Antibiotic Resistance Gene Expression in Veterinary Probiotics: Two Sides of the Coin
Simple Summary
Abstract
1. Introduction
2. Benefits and Risks of Probiotics
3. Mechanisms Underlying the Emergence of Antimicrobial Resistance
4. Antibiotic Resistance in Probiotics
4.1. Bacillus amyloliquefaciens
4.2. Bacillus licheniformis
4.3. Bacillus subtilis
4.4. Enterococcus faecium
4.5. Lactobacillus acidophilus
4.6. Lactobacillus brevis
4.7. Lactobacillus buchneri
4.8. Lactobacillus fermentum
4.9. Lactobacillus plantarum
4.10. Lactobacillus rhamnosus
4.11. Pediococcus acidilactici
4.12. Pediococcus pentosaceus
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AMR | Antimicrobial resistance |
ARGs | Antimicrobial resistance genes |
B. amyloliquefaciens | Bacillus amyloliquefaciens |
B. licheniformis | Bacillus licheniformis |
B. subtilis | Bacillus subtilis |
DNA | Deoxyribonucleic acid |
E. faecium | Enterococcus faecium |
EU | European Union |
HGT | Horizontal gene transfer |
L. acidophilus | Lactobacillus acidophilus |
L. brevis | Lactobacillus brevis |
L. fermentum | Lactobacillus fermentum |
L. plantarum | Lactobacillus plantarum |
L. rhamnosus | Lactobacillus rhamnosus |
P. acidilactici | Pediococcus acidilactici |
P. pentosaceus | Pediococcus pentosaceus |
WHO | World Health Organization |
References
- Salam, M.A.; Al-Amin, M.Y.; Salam, M.T.; Pawar, J.S.; Akhter, N.; Rabaan, A.A.; Alqumber, M.A. Antimicrobial Resistance: A Growing Serious Threat for Global Public Health. Healthcare 2023, 11, 1946. [Google Scholar] [CrossRef] [PubMed]
- Sebők, C.; Márton, R.A.; Meckei, M.; Neogrády, Z.; Mátis, G. Antimicrobial Peptides as New Tools to Combat Infectious Diseases. Magy. Állatorvosok Lapja 2024, 146, 181–191. [Google Scholar] [CrossRef]
- Kovács, L.; Nagy, D.; Könyves, L.; Jerzsele, Á.; Kerek, Á. Antimicrobial Properties of Essential Oils—Animal Health Aspects. Magy. Állatorvosok Lapja 2023, 145, 497–510. [Google Scholar] [CrossRef]
- Jerzsele, Á.; Somogyi, Z.; Szalai, M.; Kovács, D. Effects of Fermented Wheat Germ Extract on Artificial Salmonella typhimurium Infection in Broiler Chickens. Magy. Állatorvosok Lapja 2020, 142, 77–85. [Google Scholar]
- Pomothy, J.M.; Barna, R.F.; Gere, E. The Effects of the Rosmarinic Acid in Livestock Animals: Literature Review. Magy. Állatorvosok Lapja 2020, 142, 567–576. [Google Scholar]
- Olasz, Á.; Jerzsele, Á.; Balta, L.; Dobra, P.F.; Kerek, Á. In Vivo Efficacy of Different Extracts of Propolis in Broiler Salmonellosis. Magy. Állatorvosok Lapja 2023, 145, 461–475. [Google Scholar] [CrossRef]
- Kerek, Á.; Csanády, P.; Jerzsele, Á. Antibacterial Efficiency of Propolis—Part 1. Magy. Állatorvosok Lapja 2022, 144, 285–298. [Google Scholar]
- Kerek, Á.; Csanády, P.; Jerzsele, Á. Antiprotozoal and Antifungal Efficiency of Propolis—Part 2. Magy. Állatorvosok Lapja 2022, 144, 691–704. [Google Scholar]
- Kerek, Á.; Csanády, P.; Tuska-Szalay, B.; Kovács, L.; Jerzsele, Á. In Vitro Efficacy of Hungarian Propolis against Bacteria, Yeast, and Trichomonas gallinae Isolated from Pigeons—A Possible Antibiotic Alternative? Resources 2023, 12, 101. [Google Scholar] [CrossRef]
- Hetényi, N.; Bersényi, A.; Hullár, I. Physiological Effects of Medium-Chain Fatty Acids and Triglycerides, and Their Potential Use in Poultry and Swine Nutrition: A Literature Review. Magy. Állatorvosok Lapja 2024, 146, 651–659. [Google Scholar] [CrossRef]
- Petrilla, J.; Mátis, G.; Molnár, A.; Jerzsele, Á.; Pál, L.; Gálfi, P.; Neogrády, Z.; Dublecz, K. In Vitro Investigation of the Antibacterial Efficacy of Butyrate on Various Campylobacter jejuni Strains. Magy. Állatorvosok Lapja 2021, 143, 57–64. [Google Scholar]
- Farkas, M.; Könyves, L.; Csorba, S.; Farkas, Z.; Józwiák, Á.; Süth, M.; Kovács, L. Biosecurity Situation of Large-Scale Poultry Farms in Hungary According to the Databases of National Food Chain Safety Office Centre for Disease Control and Biosecurity Audit System of Poultry Product Board of Hungary in the Period of 2021–2022. Magy. Állatorvosok Lapja 2024, 146, 723–742. [Google Scholar] [CrossRef]
- Mag, P.; Németh, K.; Somogyi, Z.; Jerzsele, Á. Antibacterial therapy based on pharmacokinetic/pharmacodynamic models in small animal medicine-1. Literature review. Magy. Állatorvosok Lapja 2023, 145, 419–438. [Google Scholar] [CrossRef]
- Afrc, R.F. Probiotics in Man and Animals. J. Appl. Bacteriol. 1989, 66, 365–378. [Google Scholar] [CrossRef]
- Benmazouz, I.; Kövér, L.; Kardos, G. The Rise of Antimicrobial Resistance in Wild Birds: Potential AMR Sources and Wild Birds as AMR Reservoirs and Disseminators: Literature Review. Magy. Állatorvosok Lapja 2024, 146, 91–105. [Google Scholar] [CrossRef]
- Lilly, D.M.; Stillwell, R.H. Probiotics: Growth-Promoting Factors Produced by Microorganisms. Science 1965, 147, 747–748. [Google Scholar] [CrossRef]
- Hill, C.; Guarner, F.; Reid, G.; Gibson, G.R.; Merenstein, D.J.; Pot, B.; Morelli, L.; Canani, R.B.; Flint, H.J.; Salminen, S.; et al. The International Scientific Association for Probiotics and Prebiotics Consensus Statement on the Scope and Appropriate Use of the Term Probiotic. Nat. Rev. Gastroenterol. Hepatol. 2014, 11, 506–514. [Google Scholar] [CrossRef] [PubMed]
- Gareau, M.G.; Sherman, P.M.; Walker, W.A. Probiotics and the Gut Microbiota in Intestinal Health and Disease. Nat. Rev. Gastroenterol. Hepatol. 2010, 7, 503–514. [Google Scholar] [CrossRef]
- Simon, O. Micro-Organisms as Feed Additives—Probiotics. Adv. Pork Prod. 2005, 16, 161–167. [Google Scholar]
- Zion-Market-Research. Probiotics Market: Size, Share & Trends Analysis Report by Ingredient Type (Bacteria and Yeast), by Form (Liquid Probiotic and Dry Probiotic), by Application (Food & Beverages, Dietary Supplements, and Animal Feed), by End User (Human Probiotics and Animal Probiotics): Global Industry Perspective, Comprehensive Analysis, and Forecast, 2019–2026; Zion Market Research: Pune, India, 2020. [Google Scholar]
- Rijkers, G.T.; de Vos, W.M.; Brummer, R.-J.; Morelli, L.; Corthier, G.; Marteau, P. Health Benefits and Health Claims of Probiotics: Bridging Science and Marketing. Br. J. Nutr. 2011, 106, 1291–1296. [Google Scholar] [CrossRef]
- Sniffen, J.C.; McFarland, L.V.; Evans, C.T.; Goldstein, E.J.C. Choosing an Appropriate Probiotic Product for Your Patient: An Evidence-Based Practical Guide. PLoS ONE 2018, 13, e0209205. [Google Scholar] [CrossRef]
- Ganguly, N.K.; Bhattacharya, S.K.; Sesikeran, B.; Nair, G.B.; Ramakrishna, B.S.; Sachdev, H.P.S.; Batish, V.K.; Kanagasabapathy, A.S.; Muthuswamy, V.; Kathuria, S.C.; et al. ICMR-DBT Guidelines for Evaluation of Probiotics in Food. Indian J. Med. Res. 2011, 134, 22–25. [Google Scholar]
- EFSA. Opinion of the Scientific Committee on a Request from EFSA Related to a Generic Approach to the Safety Assessment by EFSA of Microorganisms Used in Food/Feed and the Production of Food/Feed Additives. EFSA J. 2005, 3, 226. [Google Scholar] [CrossRef]
- Kovács, D.; Palkovicsné Pézsa, N.; Farkas, O.; Jerzsele, Á. Usage of Antibiotic Alternatives in Pig Farming: Literature Review. Magy. Állatorvosok Lapja 2021, 143, 281–282. [Google Scholar]
- Hempel, S.; Newberry, S.; Ruelaz, A.; Wang, Z.; Miles, J.N.V.; Suttorp, M.J.; Johnsen, B.; Shanman, R.; Slusser, W.; Fu, N.; et al. Safety of Probiotics Used to Reduce Risk and Prevent or Treat Disease. Evid. Rep. Technol. Assess. Full Rep. 2011, 200, 1–645. [Google Scholar]
