Genetic Basis of Myxomatous Mitral Valve Disease in Cavalier King Charles Spaniel Dogs—A Review
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
3. Phenotype and Classification of MMVD
4. Breed Predispositions and Inheritance
5. Physiological and Molecular Markers Associated with MMVD
5.1. RAA System
5.2. Nebulette Protein
5.3. TGF-β
5.4. HEPACAM2, CDK6, FAH
5.5. Collagen
5.6. Serotonin Transporter (5-HT)
5.7. miRNA
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Atkins, C.; Bonagura, J.; Ettinger, S.; Fox, P.; Gordon, S.; Haggstrom, J.; Hamlin, R.; Keene, B.; Luis-Fuentes, V.; Stepien, R. Guidelines for the Diagnosis and Treatment of Canine Chronic Valvular Heart Disease. J. Vet. Intern. Med. 2009, 23, 1142–1150. [Google Scholar] [CrossRef] [PubMed]
- Keene, B.W.; Atkins, C.E.; Bonagura, J.D.; Fox, P.R.; Häggström, J.; Fuentes, V.L.; Oyama, M.A.; Rush, J.E.; Stepien, R.; Uechi, M. ACVIM Consensus Guidelines for the Diagnosis and Treatment of Myxomatous Mitral Valve Disease in Dogs. J. Vet. Intern. Med. 2019, 33, 1127–1140. [Google Scholar] [CrossRef] [PubMed]
- Prieto Ramos, J.; Corda, A.; Swift, S.; Saderi, L.; De La Fuente Oliver, G.; Corcoran, B.; Summers, K.M.; French, A.T. Clinical and Echocardiographic Findings in an Aged Population of Cavalier King Charles Spaniels. Animals 2021, 11, 949. [Google Scholar] [CrossRef]
- Bagardi, M.; Bionda, A.; Locatelli, C.; Cortellari, M.; Frattini, S.; Negro, A.; Crepaldi, P.; Brambilla, P.G. Echocardiographic Evaluation of the Mitral Valve in Cavalier King Charles Spaniels. Animals 2020, 10, 1454. [Google Scholar] [CrossRef]
- Beardow, A.W.; Buchanan, J.W. Chronic Mitral Valve Disease in Cavalier King Charles Spaniels: 95 Cases (1987–1991). J. Am. Vet. Med. Assoc. 1993, 203, 1023–1029. [Google Scholar] [CrossRef]
- Summers, J.F.; O’Neill, D.G.; Church, D.B.; Thomson, P.C.; McGreevy, P.D.; Brodbelt, D.C. Prevalence of Disorders Recorded in Cavalier King Charles Spaniels Attending Primary-Care Veterinary Practices in England. Canine Genet. Epidemiol. 2015, 2, 4. [Google Scholar] [CrossRef]
- Svensson, M.; Selling, J.; Dirven, M. Myxomatous Mitral Valve Disease in Large Breed Dogs: Survival Characteristics and Prognostic Variables. Vet. Sci. 2024, 11, 136. [Google Scholar] [CrossRef]
- Vollmar, A.C.; Aupperle, H. Cardiac Pathology in Irish Wolfhounds with Heart Disease. J. Vet. Cardiol. 2016, 18, 57–70. [Google Scholar] [CrossRef]
- Fox, P.R. Pathology of Myxomatous Mitral Valve Disease in the Dog. J. Vet. Cardiol. 2012, 14, 103–126. [Google Scholar] [CrossRef]
