Google Scholar] [CrossRef] [PubMed]
- Lean, I.J.; DeGaris, P.J.; McNeil, D.M.; Block, E. Hypocalcemia in dairy cows: Meta-analysis and dietary cation anion difference theory revisited. J. Dairy Sci. 2006, 89, 669–684. [Google Scholar] [CrossRef]
- Reinhardt, T.A.; Lippolis, J.D.; McCluskey, B.J.; Goff, J.P.; Horst, R.L. Prevalence of subclinical hypocalcemia in dairy herds. J. Dairy Sci. 2011, 94, 2340–2344. [Google Scholar] [CrossRef] [PubMed]
- Martins, L.F.; Menta, P.R.; Fernandes, L.; Machado, V.S.; Neves, R.C. Prolonged, low-grade inflammation in the first week of lactation: Associations with mineral, protein, and energy balance markers, and milk yield, in a clinically healthy Jersey cow cohort. J. Dairy Sci. 2021, 104, 6113–6123. [Google Scholar] [CrossRef] [PubMed]
- Serrenho, C.; Morrison, E.; Bruinjé, T.; LeBlanc, S. Assessment of systemic inflammation following oral calcium supplementation in healthy postpartum multiparous dairy cows—A randomized controlled trial. JDS Commun. 2023, 5, 134–138. [Google Scholar] [CrossRef]
- Waldron, M.R.; Nonnecke, B.J.; Nishida, T.; Horst, R.L.; Overton, T.R. Effect of lipopolysaccharide infusion on serum macromineral and vitamin D concentrations in dairy cows. J. Dairy Sci. 2003, 86, 3440–3446. [Google Scholar] [CrossRef]
- Horst, E.A.; Mayorga, E.J.; Al-Qaisi, M.; Abeyta, M.A.; Portner, S.L.; McCarthy, C.S.; Goetz, B.M.; Kvidera, S.K.; Baumgard, L.H. Effects of maintaining eucalcemia following immunoactivation in lactating Holstein dairy cows. J. Dairy Sci. 2020, 103, 7472–7486. [Google Scholar] [CrossRef] [PubMed]
- Chandler, T.; Westhoff, T.; Behling-Kelly, E.; Sipka, A.; Mann, S. Eucalcemia during lipopolysaccharide challenge in postpartum dairy cows: I. Clinical, inflammatory, and metabolic response. J. Dairy Sci. 2023, 106, 3586–3600. [Google Scholar] [CrossRef] [PubMed]
- Chapinal, N.; Carson, M.; Duffield, T.F.; Capel, M.; Godden, S.; Overton, M.; Santos, J.E.; LeBlanc, S.J. The association of serum metabolites with clinical disease during the transition period. J. Dairy Sci. 2011, 94, 4897–4903. [Google Scholar] [CrossRef]
- Seifi, H.A.; LeBlanc, S.J.; Leslie, K.E.; Duffield, T.F. Metabolic predictors of post-partum disease and culling risk in dairy cattle. Vet. J. 2011, 188, 216–220. [Google Scholar] [CrossRef]
- Rodríguez, E.M.; Arís, A.; Bach, A. Association between subclinical hypocalcemia and postparturient diseases in dairy cows. J. Dairy Sci. 2017, 100, 7427–7434. [Google Scholar] [CrossRef]
- Hendy, G.N.; Canaff, L. Calcium-sensing receptor, proinflammatory cytokines and calcium homeostasis. Semin. Cell Dev. Biol. 2016, 49, 37–43. [Google Scholar] [CrossRef] [PubMed]
- Zwierzchowski, G.; Zhang, G.; Tobolski, D.; Wójcik, R.; Wishart, D.S.; Ametaj, B.N. Metabolomic fingerprinting of milk fever cows: Pre- and postpartum metabolite alterations. J. Vet. Intern. Med. 2024, 38, 3384–3397. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kimura, K.; Reinhardt, T.A.; Goff, J.P. Parturition and hypocalcemia blunts calcium signals in immune cells of dairy cattle. J. Dairy Sci. 2006, 89, 2588–2595. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Guo, H.; Yang, W.; Li, M.; Zou, Y.; Loor, J.; Xia, C.; Xu, C. Effects of ORAI calcium release-activated calcium modulator 1 (ORAI1) on neutrophil activity in dairy cows with subclinical hypocalcemia. J. Anim. Sci. 2019, 97, 3326–3336. [Google Scholar] [CrossRef]