- Mazziotta, C.; Tognon, M.; Martini, F.; Torreggiani, E.; Rotondo, J.C. Probiotics Mechanism of Action on Immune Cells and Beneficial Effects on Human Health. Cells 2023, 12, 184. [Google Scholar] [CrossRef]
- Macpherson, A.J.; Uhr, T. Induction of Protective IgA by Intestinal Dendritic Cells Carrying Commensal Bacteria. Science 2004, 303, 1662–1665. [Google Scholar] [CrossRef]
- Matsuo, K.; Ota, H.; Akamatsu, T.; Sugiyama, A.; Katsuyama, T. Histochemistry of the Surface Mucous Gel Layer of the Human Colon. Gut 1997, 40, 782–789. [Google Scholar] [CrossRef] [PubMed]
- Maqueda, M.; Sánchez-Hidalgo, M.; Fernández, M.; Montalbán-López, M.; Valdivia, E.; Martínez-Bueno, M. Genetic Features of Circular Bacteriocins Produced by Gram-Positive Bacteria. FEMS Microbiol. Rev. 2008, 32, 2–22. [Google Scholar] [CrossRef] [PubMed]
- Such, N.; Molnár, A.; Pál, L.; Farkas, V.; Menyhárt, L.; Husvéth, F.; Dublecz, K. The Effect of Pre- and Probiotic Treatment on the Gumboro-Titer Values of Broilers. Magy. Állatorvosok Lapja 2021, 143, 119–127. [Google Scholar]
- Collado, M.C.; Meriluoto, J.; Salminen, S. Role of Commercial Probiotic Strains against Human Pathogen Adhesion to Intestinal Mucus. Lett. Appl. Microbiol. 2007, 45, 454–460. [Google Scholar] [CrossRef] [PubMed]
- Mack, D.R. Extracellular MUC3 Mucin Secretion Follows Adherence of Lactobacillus Strains to Intestinal Epithelial Cells In Vitro. Gut 2003, 52, 827–833. [Google Scholar] [CrossRef]
- Hess, P.; Altenhöfer, A.; Khan, A.S.; Daryab, N.; Kim, K.S.; Hacker, J.; Oelschlaeger, T.A. A Salmonella Fim Homologue in Citrobacter freundii Mediates Invasion In Vitro and Crossing of the Blood-Brain Barrier in the Rat Pup Model. Infect. Immun. 2004, 72, 5298–5307. [Google Scholar] [CrossRef] [PubMed]
- Asahara, T.; Shimizu, K.; Nomoto, K.; Hamabata, T.; Ozawa, A.; Takeda, Y. Probiotic Bifidobacteria Protect Mice from Lethal Infection with Shiga Toxin-Producing Escherichia coli O157:H7. Infect. Immun. 2004, 72, 2240–2247. [Google Scholar] [CrossRef]
- O’Mahony, L.; Feeney, M.; O’Halloran, S.; Murphy, L.; Kiely, B.; Fitzgibbon, J.; Lee, G.; O’Sullivan, G.; Shanahan, F.; Collins, J.K. Probiotic Impact on Microbial Flora, Inflammation and Tumour Development in IL-10 Knockout Mice. Aliment. Pharmacol. Ther. 2001, 15, 1219–1225. [Google Scholar] [CrossRef]
- Guelpen, B.V.; Hultdin, J.; Johansson, I.; Hallmans, G.; Stenling, R.; Riboli, E.; Winkvist, A.; Palmqvist, R. Low Folate Levels May Protect against Colorectal Cancer. Gut 2006, 55, 1461–1466. [Google Scholar] [CrossRef]
- Essősy, M.; Fodor, I.; Ihnáth, Z.; Karancsi, Z.; Kovács, D.; Szalai, K.V.; Szentmiklósi, D.; Jerzsele, Á. The Possibilities of Antibiotic-Free Broiler-Hen Fattening, with Special Reference to the Use of Pre- and Probiotics. Magy. Állatorvosok Lapja 2020, 142, 397–407. [Google Scholar]
- Kovács, L.; Hejel, P.; Farkas, M.; László, L.; László, K. Study Report on the Effect of a Litter Treatment Product Containing Bacillus licheniformis and Zeolite in Male Fattening Turkey Flock. Magy. Állatorvosok Lapja 2024, 146, 291–305. [Google Scholar] [CrossRef]
- Animal Feed Probiotics Market Size & Share, Forecast Report. 2023. Available online: https://www.gminsights.com/industry-analysis/animal-feed-probiotics-market (accessed on 4 December 2023).
- Dohlman, E.; Hansen, J.; Boussios, D. USDA Agricultural Projections to 2031; U.S. Department of Agriculture, Economic Research Service: Washington, DC, USA, 2022.
- OECD; Food and Agriculture Organization of the United Nations. OECD-FAO Agricultural Outlook 2023–2032; OECD-FAO Agricultural Outlook; OECD: Paris, France, 2023; ISBN 978-92-64-61933-3. [Google Scholar]
- Fredenucci, I.; Chomarat, M.; Boucaud, C.; Flandrois, J.P. Saccharomyces boulardii Fungemia in a Patient Receiving Ultra-Levure Therapy. Clin. Infect. Dis. 1998, 27, 222–223. [Google Scholar] [CrossRef]
- Henry, S.; D’Hondt, L.; André, M.; Holemans, X.; Canon, J.L. Saccharomyces cerevisiae Fungemia in a Head and Neck Cancer Patient: A Case Report and Review of the Literature. Acta Clin. Belg. 2004, 59, 220–222. [Google Scholar] [CrossRef] [PubMed]
- Lolis, N.; Veldekis, D.; Moraitou, H.; Kanavaki, S.; Velegraki, A.; Triandafyllidis, C.; Tasioudis, C.; Pefanis, A.; Pneumatikos, I. Saccharomyces boulardii Fungaemia in an Intensive Care Unit Patient Treated with Caspofungin. Crit. Care 2008, 12, 414. [Google Scholar] [CrossRef] [PubMed]
- Muñoz, P.; Bouza, E.; Cuenca-Estrella, M.; Eiros, J.M.; Pérez, M.J.; Sánchez-Somolinos, M.; Rincón, C.; Hortal, J.; Peláez, T. Saccharomyces cerevisiae Fungemia: An Emerging Infectious Disease. Clin. Infect. Dis. 2005, 40, 1625–1634. [Google Scholar] [CrossRef]
- Niault, M.; Thomas, F.; Prost, J.; Ansari, F.H.; Kalfon, P. Fungemia Due to Saccharomyces Species in a Patient Treated with Enteral Saccharomyces boulardii. Clin. Infect. Dis. 1999, 28, 930. [Google Scholar] [CrossRef] [PubMed]
- De Groote, M.A.; Frank, D.N.; Dowell, E.; Glode, M.P.; Pace, N.R. Lactobacillus rhamnosus GG Bacteremia Associated with Probiotic Use in a Child with Short Gut Syndrome. Pediatr. Infect. Dis. J. 2005, 24, 278–280. [Google Scholar] [CrossRef] [PubMed]
- Ledoux, D.; Labombardi, V.J.; Karter, D. Lactobacillus acidophilus Bacteraemia after Use of a Probiotic in a Patient with AIDS and Hodgkin’s Disease. Int. J. STD AIDS 2006, 17, 280–282. [Google Scholar] [CrossRef]
- Richard, V.; Van der Auwera, P.; Snoeck, R.; Daneau, D.; Meunier, F. Nosocomial Bacteremia Caused by Bacillus Species. Eur. J. Clin. Microbiol. Infect. Dis. 1988, 7, 783–785. [Google Scholar] [CrossRef] [PubMed]
- Vahabnezhad, E.; Mochon, A.B.; Wozniak, L.J.; Ziring, D.A. Lactobacillus Bacteremia Associated with Probiotic Use in a Pediatric Patient with Ulcerative Colitis. J. Clin. Gastroenterol. 2013, 47, 437–439. [Google Scholar] [CrossRef]
- Tommasi, C.; Equitani, F.; Masala, M.; Ballardini, M.; Favaro, M.; Meledandri, M.; Fontana, C.; Narciso, P.; Nicastri, E. Diagnostic Difficulties of Lactobacillus casei Bacteraemia in Immunocompetent Patients: A Case Report. J. Med. Case Rep. 2008, 2, 315. [Google Scholar] [CrossRef] [PubMed]
- Land, M.H.; Rouster-Stevens, K.; Woods, C.R.; Cannon, M.L.; Cnota, J.; Shetty, A.K. Lactobacillus Sepsis Associated with Probiotic Therapy. Pediatrics 2005, 115, 178–181. [Google Scholar] [CrossRef]
- Oggioni, M.R.; Pozzi, G.; Valensin, P.E.; Galieni, P.; Bigazzi, C. Recurrent Septicemia in an Immunocompromised Patient Due to Probiotic Strains of Bacillus subtilis. J. Clin. Microbiol. 1998, 36, 325–326. [Google Scholar] [CrossRef] [PubMed]
- Ohishi, A.; Takahashi, S.; Ito, Y.; Ohishi, Y.; Tsukamoto, K.; Nanba, Y.; Ito, N.; Kakiuchi, S.; Saitoh, A.; Morotomi, M.; et al. Bifidobacterium septicemia Associated with Postoperative Probiotic Therapy in a Neonate with Omphalocele. J. Pediatr. 2010, 156, 679–681. [Google Scholar] [CrossRef] [PubMed]
- Zein, E.F.; Karaa, S.; Chemaly, A.; Saidi, I.; Daou-Chahine, W.; Rohban, R. Lactobacillus rhamnosus septicemia in a diabetic patient associated with probiotic use: A case report. Ann. Biol. Clin. 2008, 66, 195–198. [Google Scholar] [CrossRef]
- Mackay, A.D.; Taylor, M.B.; Kibbler, C.C.; Hamilton-Miller, J.M.T. Lactobacillus Endocarditis Caused by a Probiotic Organism. Clin. Microbiol. Infect. 1999, 5, 290–292. [Google Scholar] [CrossRef]