- Druzhaeva, N.; Nemec Svete, A.; Tavčar-Kalcher, G.; Babič, J.; Ihan, A.; Pohar, K.; Krapež, U.; Domanjko Petrič, A. Effects of Coenzyme Q10 Supplementation on Oxidative Stress Markers, Inflammatory Markers, Lymphocyte Subpopulations, and Clinical Status in Dogs with Myxomatous Mitral Valve Disease. Antioxidants 2022, 11, 1427. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Heaney, A.; Langenfeld-McCoy, N.; Boler, B.V.; Laflamme, D.P. Dietary Intervention Reduces Left Atrial Enlargement in Dogs with Early Preclinical Myxomatous Mitral Valve Disease: A Blinded Randomized Controlled Study in 36 Dogs. BMC Vet. Res. 2019, 15, 425. [Google Scholar] [CrossRef]
- Boland, M.R.; Kraus, M.S.; Dziuk, E.; Gelzer, A.R. Cardiovascular Disease Risk Varies by Birth Month in Canines. Sci. Rep. 2018, 8, 7130. [Google Scholar] [CrossRef] [PubMed]
- Oyama, M.A.; Elliott, C.; Loughran, K.A.; Kossar, A.P.; Castillero, E.; Levy, R.J.; Ferrari, G. Comparative Pathology of Human and Canine Myxomatous Mitral Valve Degeneration: 5HT and TGF-β Mechanisms. Cardiovasc. Pathol. 2020, 46, 107196. [Google Scholar] [CrossRef] [PubMed]
- Meurs, K.M.; Friedenberg, S.G.; Williams, B.; Keene, B.W.; Atkins, C.E.; Adin, D.; Aona, B.; DeFrancesco, T.; Tou, S.; Mackay, T. Evaluation of Genes Associated with Human Myxomatous Mitral Valve Disease in Dogs with Familial Myxomatous Mitral Valve Degeneration. Vet. J. 2018, 232, 16–19. [Google Scholar] [CrossRef]
- Borgarelli, M.; Savarino, P.; Crosara, S.; Santilli, R.A.; Chiavegato, D.; Poggi, M.; Bellino, C.; La Rosa, G.; Zanatta, R.; Haggstrom, J.; et al. Survival Characteristics and Prognostic Variables of Dogs with Mitral Regurgitation Attributable to Myxomatous Valve Disease. J. Vet. Intern. Med. 2008, 22, 120–128. [Google Scholar] [CrossRef]
- Sudunagunta, S.; Green, D.; Christley, R.; Dukes-McEwan, J. The Prevalence of Pulmonary Hypertension in Cavalier King Charles Spaniels Compared with Other Breeds with Myxomatous Mitral Valve Disease. J. Vet. Cardiol. 2019, 23, 21–31. [Google Scholar] [CrossRef] [PubMed]
- Markby, G.; Summers, K.M.; MacRae, V.E.; Del-Pozo, J.; Corcoran, B.M. Myxomatous Degeneration of the Canine Mitral Valve: From Gross Changes to Molecular Events. J. Comp. Pathol. 2017, 156, 371–383. [Google Scholar] [CrossRef]
- Gach, J.; Mackiewicz, A.; Janus-Ziółkowska, I.; Noszczyk-Nowak, A. Histopathological and Immunohistochemical Characteristics of Chordae Tendineae Affected by Degenerative Processes in Canine Myxomatous Mitral Valve Disease. Vet. Res. Commun. 2025, 49, 190. [Google Scholar] [CrossRef]
- Lu, C.-C.; Liu, M.-M.; Culshaw, G.; French, A.; Corcoran, B. Comparison of Cellular Changes in Cavalier King Charles Spaniel and Mixed Breed Dogs with Myxomatous Mitral Valve Disease. J. Vet. Cardiol. 2016, 18, 100–109. [Google Scholar] [CrossRef]
- Wess, G.; Kresken, J.; Wendt, R.; Gaugele, J.; Killich, M.; Keller, L.; Simak, J.; Holler, P.; Bauer, A.; Küchenhof, H.; et al. Efficacy of Adding Ramipril (VAsotop) to the Combination of Furosemide (Lasix) and Pimobendan (VEtmedin) in Dogs with Mitral Valve Degeneration: The VALVE Trial. J. Vet. Intern. Med. 2020, 34, 2232–2241. [Google Scholar] [CrossRef]