- Zhang, B.; Huang, X.; Jiang, B.; Loor, J.; Lv, Q.; Zhang, W.; Li, M.; Wen, J.; Yin, Y.; Wang, J.; et al. Transcriptomics of circulating neutrophils in dairy cows with subclinical hypocalcemia. Front. Vet. Sci. 2022, 9, 959831. [Google Scholar] [CrossRef]
- Abuajamieh, M.; Kvidera, S.K.; Fernandez, M.V.S.; Nayeri, A.; Upah, N.; Nolan, E.A.; Schoenberg, K.M.; Wheelock, J.B.; Moisá, S.J.; Lucy, M.C.; et al. Inflammatory biomarkers are associated with ketosis in periparturient Holstein cows. J. Dairy Sci. 2016, 99, 6563–6571. [Google Scholar] [CrossRef]
- Hibbs, J.W. Studies on the epidemiology of parturient paresis. J. Dairy Sci. 1927, 10, 255–265. [Google Scholar]
- Hibbs, J.W. Further investigations into dietary interventions for parturient paresis. J. Dairy Res. 1947, 14, 425–434. [Google Scholar]
- Greig, J.R. Calcium gluconate as a specific in milk fever. Vet. Rec. 1930, 10, 115–120. [Google Scholar]
- Greig, J.R. Studies in the prevention of milk fever. Vet. Rec. 1930, 10, 301–305. [Google Scholar]
- Wilms, J.; Wang, G.; Doelman, J.; Jacobs, M.; Martín-Tereso, J. Intravenous calcium infusion in a calving protocol disrupts calcium homeostasis compared with an oral calcium supplement. J. Dairy Sci. 2019, 102, 6056–6064. [Google Scholar] [CrossRef] [PubMed]
- Horst, E.; Kvidera, S.; Baumgard, L. Invited review: The influence of immune activation on transition cow health and performance—A critical evaluation of traditional dogmas. J. Dairy Sci. 2021, 104, 8380–8410. [Google Scholar] [CrossRef] [PubMed]
- Thomassen, H. A contribution to the study of parturient fever of the cow. J. Comp. Pathol. Ther. 1890, 3, 1–9, (Trans. from Rec. Méd. Vét. 1880). [Google Scholar] [CrossRef]
- Schmidt, R.A. Studies and experiments on the causes and treatment of milk fever. Münch. Vet. Wochenschr. 1897, 9, 228, (Cited by Auger, M.L. Compt. Rend. 1926, 182, 348–350). [Google Scholar]
- Hutyra, F.; Marek, J. Special Pathology and Therapeutics of the Diseases of Domestic Animals, 3rd ed.; A. Eichler: Berlin, Germany, 1926. [Google Scholar]
- Dryerre, H.; Greig, J.R. Further studies on the etiology of milk fever. Vet. Rec. 1925, 5, 225–231. [Google Scholar]
- Feijó, J.O.; Pereira, R.A.; Montagner, P.; Del Pino, F.A.; Schmitt, E.; Corrêa, M.N. Dynamics of acute phase proteins in dairy cows with subclinical hypocalcemia. Can. J. Anim. Sci. 2018, 98, 1–8. [Google Scholar] [CrossRef]
- Hendy, G.N.; Canaff, L. Calcium-sensing receptor gene: Regulation of expression. Pflugers Arch. Eur. J. Physiol. 2016, 468, 1133–1146. [Google Scholar] [CrossRef]
- Zaloga, G.P. Hypocalcemia in critically ill patients. Crit. Care Med. 1992, 20, 251–262. [Google Scholar] [CrossRef] [PubMed]
- Calandra, T.; Gerain, J.; Heumann, D.; Baumgartner, J.D.; Glauser, M.P. High circulating levels of interleukin-6 in patients with septic shock: Evolution during sepsis, prognostic value, and interplay with other cytokines. Am. J. Med. 1991, 91, 23–29. [Google Scholar] [CrossRef] [PubMed]
- Carlstedt, E.; Ridefelt, P.; Lind, L.; Rastad, J. Interleukin-6 induced suppression of bovine parathyroid hormone secretion. Biosci. Rep. 1999, 19, 35–42. [Google Scholar] [CrossRef]
- Carlstedt, F.; Lind, L.; Rastad, J.; Stjernström, H.; Wide, L.; Ljunghall, S. Parathyroid hormone and ionized calcium levels are related to the severity of illness and survival in critically ill patients. Eur. J. Clin. Investig. 1998, 28, 898–903. [Google Scholar] [CrossRef] [PubMed]