- Presterl, E.; Kneifel, W.; Mayer, H.K.; Zehetgruber, M.; Makristathis, A.; Graninger, W. Endocarditis by Lactobacillus rhamnosus Due to Yogurt Ingestion? Scand. J. Infect. Dis. 2001, 33, 710–714. [Google Scholar] [CrossRef] [PubMed]
- Conen, A.; Zimmerer, S.; Trampuz, A.; Frei, R.; Battegay, M.; Elzi, L. A Pain in the Neck: Probiotics for Ulcerative Colitis. Ann. Intern. Med. 2009, 151, 895–897. [Google Scholar] [CrossRef]
- Rautio, M.; Jousimies-Somer, H.; Kauma, H.; Pietarinen, I.; Saxelin, M.; Tynkkynen, S.; Koskela, M. Liver Abscess Due to a Lactobacillus rhamnosus Strain Indistinguishable from L. rhamnosus Strain GG. Clin. Infect. Dis. 1999, 28, 1159–1160. [Google Scholar] [CrossRef] [PubMed]
- Besselink, M.G.; van Santvoort, H.C.; Buskens, E.; Boermeester, M.A.; van Goor, H.; Timmerman, H.M.; Nieuwenhuijs, V.B.; Bollen, T.L.; van Ramshorst, B.; Witteman, B.J.; et al. Probiotic Prophylaxis in Predicted Severe Acute Pancreatitis: A Randomised, Double-Blind, Placebo-Controlled Trial. Lancet 2008, 371, 651–659. [Google Scholar] [CrossRef] [PubMed]
- Vaarala, O. Immunological Effects of Probiotics with Special Reference to Lactobacilli. Clin. Exp. Allergy 2003, 33, 1634–1640. [Google Scholar] [CrossRef] [PubMed]
- Veckman, V.; Miettinen, M.; Pirhonen, J.; Sirén, J.; Matikainen, S.; Julkunen, I. Streptococcus pyogenes and Lactobacillus rhamnosus Differentially Induce Maturation and Production of Th1-Type Cytokines and Chemokines in Human Monocyte-Derived Dendritic Cells. J. Leukoc. Biol. 2004, 75, 764–771. [Google Scholar] [CrossRef]
- Turjeman, S.; Koren, O. ARGuing the Case for (or Against) Probiotics. Trends Microbiol. 2021, 29, 959–960. [Google Scholar] [CrossRef] [PubMed]
- Montassier, E.; Valdés-Mas, R.; Batard, E.; Zmora, N.; Dori-Bachash, M.; Suez, J.; Elinav, E. Probiotics Impact the Antibiotic Resistance Gene Reservoir along the Human GI Tract in a Person-Specific and Antibiotic-Dependent Manner. Nat. Microbiol. 2021, 6, 1043–1054. [Google Scholar] [CrossRef]
- Arias, C.A.; Contreras, G.A.; Murray, B.E. Management of Multidrug-Resistant Enterococcal Infections. Clin. Microbiol. Infect. 2010, 16, 555–562. [Google Scholar] [CrossRef] [PubMed]
- Arias, C.A.; Murray, B.E. The Rise of the Enterococcus: Beyond Vancomycin Resistance. Nat. Rev. Microbiol. 2012, 10, 266–278. [Google Scholar] [CrossRef]
- Gao, W.; Howden, B.P.; Stinear, T.P. Evolution of Virulence in Enterococcus faecium, a Hospital-Adapted Opportunistic Pathogen. Curr. Opin. Microbiol. 2018, 41, 76–82. [Google Scholar] [CrossRef] [PubMed]
- Doron, S.; Snydman, D.R. Risk and Safety of Probiotics. Clin. Infect. Dis. 2015, 60, S129–S134. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.-F.; Liu, P.-Y.; Chen, Y.-Y.; Nong, B.-R.; Huang, I.-F.; Hsieh, K.-S.; Chen, K.-T. Three-Combination Probiotics Therapy in Children with Salmonella and Rotavirus Gastroenteritis. J. Clin. Gastroenterol. 2014, 48, 37–42. [Google Scholar] [CrossRef] [PubMed]
- McDonald, B.A.; Linde, C. Pathogen Population Genetics, Evolutionary Potential, and Durable Resistance. Annu. Rev. Phytopathol. 2002, 40, 349–379. [Google Scholar] [CrossRef] [PubMed]
- Labrie, S.J.; Mosterd, C.; Loignon, S.; Dupuis, M.-È.; Desjardins, P.; Rousseau, G.M.; Tremblay, D.M.; Romero, D.A.; Horvath, P.; Fremaux, C.; et al. A Mutation in the Methionine Aminopeptidase Gene Provides Phage Resistance in Streptococcus thermophilus. Sci. Rep. 2019, 9, 13816. [Google Scholar] [CrossRef]
- Zhang, W.; Guo, H.; Cao, C.; Li, L.; Kwok, L.-Y.; Zhang, H.; Sun, Z. Adaptation of Lactobacillus casei Zhang to Gentamycin Involves an Alkaline Shock Protein. Front. Microbiol. 2017, 8, 2316. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Cao, C.; Zhang, J.; Kwok, L.-Y.; Zhang, H.; Chen, Y. Lactobacillus casei Asp23 Gene Contributes to Gentamycin Resistance via Regulating Specific Membrane-Associated Proteins. J. Dairy Sci. 2018, 101, 1915–1920. [Google Scholar] [CrossRef] [PubMed]
- Dong, Y.; Zhang, F.; Wang, B.; Gao, J.; Zhang, J.; Shao, Y. Laboratory Evolution Assays and Whole-Genome Sequencing for the Development and Safety Evaluation of Lactobacillus plantarum with Stable Resistance to Gentamicin. Front. Microbiol. 2019, 10, 1235. [Google Scholar] [CrossRef]
- Van Rossum, T.; Ferretti, P.; Maistrenko, O.M.; Bork, P. Diversity Within Species: Interpreting Strains in Microbiomes. Nat. Rev. Microbiol. 2020, 18, 491–506. [Google Scholar] [CrossRef] [PubMed]
- Haudiquet, M.; de Sousa, J.M.; Touchon, M.; Rocha, E.P.C. Selfish, Promiscuous and Sometimes Useful: How Mobile Genetic Elements Drive Horizontal Gene Transfer in Microbial Populations. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2022, 377, 20210234. [Google Scholar] [CrossRef]
- Liu, M.; Siezen, R.J.; Nauta, A. In Silico Prediction of Horizontal Gene Transfer Events in Lactobacillus bulgaricus and Streptococcus thermophilus Reveals Protocooperation in Yogurt Manufacturing. Appl. Environ. Microbiol. 2009, 75, 4120–4129. [Google Scholar] [CrossRef] [PubMed]
- Wright, G.D. Bacterial Resistance to Antibiotics: Enzymatic Degradation and Modification. Adv. Drug Deliv. Rev. 2005, 57, 1451–1470. [Google Scholar] [CrossRef]
- Li, X.-Z.; Nikaido, H. Efflux-Mediated Drug Resistance in Bacteria: An Update. Drugs 2009, 69, 1555–1623. [Google Scholar] [CrossRef] [PubMed]
- Takahata, S.; Ida, T.; Hiraishi, T.; Sakakibara, S.; Maebashi, K.; Terada, S.; Muratani, T.; Matsumoto, T.; Nakahama, C.; Tomono, K. Molecular Mechanisms of Fosfomycin Resistance in Clinical Isolates of Escherichia coli. Int. J. Antimicrob. Agents 2010, 35, 333–337. [Google Scholar] [CrossRef]
- Lambert, P.A. Bacterial Resistance to Antibiotics: Modified Target Sites. Adv. Drug Deliv. Rev. 2005, 57, 1471–1485. [Google Scholar] [CrossRef] [PubMed]
- Wilson, D.N.; Hauryliuk, V.; Atkinson, G.C.; O’Neill, A.J. Target Protection as a Key Antibiotic Resistance Mechanism. Nat. Rev. Microbiol. 2020, 18, 637–648. [Google Scholar] [CrossRef] [PubMed]
- Delcour, A.H. Outer Membrane Permeability and Antibiotic Resistance. Biochim. Biophys. Acta 2009, 1794, 808–816. [Google Scholar] [CrossRef]
- De Pascale, G.; Wright, G.D. Antibiotic Resistance by Enzyme Inactivation: From Mechanisms to Solutions. ChemBioChem 2010, 11, 1325–1334. [Google Scholar] [CrossRef]
- Butaye, P.; Cloeckaert, A.; Schwarz, S. Mobile Genes Coding for Efflux-Mediated Antimicrobial Resistance in Gram-Positive and Gram-Negative Bacteria. Int. J. Antimicrob. Agents 2003, 22, 205–210. [Google Scholar] [CrossRef] [PubMed]
- Nilsson, A.I.; Berg, O.G.; Aspevall, O.; Kahlmeter, G.; Andersson, D.I. Biological Costs and Mechanisms of Fosfomycin Resistance in Escherichia coli. Antimicrob. Agents Chemother. 2003, 47, 2850–2858. [Google Scholar] [CrossRef] [PubMed]
- Sakamoto, Y.; Furukawa, S.; Ogihara, H.; Yamasaki, M. Fosmidomycin Resistance in Adenylate Cyclase Deficient (Cya) Mutants of Escherichia coli. Biosci. Biotechnol. Biochem. 2003, 67, 2030–2033. [Google Scholar] [CrossRef] [PubMed]
- Paterson, G.K.; Larsen, A.R.; Robb, A.; Edwards, G.E.; Pennycott, T.W.; Foster, G.; Mot, D.; Hermans, K.; Baert, K.; Peacock, S.J.; et al. The Newly Described MecA Homologue, MecALGA251, Is Present in Methicillin-Resistant Staphylococcus aureus Isolates from a Diverse Range of Host Species. J. Antimicrob. Chemother. 2012, 67, 2809–2813. [Google Scholar] [CrossRef] [PubMed]