- Coffman, M.; Guillot, E.; Blondel, T.; Garelli-Paar, C.; Feng, S.; Heartsill, S.; Atkins, C.E. Clinical Efficacy of a Benazepril and Spironolactone Combination in Dogs with Congestive Heart Failure due to Myxomatous Mitral Valve Disease: The BEnazepril Spironolactone STudy (BESST). J. Vet. Intern. Med. 2021, 35, 1673–1687. [Google Scholar] [CrossRef] [PubMed]
- Borgarelli, M.; Ferasin, L.; Lamb, K.; Bussadori, C.; Chiavegato, D.; D’Agnolo, G.; Migliorini, F.; Poggi, M.; Santilli, R.A.; Guillot, E.; et al. DELay of Appearance of SYmptoms of Canine Degenerative Mitral Valve Disease Treated with Spironolactone and Benazepril: The DELAY Study. J. Vet. Cardiol. 2020, 27, 34–53. [Google Scholar] [CrossRef]
- Vezzosi, T.; Grosso, G.; Vatne, L.; Porciello, F.; Dall’Aglio, E.; Guglielmini, C.; Broch, H.; Dickson, D.; Croce, M.; Patata, V.; et al. Risk Stratification Using Mitral INsufficiency Echocardiographic Score 2 in Dogs with Preclinical Mitral Valve Disease. J. Vet. Intern. Med. 2025, 39, e70215. [Google Scholar] [CrossRef]
- Parker, H.G.; Kilroy-Glynn, P. Myxomatous Mitral Valve Disease in Dogs: Does Size Matter? J. Vet. Cardiol. 2012, 14, 19–29. [Google Scholar] [CrossRef]
- Lewis, T.; Swift, S.; Woolliams, J.A.; Blott, S. Heritability of Premature Mitral Valve Disease in Cavalier King Charles Spaniels. Vet. J. 2011, 188, 73–76. [Google Scholar] [CrossRef] [PubMed]
- Mellanby, R.J.; Ogden, R.; Clements, D.N.; French, A.T.; Gow, A.G.; Powell, R.; Corcoran, B.; Schoeman, J.P.; Summers, K.M. Population Structure and Genetic Heterogeneity in Popular Dog Breeds in the UK. Vet. J. 2013, 196, 92–97. [Google Scholar] [CrossRef]
- Lundin, T.; Kvart, C. Evaluation of the Swedish Breeding Program for Cavalier King Charles Spaniels. Acta Vet. Scand. 2010, 52, 54. [Google Scholar] [CrossRef]
- Birkegård, A.C.; Reimann, M.J.; Martinussen, T.; Häggström, J.; Pedersen, H.D.; Olsen, L.H. Breeding Restrictions Decrease the Prevalence of Myxomatous Mitral Valve Disease in Cavalier King Charles Spaniels over an 8- to 10-Year Period. J. Vet. Intern. Med. 2015, 30, 63–68. [Google Scholar] [CrossRef]
- Ancot, F.; Lemay, P.; Knowler, S.P.; Kennedy, K.; Griffiths, S.; Cherubini, G.B.; Sykes, J.; Mandigers, P.J.J.; Rouleau, G.A.; Rusbridge, C.; et al. A Genome-Wide Association Study Identifies Candidate Loci Associated to Syringomyelia Secondary to Chiari-like Malformation in Cavalier King Charles Spaniels. BMC Genet. 2018, 19, 16. [Google Scholar] [CrossRef]
- Bach, T.; Stougaard, C.L.; Thøfner, M.S.; Reimann, M.J.; Westrup, U.; Koch, J.; Fredholm, M.; Martinussen, T.; Berendt, M.; Olsen, L.H. Relationship between Syringomyelia and Myxomatous Mitral Valve Disease in Cavalier King Charles Spaniels. J. Vet. Intern. Med. 2024, 38, 904–912. [Google Scholar] [CrossRef] [PubMed]