- Collage, R.D.; Howell, G.M.; Zhang, X.; Stripay, J.L.; Lee, J.S.; Loughran, P.A.; Zuckerbraun, B.S.; Rosengart, M.R. Calcium supplementation during sepsis exacerbates organ failure and mortality via calcium/calmodulin-dependent protein kinase kinase signaling. Crit. Care Med. 2013, 41, e352–e360. [Google Scholar] [CrossRef]
- Mansell, A. If a butterfly flaps its wings in the Amazon, do we form an inflammasome? Mol. Immunol. 2017, 86, 1–2. [Google Scholar] [CrossRef] [PubMed]
- Canaff, L.; Hendy, G.N. Calcium-sensing receptor gene transcription is up-regulated by the proinflammatory cytokine, interleukin-1β: Role of the NF-κB pathway and κB elements. J. Biol. Chem. 2005, 280, 14177–14188. [Google Scholar] [CrossRef]
- Ekenstam, E.A.; Benson, L.; Hällgren, R.; Wide, L.; Ljunggren, Ö. Impaired secretion of parathyroid hormone in patients with rheumatoid arthritis: Relationship to inflammatory activity. Clin. Endocrinol. 1990, 32, 323–328. [Google Scholar] [CrossRef]
- Lind, L.; Carlstedt, F.; Rastad, J.; Stjernström, H.; Stridsberg, M.; Ljunggren, Ö. Hypocalcemia and parathyroid hormone secretion in critically ill patients. Crit. Care Med. 2000, 28, 93–99. [Google Scholar] [CrossRef]
- Klein, G.L.; Nicolai, M.; Langman, C.B.; Cuneo, B.F.; Sailer, D.E.; Herndon, D.N. Dysregulation of calcium homeostasis after severe burn injury in children: Possible role of magnesium depletion. J. Pediatr. 1997, 131, 246–251. [Google Scholar] [CrossRef] [PubMed]
- Olszak, I.T.; Poznansky, M.C.; Evans, R.H.; Olson, D.; Kos, C.; Pollak, M.R.; Brown, E.M.; Scadden, D. Extracellular calcium elicits a chemokinetic response from monocytes in vitro and in vivo. J. Clin. Investig. 2000, 105, 1299–1305. [Google Scholar] [CrossRef]
- Bornefalk, E.; Ljunghall, S.; Lindh, E.; Bengtson, O.; Johansson, A.G.; Ljunggren, Ö. Regulation of interleukin-6 secretion from mononuclear blood cells by extracellular calcium. J. Bone Miner. Res. 1997, 12, 228–233. [Google Scholar] [CrossRef] [PubMed]
- Lee, G.S.; Subramanian, N.; Kim, A.I.; Aksentijevich, I.; Goldbach-Mansky, R.; Sacks, D.B.; Germain, R.N.; Kastner, D.L.; Chae, J.J. The calcium-sensing receptor regulates the NLRP3 inflammasome through Ca2+ and cAMP. Nature 2012, 492, 123–127. [Google Scholar] [CrossRef]
- Canaff, L.; Zhou, X.; Hendy, G.N. The proinflammatory cytokine, interleukin-6, up-regulates calcium-sensing receptor gene transcription via Stat1/3 and Sp1/3. J. Biol. Chem. 2008, 283, 13586–13600. [Google Scholar] [CrossRef] [PubMed]
- Rossol, M.; Pierer, M.; Raulien, N.; Quandt, D.; Meusch, U.; Rothe, K.; Schubert, K.; Schöneberg, T.; Schaefer, M.; Krügel, U.; et al. Extracellular Ca2+ is a danger signal activating the NLRP3 inflammasome through G protein-coupled calcium-sensing receptors. Nat. Commun. 2012, 3, 1329. [Google Scholar] [CrossRef]
- Hannan, F.M.; Kallay, E.; Chang, W.; Brandi, M.L.; Thakker, R.V. The calcium-sensing receptor in physiology and in calcitropic and noncalcitropic diseases. Nat Rev Endocrinol. 2018, 15, 33–51. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Alemzadeh, E.; Alemzadeh, E.; Ziaee, M.; Abedi, A.; Salehiniya, H. The effect of low serum calcium level on the severity and mortality of COVID patients: A systematic review and meta-analysis. Immun. Inflamm. Dis. 2021, 9, 1219–1228. [Google Scholar] [CrossRef]
- Zhou, X.; Chen, D.; Wang, L.; Zhao, Y.; Wei, L.; Chen, Z.; Yang, B. Low serum calcium: A new, important indicator of COVID-19 patients from mild/moderate to severe/critical. Biosci. Rep. 2020, 40, BSR20202690. [Google Scholar] [CrossRef]