- García-Álvarez, L.; Holden, M.T.G.; Lindsay, H.; Webb, C.R.; Brown, D.F.J.; Curran, M.D.; Walpole, E.; Brooks, K.; Pickard, D.J.; Teale, C.; et al. Meticillin-Resistant Staphylococcus aureus with a Novel MecA Homologue in Human and Bovine Populations in the UK and Denmark: A Descriptive Study. Lancet Infect. Dis. 2011, 11, 595–603. [Google Scholar] [CrossRef] [PubMed]
- Hartman, B.J.; Tomasz, A. Low-Affinity Penicillin-Binding Protein Associated with Beta-Lactam Resistance in Staphylococcus aureus. J. Bacteriol. 1984, 158, 513–516. [Google Scholar] [CrossRef] [PubMed]
- Ubukata, K.; Nonoguchi, R.; Matsuhashi, M.; Konno, M. Expression and Inducibility in Staphylococcus aureus of the MecA Gene, Which Encodes a Methicillin-Resistant, S. aureus-Specific Penicillin-Binding Protein. J. Bacteriol. 1989, 171, 2882–2885. [Google Scholar] [CrossRef]
- Fuda, C.; Suvorov, M.; Vakulenko, S.B.; Mobashery, S. The Basis for Resistance to β-Lactam Antibiotics by Penicillin-Binding Protein 2a of Methicillin-Resistant Staphylococcus aureus. J. Biol. Chem. 2004, 279, 40802–40806. [Google Scholar] [CrossRef] [PubMed]
- Cohen, S.P.; McMurry, L.M.; Levy, S.B. MarA Locus Causes Decreased Expression of OmpF Porin in Multiple-Antibiotic-Resistant (Mar) Mutants of Escherichia coli. J. Bacteriol. 1988, 170, 5416–5422. [Google Scholar] [CrossRef]
- Sanders, M.E.; Akkermans, L.M.A.; Haller, D.; Hammerman, C.; Heimbach, J.; Hörmannsperger, G.; Huys, G.; Levy, D.D.; Lutgendorff, F.; Mack, D.; et al. Safety Assessment of Probiotics for Human Use. Gut Microbes 2010, 1, 164–185. [Google Scholar] [CrossRef]
- Vankerckhoven, V.; Huys, G.; Vancanneyt, M.; Vael, C.; Klare, I.; Romond, M.-B.; Entenza, J.M.; Moreillon, P.; Wind, R.D.; Knol, J.; et al. Biosafety Assessment of Probiotics Used for Human Consumption: Recommendations from the EU-PROSAFE Project. Trends Food Sci. Technol. 2008, 19, 102–114. [Google Scholar] [CrossRef]
- Baltrus, D.A. Exploring the Costs of Horizontal Gene Transfer. Trends Ecol. Evol. 2013, 28, 489–495. [Google Scholar] [CrossRef]
- Rossi, F.; Rizzotti, L.; Felis, G.E.; Torriani, S. Horizontal Gene Transfer among Microorganisms in Food: Current Knowledge and Future Perspectives. Food Microbiol. 2014, 42, 232–243. [Google Scholar] [CrossRef] [PubMed]
- Raethong, N.; Santivarangkna, C.; Visessanguan, W.; Santiyanont, P.; Mhuantong, W.; Chokesajjawatee, N. Whole-Genome Sequence Analysis for Evaluating the Safety and Probiotic Potential of Lactiplantibacillus pentosus 9D3, a Gamma-Aminobutyric Acid (GABA)-Producing Strain Isolated from Thai Pickled Weed. Front. Microbiol. 2022, 13, 969548. [Google Scholar] [CrossRef] [PubMed]
- Campedelli, I.; Mathur, H.; Salvetti, E.; Clarke, S.; Rea, M.C.; Torriani, S.; Ross, R.P.; Hill, C.; O’Toole, P.W. Genus-Wide Assessment of Antibiotic Resistance in Lactobacillus spp. Appl. Environ. Microbiol. 2019, 85, e01738-18. [Google Scholar] [CrossRef] [PubMed]
- Shivaramaiah, S.; Pumford, N.R.; Morgan, M.J.; Wolfenden, R.E.; Wolfenden, A.D.; Torres-Rodríguez, A.; Hargis, B.M.; Téllez, G. Evaluation of Bacillus Species as Potential Candidates for Direct-Fed Microbials in Commercial Poultry. Poult. Sci. 2011, 90, 1574–1580. [Google Scholar] [CrossRef]
- Lee, Y.-J.; Kim, B.-K.; Lee, B.-H.; Jo, K.-I.; Lee, N.-K.; Chung, C.-H.; Lee, Y.-C.; Lee, J.-W. Purification and Characterization of Cellulase Produced by Bacillus amyoliquefaciens DL-3 Utilizing Rice Hull. Bioresour. Technol. 2008, 99, 378–386. [Google Scholar] [CrossRef]
- Neveling, D.P.; van Emmenes, L.; Ahire, J.J.; Pieterse, E.; Smith, C.; Dicks, L.M.T. Effect of a Multi-Species Probiotic on the Colonisation of Salmonella in Broilers. Probiotics Antimicrob. Proteins 2020, 12, 896–905. [Google Scholar] [CrossRef]
- Hansen, L.H.; Planellas, M.H.; Long, K.S.; Vester, B. The Order Bacillales Hosts Functional Homologs of the Worrisome Cfr Antibiotic Resistance Gene. Antimicrob. Agents Chemother. 2012, 56, 3563–3567. [Google Scholar] [CrossRef]
- Tojo, S.; Tanaka, Y.; Ochi, K. Activation of Antibiotic Production in Bacillus spp. by Cumulative Drug Resistance Mutations. Antimicrob. Agents Chemother. 2015, 59, 7799–7804. [Google Scholar] [CrossRef]
- Nøhr-Meldgaard, K.; Struve, C.; Ingmer, H.; Agersø, Y. Intrinsic Tet(L) Sub-Class in Bacillus velezensis and Bacillus amyloliquefaciens Is Associated with a Reduced Susceptibility Toward Tetracycline. Front. Microbiol. 2022, 13, 966016. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Prajapati, V.; Prajapati, S.; Bais, H.; Lu, J. Comparative Genome Analysis of Bacillus amyloliquefaciens Focusing on Phylogenomics, Functional Traits, and Prevalence of Antimicrobial and Virulence Genes. Front. Genet. 2021, 12, 724217. [Google Scholar] [CrossRef]
- Agersø, Y.; Stuer-Lauridsen, B.; Bjerre, K.; Jensen, M.G.; Johansen, E.; Bennedsen, M.; Brockmann, E.; Nielsen, B. Antimicrobial Susceptibility Testing and Tentative Epidemiological Cutoff Values for Five Bacillus Species Relevant for Use as Animal Feed Additives or for Plant Protection. Appl. Environ. Microbiol. 2018, 84, e01108-18. [Google Scholar] [CrossRef] [PubMed]
- Kerek, Á.; Román, I.L.; Szabó, Á.; Papp, M.; Bányai, K.; Kardos, G.; Kaszab, E.; Bali, K.; Makrai, L.; Jerzsele, Á. Comprehensive Metagenomic Analysis of Veterinary Probiotics in Broiler Chickens. Animals 2024, 14, 1927. [Google Scholar] [CrossRef]
- Elshaghabee, F.M.F.; Rokana, N.; Gulhane, R.D.; Sharma, C.; Panwar, H. Bacillus as Potential Probiotics: Status, Concerns, and Future Perspectives. Front. Microbiol. 2017, 8, 1490. [Google Scholar] [CrossRef] [PubMed]
- Agersø, Y.; Bjerre, K.; Brockmann, E.; Johansen, E.; Nielsen, B.; Siezen, R.; Stuer-Lauridsen, B.; Wels, M.; Zeidan, A.A. Putative Antibiotic Resistance Genes Present in Extant Bacillus licheniformis and Bacillus paralicheniformis Strains Are Probably Intrinsic and Part of the Ancient Resistome. PLoS ONE 2019, 14, e0210363. [Google Scholar] [CrossRef] [PubMed]
- Jeong, D.-W.; Lee, B.; Heo, S.; Oh, Y.; Heo, G.; Lee, J.-H. Two Genes Involved in Clindamycin Resistance of Bacillus licheniformis and Bacillus paralicheniformis Identified by Comparative Genomic Analysis. PLoS ONE 2020, 15, e0231274. [Google Scholar] [CrossRef]
- Fernández-Fuentes, M.A.; Abriouel, H.; Ortega Morente, E.; Pérez Pulido, R.; Gálvez, A. Genetic Determinants of Antimicrobial Resistance in Gram Positive Bacteria from Organic Foods. Int. J. Food Microbiol. 2014, 172, 49–56. [Google Scholar] [CrossRef] [PubMed]
- Podlesek, Z.; Comino, A.; Herzog-Velikonja, B.; Zgur-Bertok, D.; Komel, R.; Grabnar, M. Bacillus licheniformis Bacitracin-Resistance ABC Transporter: Relationship to Mammalian Multidrug Resistance. Mol. Microbiol. 1995, 16, 969–976. [Google Scholar] [CrossRef]
- Mohammadigheisar, M.; Shirley, R.B.; Barton, J.; Welsher, A.; Thiery, P.; Kiarie, E. Growth Performance and Gastrointestinal Responses in Heavy Tom Turkeys Fed Antibiotic Free Corn-Soybean Meal Diets Supplemented with Multiple Doses of a Single Strain Bacillus subtilis Probiotic (DSM29784)1. Poult. Sci. 2019, 98, 5541–5550. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Tsai, T.; Wei, X.; Zuo, B.; Davis, E.; Rehberger, T.; Hernandez, S.; Jochems, E.J.M.; Maxwell, C.V.; Zhao, J. Effect of Lactylate and Bacillus subtilis on Growth Performance, Peripheral Blood Cell Profile, and Gut Microbiota of Nursery Pigs. Microorganisms 2021, 9, 803. [Google Scholar] [CrossRef] [PubMed]