- French, A.T.; Ogden, R.; Eland, C.; Hemani, G.; Pong-Wong, R.; Corcoran, B.; Summers, K.M. Genome-Wide Analysis of Mitral Valve Disease in Cavalier King Charles Spaniels. Vet. J. 2012, 193, 283–286. [Google Scholar] [CrossRef]
- Meurs, K.M.; Olsen, L.H.; Reimann, M.J.; Keene, B.W.; Atkins, C.E.; Adin, D.; Aona, B.; Condit, J.; DeFrancesco, T.; Reina-Doreste, Y.; et al. Angiotensin-Converting Enzyme Activity in Cavalier King Charles Spaniels with an ACE Gene Polymorphism and Myxomatous Mitral Valve Disease. Pharmacogenet. Genom. 2018, 28, 37–40. [Google Scholar] [CrossRef]
- Ames, M.K.; Atkins, C.E.; Eriksson, A.; Hess, A.M. Aldosterone Breakthrough in Dogs with Naturally Occurring Myxomatous Mitral Valve Disease. J. Vet. Cardiol. 2017, 19, 218–227. [Google Scholar] [CrossRef]
- Meurs, K.M.; Chdid, L.; Reina-Doreste, Y.; Stern, J.A. Polymorphisms in the Canine and Feline Renin-Angiotensin-Aldosterone System Genes. Anim. Genet. 2015, 46, 226. [Google Scholar] [CrossRef]
- Adin, D.B.; Atkins, C.E.; Friedenberg, S.G.; Stern, J.A.; Meurs, K.M. Prevalence of an Angiotensin-Converting Enzyme Gene Variant in Dogs. Canine Med. Genet. 2021, 8, 6. [Google Scholar] [CrossRef]
- Meurs, K.M.; Stern, J.A.; Atkins, C.E.; Adin, D.; Aona, B.; Condit, J.; DeFrancesco, T.; Reina-Doreste, Y.; Keene, B.W.; Tou, S.; et al. Angiotensin-Converting Enzyme Activity and Inhibition in Dogs with Cardiac Disease and an Angiotensin-Converting Enzyme Polymorphism. J. Renin-Angiotensin-Aldosterone Syst. 2017, 18, 147032031773718. [Google Scholar] [CrossRef]
- Adin, D.; Atkins, C.; Domenig, O.; DeFrancesco, T.; Keene, B.; Tou, S.; Stern, J.A.; Meurs, K.M. Renin-Angiotensin Aldosterone Profile before and after Angiotensin-Converting Enzyme-Inhibitor Administration in Dogs with Angiotensin-Converting Enzyme Gene Polymorphism. J. Vet. Intern. Med. 2020, 34, 600–606. [Google Scholar] [CrossRef]
- Hammond, H.H.; Ames, M.K.; Domenig, O.; Scansen, B.A.; Yang, N.T.; Wilson, M.D.; Sunshine, E.; Brunk, K.; Masters, A. The Classical and Alternative Circulating Renin-Angiotensin System in Normal Dogs and Dogs with Stage B1 and B2 Myxomatous Mitral Valve Disease. J. Vet. Intern. Med. 2023, 37, 875–886. [Google Scholar] [CrossRef] [PubMed]
- Purevjav, E.; Varela, J.; Morgado, M.; Kearney, D.L.; Li, H.; Taylor, M.D.; Arimura, T.; Moncman, C.L.; McKenna, W.; Murphy, R.T.; et al. Nebulette Mutations Are Associated with Dilated Cardiomyopathy and Endocardial Fibroelastosis. J. Am. Coll. Cardiol. 2010, 56, 1493–1502. [Google Scholar] [CrossRef] [PubMed]