- Berlansky, S.; Sallinger, M.; Grabmayr, H.; Humer, C.; Bernhard, A.; Fahrner, M.; Frischauf, I. Calcium signals during SARS-CoV-2 infection: Assessing the potential of emerging therapies. Cells 2022, 11, 253. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Alsagaff, M.Y.; Mulia, E.P.B.; Maghfirah, I.; Luke, K.; Nugraha, D.; Rachmi, D.A.; Septianda, I.; A’yun, M.Q. Association of calcium channel blocker use with clinical outcome of COVID-19: A meta-analysis. Diabetes Metab. Syndr. 2021, 15, 102210. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Iamartino, L.; Brandi, M.L. The calcium-sensing receptor in inflammation: Recent updates. Front. Physiol. 2022, 13, 1059369. [Google Scholar] [CrossRef]
- Berridge, M.J.; Bootman, M.D.; Roderick, H.L. Calcium signalling: Dynamics, homeostasis and remodelling. Nat. Rev. Mol. Cell Biol. 2003, 4, 517–529. [Google Scholar] [CrossRef] [PubMed]
- Giorgi, C.; De Stefani, D.; Bononi, A.; Rizzuto, R.; Pinton, P. Structural and functional link between the mitochondrial network and the endoplasmic reticulum. Int. J. Biochem. Cell Biol. 2012, 44, 1518–1524. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Klein, G.L. Burns: Where has all the calcium (and vitamin D) gone? Adv. Nutr. 2018, 9, 239–244. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Holowaychuk, M.; Birkenheuer, A.; Li, J.; Marr, H.; Boll, A.; Nordone, S. Hypocalcemia and hypovitaminosis D in dogs with induced endotoxemia. J. Vet. Intern. Med. 2012, 26, 244–251. [Google Scholar] [CrossRef] [PubMed]
- Munford, R.S.; Andersen, J.M.; Dietschy, J.M. Sites of tissue binding and uptake in vivo of bacterial lipopolysaccharide-high density lipoprotein complexes: Studies in the rat and squirrel monkey. J. Clin. Investig. 1981, 68, 1503–1513. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wurfel, M.M.; Wright, S.D. Lipopolysaccharide (LPS) binding protein catalyzes binding of LPS to lipoproteins. Prog. Clin. Biol. Res. 1995, 392, 287–295. [Google Scholar] [PubMed]
- Opgenorth, J.; Mayorga, E.J.; Abeyta, M.A.; Goetz, B.M.; Rodriguez-Jimenez, S.; Freestone, A.D.; McGill, J.L.; Baumgard, L.H. Intravenous lipopolysaccharide challenge in early- versus mid-lactation dairy cattle. I: The immune and inflammatory responses. J. Dairy Sci. 2024, 107, 6225–6239. [Google Scholar] [CrossRef] [PubMed]
- Zaloga, G.P.; Malcolm, D.; Chernow, B.; Holaday, J. Endotoxin-induced hypocalcemia results in defective calcium mobilization in rats. Circ. Shock 1988, 24, 143–148. [Google Scholar] [PubMed]
- Toribio, R.; Kohn, C.; Hardy, J.; Rosol, T. Alterations in serum parathyroid hormone and electrolyte concentrations and urinary excretion of electrolytes in horses with induced endotoxemia. J. Vet. Intern. Med. 2005, 19, 223–231. [Google Scholar] [CrossRef]
- Klein, G. Why does inflammation result in resorptive bone loss? What the study of burns teaches us. Endocrines 2022, 3, 36–50. [Google Scholar] [CrossRef]
- Aiumlamai, S.; Fredriksson, G.; Kindahl, H.; Edqvist, L.E. A possible role of endotoxins in spontaneous paretic cows around parturition. Zentralbl. Veterinarmed. A 1992, 39, 57–68. [Google Scholar] [CrossRef] [PubMed]
- Andersen, P.H. Bovine endotoxicosis—Some aspects of relevance to production diseases. A review. Acta Vet. Scand. 2003, 98, 141–145. [Google Scholar] [CrossRef]