- Gao, T.; Wong, Y.; Ng, C.; Ho, K. L-Lactic Acid Production by Bacillus subtilis MUR1. Bioresour. Technol. 2012, 121, 105–110. [Google Scholar] [CrossRef] [PubMed]
- Siahmoshteh, F.; Hamidi-Esfahani, Z.; Spadaro, D.; Shams-Ghahfarokhi, M.; Razzaghi-Abyaneh, M. Unraveling the Mode of Antifungal Action of Bacillus subtilis and Bacillus amyloliquefaciens as Potential Biocontrol Agents Against Aflatoxigenic Aspergillus parasiticus. Food Control 2018, 89, 300–307. [Google Scholar] [CrossRef]
- Pahumunto, N.; Dahlen, G.; Teanpaisan, R. Evaluation of Potential Probiotic Properties of Lactobacillus and Bacillus Strains Derived from Various Sources for Their Potential Use in Swine Feeding. Probiotics Antimicrob. Proteins 2023, 15, 479–490. [Google Scholar] [CrossRef]
- Dong, Y.-H.; Gusti, A.R.; Zhang, Q.; Xu, J.-L.; Zhang, L.-H. Identification of Quorum-Quenching N-Acyl Homoserine Lactonases from Bacillus Species. Appl. Environ. Microbiol. 2002, 68, 1754–1759. [Google Scholar] [CrossRef] [PubMed]
- Ohmiya, K.; Tanaka, T.; Noguchi, N.; O’Hara, K.; Kono, M. Nucleotide Sequence of the Chromosomal Gene Coding for the Aminoglycoside 6-Adenylyltransferase from Bacillus subtilis Marburg 168. Gene 1989, 78, 377–378. [Google Scholar] [CrossRef] [PubMed]
- Noguchi, N.; Sasatsu, M.; Kono, M. Genetic Mapping in Bacillus subtilis 168 of the AadK Gene Which Encodes Aminoglycoside 6-Adenylyltransferase. FEMS Microbiol. Lett. 1993, 114, 47–52. [Google Scholar] [CrossRef] [PubMed]
- Parulekar, R.S.; Barale, S.S.; Sonawane, K.D. Antibiotic Resistance and Inhibition Mechanism of Novel Aminoglycoside Phosphotransferase APH(5) from B. subtilis subsp. subtilis Strain RK. Braz. J. Microbiol. 2019, 50, 887–898. [Google Scholar] [CrossRef]
- Dai, M.; Lu, J.; Wang, Y.; Liu, Z.; Yuan, Z. In Vitro Development and Transfer of Resistance to Chlortetracycline in Bacillus subtilis. J. Microbiol. 2012, 50, 807–812. [Google Scholar] [CrossRef]
- Sakaguchi, R.; Amano, H.; Shishido, K. Nucleotide Sequence Homology of the Tetracycline-Resistance Determinant Naturally Maintained in Bacillus subtilis Marburg 168 Chromosome and the Tetracycline-Resistance Gene of B. subtilis Plasmid PNS1981. Biochim. Biophys. Acta—Gene Struct. Expr. 1988, 950, 441–444. [Google Scholar] [CrossRef]
- Takayuki, H.; Takayuki, I.; Noboru, T.; Kensuke, F. Nucleotide Sequence of the Tetracycline Resistance Gene of PTHT15, a Thermophilic Bacillus Plasmid: Comparison with Staphylococcal TcR Controls. Gene 1985, 37, 131–138. [Google Scholar] [CrossRef] [PubMed]
- Sakaguchi, R.; Shishido, K. Molecular Cloning of a Tetracycline-Resistance Determinant from Bacillus subtilis Chromosomal DNA and Its Expression in Escherichia coli and B. subtilis. Biochim. Biophys. Acta 1988, 949, 49–57. [Google Scholar] [CrossRef] [PubMed]
- Hachmann, A.-B.; Sevim, E.; Gaballa, A.; Popham, D.L.; Antelmann, H.; Helmann, J.D. Reduction in Membrane Phosphatidylglycerol Content Leads to Daptomycin Resistance in Bacillus subtilis. Antimicrob. Agents Chemother. 2011, 55, 4326–4337. [Google Scholar] [CrossRef] [PubMed]
- Hachmann, A.-B.; Angert, E.R.; Helmann, J.D. Genetic Analysis of Factors Affecting Susceptibility of Bacillus subtilis to Daptomycin. Antimicrob. Agents Chemother. 2009, 53, 1598–1609. [Google Scholar] [CrossRef]
- Ernst, C.M.; Staubitz, P.; Mishra, N.N.; Yang, S.-J.; Hornig, G.; Kalbacher, H.; Bayer, A.S.; Kraus, D.; Peschel, A. The Bacterial Defensin Resistance Protein MprF Consists of Separable Domains for Lipid Lysinylation and Antimicrobial Peptide Repulsion. PLoS Pathog. 2009, 5, e1000660. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, M.; Lyass, L.; Markham, P.N.; Taylor, S.S.; Vázquez-Laslop, N.; Neyfakh, A.A. Two Highly Similar Multidrug Transporters of Bacillus subtilis Whose Expression Is Differentially Regulated. J. Bacteriol. 1995, 177, 3904–3910. [Google Scholar] [CrossRef] [PubMed]
- Neyfakh, A.A.; Bidnenko, V.E.; Chen, L.B. Efflux-Mediated Multidrug Resistance in Bacillus subtilis: Similarities and Dissimilarities with the Mammalian System. Proc. Natl. Acad. Sci. USA 1991, 88, 4781–4785. [Google Scholar] [CrossRef]
- Klyachko, K.A.; Schuldiner, S.; Neyfakh, A.A. Mutations Affecting Substrate Specificity of the Bacillus subtilis Multidrug Transporter Bmr. J. Bacteriol. 1997, 179, 2189–2193. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, K.-I.; Ohki, Y.-H.; Murata, M.; Kinehara, M.; Matsuoka, H.; Satomura, T.; Ohki, R.; Kumano, M.; Yamane, K.; Fujita, Y. Bacillus subtilis LmrA Is a Repressor of the LmrAB and YxaGH Operons: Identification of Its Binding Site and Functional Analysis of LmrB and YxaGH. J. Bacteriol. 2004, 186, 5640–5648. [Google Scholar] [CrossRef] [PubMed]
- Pawlowski, A.C.; Stogios, P.J.; Koteva, K.; Skarina, T.; Evdokimova, E.; Savchenko, A.; Wright, G.D. The Evolution of Substrate Discrimination in Macrolide Antibiotic Resistance Enzymes. Nat. Commun. 2018, 9, 112. [Google Scholar] [CrossRef]
- Crowe-McAuliffe, C.; Graf, M.; Huter, P.; Takada, H.; Abdelshahid, M.; Nováček, J.; Murina, V.; Atkinson, G.C.; Hauryliuk, V.; Wilson, D.N. Structural Basis for Antibiotic Resistance Mediated by the Bacillus subtilis ABCF ATPase VmlR. Proc. Natl. Acad. Sci. USA 2018, 115, 8978–8983. [Google Scholar] [CrossRef]
- Jack, D.L.; Storms, M.L.; Tchieu, J.H.; Paulsen, I.T.; Saier, M.H. A Broad-Specificity Multidrug Efflux Pump Requiring a Pair of Homologous SMR-Type Proteins. J. Bacteriol. 2000, 182, 2311–2313. [Google Scholar] [CrossRef] [PubMed]
- Gan, Y.-Q.; Zhang, T.; Gan, Y.-Q.; Zhao, Z.; Zhu, B. Complete Genome Sequences of Two Enterococcus faecium Strains and Comparative Genomic Analysis. Exp. Ther. Med. 2020, 19, 2019–2028. [Google Scholar] [CrossRef] [PubMed]
- Ben Braïek, O.; Smaoui, S. Enterococci: Between Emerging Pathogens and Potential Probiotics. BioMed Res. Int. 2019, 2019, e5938210. [Google Scholar] [CrossRef] [PubMed]
- Lappin, M.R.; Veir, J.K.; Satyaraj, E.; Czarnecki-Maulden, G. Pilot Study to Evaluate the Effect of Oral Supplementation of Enterococcus faecium SF68 on Cats with Latent Feline Herpesvirus 1. J. Feline Med. Surg. 2009, 11, 650–654. [Google Scholar] [CrossRef]
- Becquet, P. EU Assessment of Enterococci as Feed Additives. Int. J. Food Microbiol. 2003, 88, 247–254. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Yang, Y.; Huycke, M.M. Risks Associated with Enterococci as Probiotics. Food Res. Int. 2020, 129, 108788. [Google Scholar] [CrossRef] [PubMed]
- Urshev, Z.; Yungareva, T. Initial Safety Evaluation of Enterococcus faecium LBB.E81. Biotechnol. Biotechnol. Equip. 2021, 35, 11–17. [Google Scholar] [CrossRef]
- Nishioka, T.; Ogawa, W.; Kuroda, T.; Katsu, T.; Tsuchiya, T. Gene Cloning and Characterization of EfmA, a Multidrug Efflux Pump, from Enterococcus faecium. Biol. Pharm. Bull. 2009, 32, 483–488. [Google Scholar] [CrossRef] [PubMed]
- Singh, K.V.; Malathum, K.; Murray, B.E. Disruption of an Enterococcus faecium Species-Specific Gene, a Homologue of Acquired Macrolide Resistance Genes of Staphylococci, Is Associated with an Increase in Macrolide Susceptibility. Antimicrob. Agents Chemother. 2001, 45, 263–266. [Google Scholar] [CrossRef]
- Costa, Y.; Galimand, M.; Leclercq, R.; Duval, J.; Courvalin, P. Characterization of the Chromosomal Aac(6’)-Ii Gene Specific for Enterococcus faecium. Antimicrob. Agents Chemother. 1993, 37, 1896–1903. [Google Scholar] [CrossRef] [PubMed]