- Perrot, A.; Tomašov, P.; Villard, E.; Faludi, R.; Melacini, P.; Lossie, J.; Lohmann, N.; Richard, P.; De Bortoli, M.; Angelini, A.; et al. Mutations in NEBL Encoding the Cardiac Z-Disk Protein Nebulette Are Associated with Various Cardiomyopathies. Arch. Med. Sci. 2016, 2, 263–278. [Google Scholar] [CrossRef] [PubMed]
- Maiellaro-Rafferty, K.; Wansapura, J.P.; Mendsaikhan, U.; Osinska, H.; James, J.F.; Taylor, M.D.; Robbins, J.; Kranias, E.G.; Towbin, J.A.; Purevjav, E. Altered Regional Cardiac Wall Mechanics Are Associated with Differential Cardiomyocyte Calcium Handling due to Nebulette Mutations in Preclinical Inherited Dilated Cardiomyopathy. J. Mol. Cell. Cardiol. 2013, 60, 151–160. [Google Scholar] [CrossRef] [PubMed]
- Axelsson, E.; Ljungvall, I.; Bhoumik, P.; Conn, L.B.; Muren, E.; Ohlsson, Å.; Olsen, L.H.; Engdahl, K.; Hagman, R.; Hanson, J.; et al. The Genetic Consequences of Dog Breed Formation—Accumulation of Deleterious Genetic Variation and Fixation of Mutations Associated with Myxomatous Mitral Valve Disease in Cavalier King Charles Spaniels. PLoS Genet. 2021, 17, e1009726. [Google Scholar] [CrossRef]
- Mead, S.E.; Beijerink, N.J.; O’Brien, M.; Wade, C.M. Genetic Variants at the Nebulette Locus Are Associated with Myxomatous Mitral Valve Disease Severity in Cavalier King Charles Spaniels. Genes 2022, 13, 2292. [Google Scholar] [CrossRef]
- Oyama, M.A.; Chittur, S.V. Genomic Expression Patterns of Mitral Valve Tissues from Dogs with Degenerative Mitral Valve Disease. Am. J. Vet. Res. 2006, 67, 1307–1318. [Google Scholar] [CrossRef]
- Lu, C.-C.; Liu, M.-M.; Culshaw, G.; Clinton, M.; Argyle, D.; Corcoran, B. Gene Network and Canonical Pathway Analysis in Canine Myxomatous Mitral Valve Disease: A Microarray Study. Vet. J. 2015, 204, 23–31. [Google Scholar] [CrossRef] [PubMed]
- Markby, G.R.; Macrae, V.E.; Corcoran, B.M.; Summers, K.M. Comparative Transcriptomic Profiling of Myxomatous Mitral Valve Disease in the Cavalier King Charles Spaniel. BMC Vet. Res. 2020, 16, 350. [Google Scholar] [CrossRef]
- Tang, Q.; McNair, A.J.; Phadwal, K.; Macrae, V.E.; Corcoran, B.M. The Role of Transforming Growth Factor-β Signaling in Myxomatous Mitral Valve Degeneration. Front. Cardiovasc. Med. 2022, 9, 872288. [Google Scholar] [CrossRef]
- Markby, G.R.; Macrae, V.E.; Summers, K.M.; Corcoran, B.M. Disease Severity-Associated Gene Expression in Canine Myxomatous Mitral Valve Disease Is Dominated by TGFβ Signaling. Front. Genet. 2020, 11, 372. [Google Scholar] [CrossRef]
- Thalji, N.M.; Hagler, M.A.; Zhang, H.; Casaclang-Verzosa, G.; Nair, A.A.; Suri, R.M.; Miller, J.D. Nonbiased Molecular Screening Identifies Novel Molecular Regulators of Fibrogenic and Proliferative Signaling in Myxomatous Mitral Valve Disease. Circ.-Cardiovasc. Genet. 2015, 8, 516–528. [Google Scholar] [CrossRef]