- Sadek, K.; Saleh, E.; Ayoub, M. Selective, reliable blood and milk bio-markers for diagnosing clinical and subclinical bovine mastitis. Trop. Anim. Health Prod. 2017, 49, 431–437. [Google Scholar] [CrossRef]
- Rosales, E.B.; Ametaj, B.N. Reproductive tract infections in dairy cows: Can probiotics curb down the incidence rate? Dairy 2021, 2, 40–64. [Google Scholar] [CrossRef]
- Pazol, J.; Weiss, T.M.; Martínez, C.D.; Quesada, O.; Nicolau, E. The influence of calcium ions (Ca2+) on the enzymatic hydrolysis of lipopolysaccharide aggregates to liberate free fatty acids (FFA) in aqueous solution. JCIS Open 2022, 7, 100058. [Google Scholar] [CrossRef]
- Redeker, C.; Briscoe, W.H. Interactions between mutant bacterial lipopolysaccharide (LPS-Ra) surface layers: Surface vesicles, membrane fusion, and effect of Ca2+ and temperature. Langmuir 2019, 35, 15739–15750. [Google Scholar] [CrossRef] [PubMed]
- Meilhac, O.; Tanaka, S.; Couret, D. High-density lipoproteins are bug scavengers. Biomolecules 2020, 10, 598. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Heng, H.H.Q. The conflict between complex systems and reductionism. JAMA 2008, 300, 1580. [Google Scholar] [CrossRef] [PubMed]
- Hayirli, A. The role of exogenous insulin in the complex of hepatic lipidosis and ketosis associated with insulin resistance phenomenon in postpartum dairy cattle. Vet. Res. Commun. 2006, 30, 749–774. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Guo, J.; Mu, R.; Jiang, P.; Zhao, C.; Cao, Y.; Zhang, N.; Fu, Y. The correlation and mechanism between rumen microbiota disturbance and mastitis in dairy cows. Preprint 2020. [Google Scholar] [CrossRef]
- Guo, J.; Chang, G.; Zhang, K.; Xu, L.; Jin, D.; Bilal, M.; Shen, X. Rumen-derived lipopolysaccharide provoked inflammatory injury in the liver of dairy cows fed a high-concentrate diet. Oncotarget 2017, 8, 46769–46780. [Google Scholar] [CrossRef] [PubMed]
- Bilal, M.; Abaker, J.; Aabdin, Z.; Xu, T.; Dai, H.; Zhang, K.; Liu, X.; Shen, X. Lipopolysaccharide derived from the digestive tract triggers an inflammatory response in the uterus of mid-lactating dairy cows during SARA. BMC Vet. Res. 2016, 12, 120. [Google Scholar] [CrossRef]
- Emmanuel, D.G.; Madsen, K.L.; Churchill, T.A.; Dunn, S.M.; Ametaj, B.N. Acidosis and lipopolysaccharide from Escherichia coli 055:B5 cause hyperpermeability of rumen and colon tissues. J. Dairy Sci. 2007, 90, 5552–5557. [Google Scholar] [CrossRef] [PubMed]
- Venjakob, P.L.; Borchardt, S.; Heuwieser, W. Hypocalcemia—Cow-level prevalence and preventive strategies in dairy herds: A review. J. Dairy Sci. 2017, 100, 9258–9266. [Google Scholar] [CrossRef]
- Williams, R.S.; Auwerx, J. The convergence of systems and reductionist approaches in complex traits and diseases. Cell 2015, 162, 23–32. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Neuenschwander, T.F.; Miglior, F.; Jamrozik, J.; Berke, O.; Kelton, D.F.; Schaeffer, L.R. Genetic parameters for producer-recorded health data in Canadian Holstein cattle. Animal 2012, 6, 571–578. [Google Scholar] [CrossRef] [PubMed]
- Neuenschwander, T.F.; Biffani, S.; Bier, D.; Egger-Danner, C.; Gredler, B.; Fuerst, C. The genetic architecture of health traits in dairy cattle. BMC Genom. 2020, 21, 624. [Google Scholar]
- Sturmberg, J.P.; Bennett, J.M.; Martin, C.M.; Picard, M. ‘Multimorbidity’ as the manifestation of network disturbances. J. Eval. Clin. Pract. 2017, 23, 199–208. [Google Scholar] [CrossRef] [PubMed]