- Hummel, A.; Holzapfel, W.H.; Franz, C.M.A.P. Characterisation and Transfer of Antibiotic Resistance Genes from Enterococci Isolated from Food. Syst. Appl. Microbiol. 2007, 30, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Nascimento, L.C.S.; Casarotti, S.N.; Todorov, S.D.; Penna, A.L.B. Probiotic Potential and Safety of Enterococci Strains. Ann. Microbiol. 2019, 69, 241–252. [Google Scholar] [CrossRef]
- Kerek, A.; Szabó, E.; Szabó, Á.; Papp, M.; Bányai, K.; Kardos, G.; Kaszab, E.; Bali, K.; Jerzsele, Á. Investigating Antimicrobial Resistance Genes in Probiotic Products for Companion Animals. Front. Vet. Sci. 2024, 11, 1464351. [Google Scholar] [CrossRef]
- Shah, N.P. Functional Cultures and Health Benefits. Int. Dairy J. 2007, 17, 1262–1277. [Google Scholar] [CrossRef]
- Ahrné, S.; Nobaek, S.; Jeppsson, B.; Adlerberth, I.; Wold, A.E.; Molin, G. The Normal Lactobacillus Flora of Healthy Human Rectal and Oral Mucosa. J. Appl. Microbiol. 1998, 85, 88–94. [Google Scholar] [CrossRef] [PubMed]
- Bhukya, K.K.; Bhukya, B. Unraveling the Probiotic Efficiency of Bacterium Pediococcus pentosaceus OBK05 Isolated from Buttermilk: An In Vitro Study for Cholesterol Assimilation Potential and Antibiotic Resistance Status. PLoS ONE 2021, 16, e0259702. [Google Scholar] [CrossRef]
- Drago, L.; Mattina, R.; Nicola, L.; Rodighiero, V.; De Vecchi, E. Macrolide Resistance and In Vitro Selection of Resistance to Antibiotics in Lactobacillus Isolates. J. Microbiol. 2011, 49, 651–656. [Google Scholar] [CrossRef] [PubMed]
- Aristimuño Ficoseco, C.; Mansilla, F.I.; Maldonado, N.C.; Miranda, H.; Fátima Nader-Macias, M.E.; Vignolo, G.M. Safety and Growth Optimization of Lactic Acid Bacteria Isolated from Feedlot Cattle for Probiotic Formula Design. Front. Microbiol. 2018, 9, 2220. [Google Scholar] [CrossRef] [PubMed]
- Cataloluk, O.; Gogebakan, B. Presence of Drug Resistance in Intestinal Lactobacilli of Dairy and Human Origin in Turkey. FEMS Microbiol. Lett. 2004, 236, 7–12. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.; Kaur, J.; Lee, S.; Park, Y.-S. Molecular Discrimination of Lactobacillus brevis Strains Isolated from Food Products in South Korea Using Multilocus Sequence Typing. LWT 2017, 86, 337–343. [Google Scholar] [CrossRef]
- Aquilanti, L.; Garofalo, C.; Osimani, A.; Silvestri, G.; Vignaroli, C.; Clementi, F. Isolation and Molecular Characterization of Antibiotic-Resistant Lactic Acid Bacteria from Poultry and Swine Meat Products. J. Food Prot. 2007, 70, 557–565. [Google Scholar] [CrossRef]
- Fukao, M.; Tomita, H.; Yakabe, T.; Nomura, T.; Ike, Y.; Yajima, N. Assessment of Antibiotic Resistance in Probiotic Strain Lactobacillus brevis KB290. J. Food Prot. 2009, 72, 1923–1929. [Google Scholar] [CrossRef]
- Drlica, K.; Zhao, X. DNA Gyrase, Topoisomerase IV, and the 4-Quinolones. Microbiol. Mol. Biol. Rev. 1997, 61, 377–392. [Google Scholar] [CrossRef] [PubMed]
- Feichtinger, M.; Mayrhofer, S.; Kneifel, W.; Domig, K.J. Tetracycline Resistance Patterns of Lactobacillus buchneri Group Strains. J. Food Prot. 2016, 79, 1741–1747. [Google Scholar] [CrossRef] [PubMed]
- Prebiotic Ingredients Market by Type (Oligosaccharides, Inulin, and Polydextrose), Application (Food & Beverages, Dietary Supplements, and Animal Feed), Source (Roots, Grains, and Vegetables), and Region—Global Forecast to 2023. Available online: https://www.marketresearch.com/MarketsandMarkets-v3719/Prebiotic-Ingredients-Type-Oligosaccharides-Inulin-11404812/ (accessed on 31 August 2022).
- Thumu, S.C.R.; Halami, P.M. Presence of Erythromycin and Tetracycline Resistance Genes in Lactic Acid Bacteria from Fermented Foods of Indian Origin. Antonie Van Leeuwenhoek 2012, 102, 541–551. [Google Scholar] [CrossRef] [PubMed]
- Chang, Y.-C.; Tsai, C.-Y.; Lin, C.-F.; Wang, Y.-C.; Wang, I.-K.; Chung, T.-C. Characterization of Tetracycline Resistance Lactobacilli Isolated from Swine Intestines at Western Area of Taiwan. Anaerobe 2011, 17, 239–245. [Google Scholar] [CrossRef] [PubMed]
- Todorov, S.D.; Franco, B.D.G.D.M. Lactobacillus plantarum: Characterization of the Species and Application in Food Production. Food Rev. Int. 2010, 26, 205–229. [Google Scholar] [CrossRef]
- Maidana, L.; de Souza, M.; Bracarense, A.P.F.R.L. Lactobacillus plantarum and Deoxynivalenol Detoxification: A Concise Review. J. Food Prot. 2022, 85, 1815–1823. [Google Scholar] [CrossRef]
- Liu, X.; Cao, G.; Qiu, K.; Dong, Y.; Hu, C. Lactobacillus plantarum Decreased Ammonia Emissions Through Modulating Cecal Microbiotain Broilers Challenged with Ammonia. Animals 2023, 13, 2739. [Google Scholar] [CrossRef]
- Wang, J.; Ji, H.; Wang, S.; Liu, H.; Zhang, W.; Zhang, D.; Wang, Y. Probiotic Lactobacillus plantarum Promotes Intestinal Barrier Function by Strengthening the Epithelium and Modulating Gut Microbiota. Front. Microbiol. 2018, 9, 1953. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, W.; Wang, S.; Liu, H.; Zhang, D.; Wang, Y.; Ji, H. Swine-Derived Probiotic Lactobacillus plantarum Modulates Porcine Intestinal Endogenous Host Defense Peptide Synthesis Through TLR2/MAPK/AP-1 Signaling Pathway. Front. Immunol. 2019, 10, 2691. [Google Scholar] [CrossRef]
- Shao, Y.; Zhang, W.; Guo, H.; Pan, L.; Zhang, H.; Sun, T. Comparative Studies on Antibiotic Resistance in Lactobacillus casei and Lactobacillus plantarum. Food Control 2015, 50, 250–258. [Google Scholar] [CrossRef]
- Rojo-Bezares, B.; Sáenz, Y.; Poeta, P.; Zarazaga, M.; Ruiz-Larrea, F.; Torres, C. Assessment of Antibiotic Susceptibility Within Lactic Acid Bacteria Strains Isolated from Wine. Int. J. Food Microbiol. 2006, 111, 234–240. [Google Scholar] [CrossRef] [PubMed]
- Vale, G.C.; Mayer, M.P.A. Effect of Probiotic Lactobacillus rhamnosus By-Products on Gingival Epithelial Cells Challenged with Porphyromonas gingivalis. Arch. Oral Biol. 2021, 128, 105174. [Google Scholar] [CrossRef] [PubMed]
- Waśko, A.; Skrzypczak, K.; Polak-Berecka, M.; Kuzdraliński, A. Genetic Mechanisms of Variation in Erythromycin Resistance in Lactobacillus rhamnosus Strains. J. Antibiot. 2012, 65, 583–586. [Google Scholar] [CrossRef]
- Porto, M.C.W.; Kuniyoshi, T.M.; Azevedo, P.O.S.; Vitolo, M.; Oliveira, R.P.S. Pediococcus spp.: An Important Genus of Lactic Acid Bacteria and Pediocin Producers. Biotechnol. Adv. 2017, 35, 361–374. [Google Scholar] [CrossRef] [PubMed]
- Carey, C.M.; Kostrzynska, M.; Ojha, S.; Thompson, S. The Effect of Probiotics and Organic Acids on Shiga-Toxin 2 Gene Expression in Enterohemorrhagic Escherichia coli O157:H7. J. Microbiol. Methods 2008, 73, 125–132. [Google Scholar] [CrossRef] [PubMed]
- Danielsen, M.; Simpson, P.J.; O’Connor, E.B.; Ross, R.P.; Stanton, C. Susceptibility of Pediococcus spp. to Antimicrobial Agents. J. Appl. Microbiol. 2007, 102, 384–389. [Google Scholar] [CrossRef] [PubMed]
- Marshall, C.G.; Broadhead, G.; Leskiw, B.K.; Wright, G.D. D-Ala-D-Ala Ligases from Glycopeptide Antibiotic-Producing Organisms Are Highly Homologous to the Enterococcal Vancomycin-Resistance Ligases VanA and VanB. Proc. Natl. Acad. Sci. USA 1997, 94, 6480–6483. [Google Scholar] [CrossRef] [PubMed]
- Cavicchioli, V.Q.; Camargo, A.C.; Todorov, S.D.; Nero, L.A. Potential Control of Listeria monocytogenes by Bacteriocinogenic Enterococcus hirae ST57ACC and Pediococcus pentosaceus ST65ACC Strains Isolated from Artisanal Cheese. Probiotics Antimicrob. Proteins 2019, 11, 696–704. [Google Scholar] [CrossRef]
- Clark, N.C.; Teixeira, L.M.; Facklam, R.R.; Tenover, F.C. Detection and Differentiation of VanC-1, VanC-2, and VanC-3 Glycopeptide Resistance Genes in Enterococci. J. Clin. Microbiol. 1998, 36, 2294–2297. [Google Scholar] [CrossRef]
- Dutka-Malen, S.; Molinas, C.; Arthur, M.; Courvalin, P. Sequence of the VanC Gene of Enterococcus gallinarum BM4174 Encoding a D-Alanine:D-Alanine Ligase-Related Protein Necessary for Vancomycin Resistance. Gene 1992, 112, 53–58. [Google Scholar] [CrossRef] [PubMed]
- Luna, V.A.; Roberts, M.C. The Presence of the TetO Gene in a Variety of Tetracycline-Resistant Streptococcus pneumoniae Serotypes from Washington State. J. Antimicrob. Chemother. 1998, 42, 613–619. [Google Scholar] [CrossRef]
- LeBlanc, D.J.; Lee, L.N.; Titmas, B.M.; Smith, C.J.; Tenover, F.C. Nucleotide Sequence Analysis of Tetracycline Resistance Gene TetO from Streptococcus mutans DL5. J. Bacteriol. 1988, 170, 3618–3626. [Google Scholar] [CrossRef]
- Jensen, L.B.; Hammerum, A.M.; Aarestrup, F.M. Linkage of Vat(E) and Erm(B) in Streptogamin-Resistant Enterococcus faecium Isolates from Europe. Antimicrob. Agents Chemother. 2000, 44, 2231–2232. [Google Scholar] [CrossRef]
- Mayo, B.; van Sinderen, D.; Ventura, M. Genome Analysis of Food Grade Lactic Acid-Producing Bacteria: From Basics to Applications. Curr. Genomics 2008, 9, 169–183. [Google Scholar] [CrossRef] [PubMed]
- Bravo, G.; Arcand, M.; Blanchette, D.; Boire-Lavigne, A.-M.; Dubois, M.-F.; Guay, M.; Hottin, P.; Lane, J.; Lauzon, J.; Bellemare, S. Promoting Advance Planning for Health Care and Research Among Older Adults: A Randomized Controlled Trial. BMC Med. Ethics 2012, 13, 1. [Google Scholar] [CrossRef]
- Sakandar, H.A.; Zhang, H. Curious Case of the History of Fermented Milk: Tangible Evidence. Sci. Bull. 2022, 67, 1625–1627. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.; Huang, J.; Zhou, R. Genomics of Lactic Acid Bacteria: Current Status and Potential Applications. Crit. Rev. Microbiol. 2017, 43, 393–404. [Google Scholar] [CrossRef] [PubMed]
- Dragosits, M.; Mattanovich, D. Adaptive Laboratory Evolution—Principles and Applications for Biotechnology. Microb. Cell Factories 2013, 12, 64. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.; Zhou, X.; Stanton, C.; Ross, R.P.; Zhao, J.; Zhang, H.; Yang, B.; Chen, W. Comparative Genomics and Specific Functional Characteristics Analysis of Lactobacillus acidophilus. Microorganisms 2021, 9, 1992. [Google Scholar] [CrossRef]
- Palmeirim, M.S.; Ross, A.; Obrist, B.; Mohammed, U.A.; Ame, S.M.; Ali, S.M.; Keiser, J. Informed Consent Procedure in a Double Blind Randomized Anthelminthic Trial on Pemba Island, Tanzania: Do Pamphlet and Information Session Increase Caregivers Knowledge? BMC Med. Ethics 2020, 21, 1. [Google Scholar] [CrossRef] [PubMed]
- Li, K.; Wang, S.; Liu, W.; Kwok, L.-Y.; Bilige, M.; Zhang, W. Comparative Genomic Analysis of 455 Lactiplantibacillus plantarum Isolates: Habitat-Specific Genomes Shaped by Frequent Recombination. Food Microbiol. 2022, 104, 103989. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Wu, Q.; Kwok, L.; Zhang, H.; Gan, R.; Sun, Z. Population and Functional Genomics of Lactic Acid Bacteria, an Important Group of Food Microorganism: Current Knowledge, Challenges, and Perspectives. Food Front. 2024, 5, 3–23. [Google Scholar] [CrossRef]
- Wilkins, T.; Sequoia, J. Probiotics for Gastrointestinal Conditions: A Summary of the Evidence. Am. Fam. Physician 2017, 96, 170–178. [Google Scholar] [PubMed]
- Osmanagaoglu, O.; Kiran, F.; Ataoglu, H. Evaluation of in Vitro Probiotic Potential of Pediococcus pentosaceus OZF Isolated from Human Breast Milk. Probiotics Antimicrob. Proteins 2010, 2, 162–174. [Google Scholar] [CrossRef]
- Mater, D.D.G.; Langella, P.; Corthier, G.; Flores, M.-J. A Probiotic Lactobacillus Strain Can Acquire Vancomycin Resistance during Digestive Transit in Mice. J. Mol. Microbiol. Biotechnol. 2007, 14, 123–127. [Google Scholar] [CrossRef] [PubMed]
- van den Braak, N.; van Belkum, A.; van Keulen, M.; Vliegenthart, J.; Verbrugh, H.A.; Endtz, H.P. Molecular Characterization of Vancomycin-Resistant Enterococci from Hospitalized Patients and Poultry Products in The Netherlands. J. Clin. Microbiol. 1998, 36, 1927–1932. [Google Scholar] [CrossRef]
- Harbarth, S.; Balkhy, H.H.; Goossens, H.; Jarlier, V.; Kluytmans, J.; Laxminarayan, R.; Saam, M.; Van Belkum, A.; Pittet, D. World Healthcare-Associated Infections Resistance Forum Participants Antimicrobial Resistance: One World, One Fight! Antimicrob. Resist. Infect. Control. 2015, 4, 49. [Google Scholar] [CrossRef]
- Chen, Y.-C.; Yu, Y.-H. Bacillus licheniformis-Fermented Products and Enramycin Differentially Modulate Microbiota and Antibiotic Resistome in the Cecal Digesta of Broilers. Poult. Sci. 2022, 101, 102010. [Google Scholar] [CrossRef]
- Xing, S.-C.; Chen, J.-Y.; Cai, Y.-F.; Huang, C.-B.; Liao, X.-D.; Mi, J.-D. Bacillus Coagulans R11 Consumption Influenced the Abundances of Cecum Antibiotic Resistance Genes in Lead-Exposed Laying Hens. Environ. Pollut. 2021, 274, 116562. [Google Scholar] [CrossRef] [PubMed]
- Jezewska-Frackowiak, J.; Seroczynska, K.; Banaszczyk, J.; Wozniak, D.; Skowron, M.; Ozog, A.; Zylicz-Stachula, A.; Ossowski, T.; Skowron, P.M. Detection of Endospore Producing Bacillus Species from Commercial Probiotics and Their Preliminary Microbiological Characterization. J. Environ. Biol. 2017, 38, 1435–1440. [Google Scholar] [CrossRef]
- Jaiswal, S.; Pradhan, S.N.; Jain, D.; Dhassiah Peter, M.P.; Antony, U. Probiotic and Functional Characterization of Pediococcus acidilactici Isolated from Bhaati Jaanr, Traditional Fermented Rice Porridge. Appl. Biochem. Biotechnol. 2022, 194, 5734–5747. [Google Scholar] [CrossRef]
- Barbosa, J.; Borges, S.; Teixeira, P. Pediococcus acidilactici as a Potential Probiotic to Be Used in Food Industry. Int. J. Food Sci. Technol. 2015, 50, 1151–1157. [Google Scholar] [CrossRef]
Criteria | |
---|---|
Safety | Derived from healthy animals or humans to ensure a safe starting point. |
Possesses well-defined phenotypic and genotypic characteristics for accurate classification. | |
Incapable of causing disease in hosts, ensuring safety. | |
Does not metabolize bile salts, indicating a benign interaction with the digestive system. | |
Encodes resistance genes strictly as non-mobile elements, reducing horizontal gene transfer risk. | |
Functionality | Effectively competes within the gut microbiome, ensuring establishment and persistence. |
Exhibits strong antagonistic effects against pathogens, bolstering host defense mechanisms. | |
Survives low gastric pH and bile, ensuring passage through the gastrointestinal tract. | |
Successfully colonizes targeted gut areas, achieving desired health benefits. | |
Tolerates bactericidal substances and acids produced by the gut microbiome. | |
Technology Usability | Capable of production on a large scale, supporting commercial viability. |
Maintains viability during product processing (e.g., freezing), ensuring delivery of live cultures. | |
Exhibits a high survival rate throughout marketing and storage, ensuring product efficacy until consumption. | |
Does not adversely affect the organoleptic properties of food products, maintaining consumer acceptance. | |
Demonstrates genetic stability and resistance to bacteriophages, ensuring consistent quality and performance. |