- Nathan, C. Nonresolving inflammation redux. Immunity 2022, 55, 592–605. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Pacheco, H.; Da Silva, S.; Sigdel, A.; Mak, C.; Galvão, K.; Texeira, R.; Dias, L.; Peñagaricano, F. Gene mapping and gene-set analysis for milk fever incidence in Holstein dairy cattle. Front. Genet. 2018, 9, 465. [Google Scholar] [CrossRef] [PubMed]
- Kauffman, S.A. The Origins of Order: Self-Organization and Selection in Evolution; Oxford University Press: New York, NY, USA, 1993. [Google Scholar]
- Bailey, K. Emergence, drop-back and reductionism in living systems theory. Axiomathes 2005, 15, 29–45. [Google Scholar] [CrossRef]
- Wang, T.; He, C. TNF-α and IL-6: The link between immune and bone system. Curr. Drug Targets 2020, 21, 213–227. [Google Scholar] [CrossRef] [PubMed]
- Weiner, N. Cybernetics or Control and Communication in the Animal and the Machine; MIT Press: Cambridge, MA, USA, 1948. [Google Scholar]
- von Bertalanffy, L. General System Theory: Foundations, Development, Applications; George Braziller: New York, NY, USA, 1968. [Google Scholar]
- Kitano, H. Computational systems biology. Nature 2002, 420, 206–210. [Google Scholar] [CrossRef] [PubMed]
- Kitano, H. Biological robustness. Nat. Rev. Genet. 2004, 5, 826–837. [Google Scholar] [CrossRef] [PubMed]
- Dazert, E.; Heim, M.; Beerenwinkel, N.; Hall, M. Abstract IA22: Mechanisms of evasive resistance in cancer. Mol. Cancer Res. 2016, 14, IA22. [Google Scholar] [CrossRef]
- Allen, H.K.; Trachsel, J.; Looft, T.; Casey, T.A. Finding alternatives to antibiotics. Ann. N. Y. Acad. Sci. 2014, 1323, 91–100. [Google Scholar] [CrossRef] [PubMed]
- Jayasinghe, S. Complexity science to conceptualize health and disease: Is it relevant to clinical medicine? Mayo Clin. Proc. 2012, 87, 314–319. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Liu, X.; Wang, Y.; Ji, H.; Aihara, K.; Chen, L. Personalized characterization of diseases using sample-specific networks. Nucleic Acids Res. 2016, 44, e164. [Google Scholar] [CrossRef]
- Lee, D.; Kim, M.; Shin, H. Inference on chains of disease progression based on disease networks. PLoS ONE 2019, 14, e0218871. [Google Scholar] [CrossRef] [PubMed]
- Weston, A.D.; Hood, L. Systems biology, proteomics, and the future of health care: Toward predictive, preventive, and personalized medicine. J. Proteome Res. 2004, 3, 179–196. [Google Scholar] [CrossRef] [PubMed]
- Stelling, J.; Sauer, U.; Szallasi, Z.; Doyle, F.J.; Doyle, J. Robustness of cellular functions. Cell 2004, 118, 675–685. [Google Scholar] [CrossRef] [PubMed]
- Buchman, T.G. The community of the self. Nature 2002, 420, 246–251. [Google Scholar] [CrossRef] [PubMed]
- Lindberg, D.C. The Beginnings of Western Science; University of Chicago Press: Chicago, IL, USA, 2008; pp. 357–367. [Google Scholar]
- Hafner, M.; Sacré, P.; Symul, L.; Sepulchre, R.; Koeppl, H. Multiple feedback loops in circadian cycles: Robustness and entrainment as selection criteria. In Proceedings of the Seventh International Workshop on Computational Systems Biology (WCSB), Luxembourg, 16–18 June 2010. [Google Scholar]
- King, D.P.; Takahashi, J.S. Molecular genetics of circadian rhythms in mammals. Annu. Rev. Neurosci. 2000, 23, 713–742. [Google Scholar] [CrossRef] [PubMed]
- Poon, C.S.; Merrill, C.K. Decrease of cardiac chaos in congestive heart failure. Nature 1997, 389, 492–495. [Google Scholar] [CrossRef] [PubMed]
- Morar, D.; Văduva, C.; Morar, A.; Imre, M.; Tulcan, C.; Imre, K. Paraclinical changes occurring in dairy cows with spontaneous subacute ruminal acidosis under field conditions. Animals 2022, 12, 2466. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Winfree, A.T. The Geometry of Biological Time, 2nd ed.; Springer: New York, NY, USA, 2001. [Google Scholar]
- Wilkens, M.; Nelson, C.; Hernandez, L.; McArt, J. Symposium review: Transition cow calcium homeostasis—Health effects of hypocalcemia and strategies for prevention. J. Dairy Sci. 2020, 102, 6056–6064. [Google Scholar] [CrossRef]
- Ahn, A.C.; Tewari, M.; Poon, C.S.; Phillips, R.S. The limits of reductionism in medicine: Could systems biology offer an alternative? PLoS Med. 2006, 3, e208. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- MacLeod, M.; Nersessian, N. Interdisciplinary problem-solving: Emerging modes in integrative systems biology. Eur. J. Philos. Sci. 2016, 6, 401–418. [Google Scholar] [CrossRef]
- Dervishi, E.; Ametaj, B.N. Milk fever: Reductionist versus systems veterinary approach. In Periparturient Diseases of Dairy Cows; Ametaj, B., Ed.; Springer: Cham, Switzerland, 2017; pp. 225–240. [Google Scholar] [CrossRef]
- Cavani, L.; Gervais, O.; Venturini, G.C.; Baes, C.F. Discovery of quantitative trait loci related to postpartum calcium concentration in dairy cattle. J. Dairy Sci. 2022, 105, 1929–1940. [Google Scholar]
- Ohtsuka, H.; Ohsawa, M.; Murakami, K.; Murata, R.; Kato, T.; Tajima, M. Changes in mRNA of immune factors expressed by milk somatic cells of Holstein cows with hypocalcemia after calving. Can. J. Vet. Res. 2021, 85, 72–76. [Google Scholar] [PubMed] [PubMed Central]
- Fan, Z.; Shu, S.; Xu, C.; Xiao, X.; Wang, G.; Bai, Y.; Xia, C.; Wu, L.; Zhang, H.; Xu, C.; et al. Protein profiling of plasma proteins in dairy cows with subclinical hypocalcaemia. Ir. Vet. J. 2017, 70, 3. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wang, P.; Shu, S.; Xia, C.; Wang, Z.; Wu, L.; Wang, B.; Xu, C.; Liu, J. Protein expression in dairy cows with and without subclinical hypocalcaemia. N. Z. Vet. J. 2016, 64, 101–106. [Google Scholar] [CrossRef]
- Goff, J.P.; Kimura, K.; Horst, R.L. Effect of mastectomy on milk fever, energy, and vitamins A, E, and beta-carotene status at parturition. J. Dairy Sci. 2002, 85, 1427–1436. [Google Scholar] [CrossRef] [PubMed]
- McArt, J.; Neves, R. Association of transient, persistent, or delayed subclinical hypocalcemia with early lactation disease, removal, and milk yield in Holstein cows. J. Dairy Sci. 2020, 103, 690–701. [Google Scholar] [CrossRef] [PubMed]
- Hernandez, L.L.; McArt, J.A. Perspective: Transient postparturient hypocalcemia-A lactation-induced phenomenon of high-producing dairy cows. J. Dairy Sci. 2023, 106, 8177–8180. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ametaj, B.N. From Parts to Whole: A Systems Biology Approach to Decoding Milk Fever. Vet. Sci. 2025, 12, 347. https://doi.org/10.3390/vetsci12040347
Ametaj BN. From Parts to Whole: A Systems Biology Approach to Decoding Milk Fever. Veterinary Sciences. 2025; 12(4):347. https://doi.org/10.3390/vetsci12040347
Chicago/Turabian StyleAmetaj, Burim N. 2025. "From Parts to Whole: A Systems Biology Approach to Decoding Milk Fever" Veterinary Sciences 12, no. 4: 347. https://doi.org/10.3390/vetsci12040347
APA StyleAmetaj, B. N. (2025). From Parts to Whole: A Systems Biology Approach to Decoding Milk Fever. Veterinary Sciences, 12(4), 347. https://doi.org/10.3390/vetsci12040347