Effects | Description | References |
---|---|---|
Modulation of the immune system | Probiotics influence the immune response through interactions with DNA, cell wall components, and metabolites, contributing to immune regulation. | [28,29] |
Enhancement of vaccine efficacy | Probiotics have demonstrated immunomodulatory properties in vaccination trials, enhancing immune responses and improving vaccine effectiveness. | [31] |
Inhibition of pathogen growth | Probiotics produce low-molecular-weight antimicrobial compounds, such as bacteriocins, lactic acid, and hydrogen peroxide, which can inhibit pathogens. | [30] |
Prevention of pathogen adhesion | By adhering to intestinal epithelial cells, probiotics prevent pathogen colonization, thereby promoting gastrointestinal health. | [32,33] |
Reduction of pathogen toxin production | Probiotics can inhibit pathogen invasion and reduce pathogen toxin production, mitigating harmful effects. | [34,35] |
Anticarcinogenic properties | Probiotics may neutralize genotoxins, thereby exerting potential anticarcinogenic effects. | [36,37] |
Improvement in growth performance | Probiotics enhance humoral immune responses while promoting growth uniformity and weight gain compared to untreated controls. | [31] |
Reduction in mortality rates | The supplementation of prebiotics and probiotics in broiler chickens has been associated with lower mortality rates. | [38] |
Environmental benefits | Probiotics contribute to reducing pollutant gas concentrations by facilitating protein degradation, decomposing animal carcasses and feathers, and minimizing ammonia emissions. | [39] |
Mechanisms | Subgroups | Genes | Antibiotic Resistance | Bacteria | References |
---|---|---|---|---|---|
Antibiotic efflux | class ABC | lmrB | lincosamide | Bacillus amyloliquefaciens | [104] |
macrolide | |||||
lincosamide | Bacillus subtilis | [109,134] | |||
bcrB | peptide | Pediococcus pentosaceus | [176,177] | ||
Bacillus licheniformis | [105,109] | ||||
bcrA | |||||
bcrC | |||||
class MFS | tetL | tetracycline | Bacillus amyloliquefaciens | [106] | |
Bacillus subtilis | [124,125] | ||||
Enterococcus faecium Pediococcus pentosaceus Lactobacillus plantarum Lactobacillus fermentum | [147] | ||||
tetK | [162] | ||||
[162] | |||||
[162,163] | |||||
Bacillus subtilis | [124,125] | ||||
tetC | Enterococcus faecium | [149] | |||
bmr | fluoroquinolone | Bacillus subtilis | [109,133] | ||
phenicol | |||||
efmA | macrolide | Enterococcus faecium | [109,146,149] | ||
fluoroquinolone | |||||
blt | Bacillus subtilis | [109,131] | |||
class SMR | ykkC | phenicol | [109,137] | ||
ykkD | tetracycline | ||||
aminoglycoside | |||||
Antibiotic inactivation | acetyltransferase | aac(6′)-li | aminoglycoside | Enterococcus faecium | [109,146,149] |
cat | phenicol | Lactobacillus plantarum | [154] | ||
aac(6′)-aph(2′) | aminoglycoside | [169,170] | |||
Pediococcus pentosaceus | [170] | ||||
vatE | streptogramin | [176,177] | |||
class A beta-lactamases | blaZ | penam | Lactobacillus plantarum | [157] | |
ANT(3″) | aadA | aminoglycoside | Lactobacillus fermentum | [154] | |
nucleotidyltransferase | ANT(6) | ||||
aadE (ANT(6)) | Lactobacillus plantarum | [152] | |||
aadA | [169] | ||||
Antibiotic target alternation | acetyltransferase | satA | aminoglycoside | Bacillus amyloliquefaciens | [107] |
cat | phenicol | Bacillus licheniformis | [111] | ||
phenicol | Enterococcus faecium | [147] | |||
beta-subunit of RNA polymerase | rpoB | rifamycin | Bacillus amyloliquefaciens | [105] | |
D-Ala-D-Ser ligase | vanC1 | glycopeptide | Enterococcus faecium | [148] | |
Pediococcus pentosaceus | [176,177] | ||||
defensin | mprF | peptide | Bacillus subtilis | [109,130] | |
DNA topoisomerase | gyrA | fluoroquinolone | Lactobacillus acidophilus | [152] | |
Lactobacillus plantarum | [152] | ||||
parC | Lactobacillus brevis | [158,159] | |||
esterase | ermA | macrolide | Bacillus licheniformis | [112] | |
ereA | |||||
ereB | |||||
ligase | vanA, vanC | glycopeptide | Pediococcus pentosaceus | [176,177] | |
methyltransferase | cfrB | lincosamide | Bacillus amyloliquefaciens | [107] | |
macrolide | |||||
clbA | phenicol | [104,109] | |||
lincosamide | |||||
pleuromutilin | |||||
ermA | macrolide | Lactobacillus rhamnosus | [172] | ||
Bacillus licheniformis | [112] | ||||
ermD | [109,112] | ||||
ermB | [113] | ||||
Enterococcus faecium | [147,149] | ||||
Lactobacillus acidophilus | [153] | ||||
lincosamide | |||||
macrolide | Lactobacillus fermentum | [154] | |||
lincosamide | |||||
macrolide | Lactobacillus plantarum | [153] | |||
lincosamide | |||||
macrolide | Pediococcus acidilactici | [170] | |||
lincosamide | |||||
Lactobacillus rhamnosus | [172] | ||||
macrolide | Pediococcus pentosaceus | [162] | |||
ermC | Bacillus licheniformis | [113] | |||
Lactobacillus brevis | [157] | ||||
lincosamide, macrolide | |||||
Lactobacillus rhamnosus | [172] | ||||
nucleotidyltransferase | aadK | aminoglycoside | Bacillus amyloliquefaciens | [108] | |
Bacillus subtilis | [121,122] | ||||
Bacillus licheniformis | [109,112] | ||||
phosphotransferase | rphB | rifamycin | Bacillus amyloliquefaciens | [107] | |
APH | aminoglycoside | Bacillus licheniformis | [112] | ||
APH(5) | Bacillus subtilis | [123] | |||
phosphotransferase | mphK | macrolide | [109,135] | ||
ribosomal protein | rpsL | aminoglycoside | Bacillus amyloliquefaciens | [105] | |
Antibiotic target protection | 30S ribosomal subunit | tetS | tetracycline | Lactobacillus plantarum | [154] |
tetM | [163] | ||||
tetW | |||||
ABC-F ATP-binding casette | vmlR | lincosamide | Bacillus subtilis | [109,136] | |
pleuromutilin | |||||
phenicol | |||||
tetracycline | |||||
macrolide | |||||
msrC | Lactobacillus fermentum | [162,163] | |||
Pediococcus pentosaceus | [162] | ||||
lincosmaide | Enterococcus faecium | [109,144] | |||
pleuromutilin | |||||
macrolide | |||||
eatAV | pleuromutilin | [109] | |||
msrA | phenicol | [147] | |||
msrB | tetracycline | ||||
ribosoma protection protein | tetO | Pediococcus pentosaceus | [176,177] | ||
tetM | Lactobacillus acidophilus | [155] | |||
Enterococcus faecium | [147,149] | ||||
Antibiotic target replacement | dihydrofolate reductase | dfrA43 | diaminopyrimidine | Bacillus amyloliquefaciens | [109] |
Bacillus licheniformis | [109] | ||||
Reduced permeability | resistance protein | tmrB | nucleosides | [109] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kerek, Á.; Román, I.; Szabó, Á.; Pézsa, N.P.; Jerzsele, Á. Antibiotic Resistance Gene Expression in Veterinary Probiotics: Two Sides of the Coin. Vet. Sci. 2025, 12, 217. https://doi.org/10.3390/vetsci12030217
Kerek Á, Román I, Szabó Á, Pézsa NP, Jerzsele Á. Antibiotic Resistance Gene Expression in Veterinary Probiotics: Two Sides of the Coin. Veterinary Sciences. 2025; 12(3):217. https://doi.org/10.3390/vetsci12030217
Chicago/Turabian StyleKerek, Ádám, István Román, Ábel Szabó, Nikolett Palkovicsné Pézsa, and Ákos Jerzsele. 2025. "Antibiotic Resistance Gene Expression in Veterinary Probiotics: Two Sides of the Coin" Veterinary Sciences 12, no. 3: 217. https://doi.org/10.3390/vetsci12030217
APA StyleKerek, Á., Román, I., Szabó, Á., Pézsa, N. P., & Jerzsele, Á. (2025). Antibiotic Resistance Gene Expression in Veterinary Probiotics: Two Sides of the Coin. Veterinary Sciences, 12(3), 217. https://doi.org/10.3390/vetsci12030217