- Moesgaard, S.G.; Aupperle, H.; Rajamäki, M.M.; Falk, T.; Rasmussen, C.E.; Zois, N.E.; Olsen, L.H. Matrix Metalloproteinases (MMPs), Tissue Inhibitors of Metalloproteinases (TIMPs) and Transforming Growth Factor-β (TGF-β) in Advanced Canine Myxomatous Mitral Valve Disease. Res. Vet. Sci. 2014, 97, 560–567. [Google Scholar] [CrossRef] [PubMed]
- Madsen, M.B.; Olsen, L.H.; Haggstrom, J.; Hoglund, K.; Ljungvall, I.; Falk, T.; Wess, G.; Stephenson, H.; Dukes-McEwan, J.; Chetboul, V.; et al. Identification of 2 Loci Associated with Development of Myxomatous Mitral Valve Disease in Cavalier King Charles Spaniels. J. Hered. 2011, 102 (Suppl. 1), S62–S67. [Google Scholar] [CrossRef]
- Bionda, A.; Cortellari, M.; Bagardi, M.; Frattini, S.; Negro, A.; Locatelli, C.; Brambilla, P.G.; Crepaldi, P. A Genomic Study of Myxomatous Mitral Valve Disease in Cavalier King Charles Spaniels. Animals 2020, 10, 1895. [Google Scholar] [CrossRef]
- Wolfe, C.J.; Kohane, I.S.; Butte, A.J. Systematic survey reveals general applicability of “guilt-by-association” within gene coexpression networks. BMC Bioinform. 2005, 6, 227. [Google Scholar] [CrossRef]
- Torres-García, O.; Rey-Buitrago, M.; Acosta-Virgüez, E.; Bernal-Rosas, Y.; Infante-González, J.; Gómez-Duarte, L. Role of COL1A2 gene polymorphisms in myxomatous mitral valve disease in poodle dogs genetic study of mitral valve disease. IOSR J. Agric. Vet. Sci. 2016, 9, 113–118. [Google Scholar]
- Lee, C.-M.; Han, J.-I.; Kang, M.-H.; Kim, S.-G.; Park, H.-M. Polymorphism in the Serotonin Transporter Protein Gene in Maltese Dogs with Degenerative Mitral Valve Disease. J. Vet. Sci. 2018, 19, 129. [Google Scholar] [CrossRef]
- Reimann, M.J.; Fredholm, M.; Cremer, S.E.; Christiansen, L.B.; Meurs, K.M.; Møller, J.E.; Häggström, J.; Lykkesfeldt, J.; Olsen, L.H. Polymorphisms in the Serotonin Transporter Gene and Circulating Concentrations of Neurotransmitters in Cavalier King Charles Spaniels with Myxomatous Mitral Valve Disease. J. Vet. Intern. Med. 2021, 35, 2596–2606. [Google Scholar] [CrossRef]
- Lee, C.-M.; Song, D.-W.; Ro, W.-B.; Kang, M.-H.; Park, H.-M. Genome-Wide Association Study of Degenerative Mitral Valve Disease in Maltese Dogs. J. Vet. Sci. 2019, 20, 63–71. [Google Scholar] [CrossRef] [PubMed]
- Nappi, F.; Iervolino, A.; Avtaar Singh, S.S.; Chello, M. MicroRNAs in Valvular Heart Diseases: Biological Regulators, Prognostic Markers and Therapeutical Targets. Int. J. Mol. Sci. 2021, 22, 12132. [Google Scholar] [CrossRef] [PubMed]
- Reis-Ferreira, A.; Neto-Mendes, J.; Brás-Silva, C.; Lobo, L.; Fontes-Sousa, A.P. Emerging Roles of Micrornas in Veterinary Cardiology. Vet. Sci. 2022, 9, 533. [Google Scholar] [CrossRef] [PubMed]
- Palarea-Albaladejo, J.; Bode, E.F.; Partington, C.; Basili, M.; Mederska, E.; Hodgkiss-Geere, H.; Capewell, P.; Chauché, C.; Coultous, R.M.; Hanks, E.; et al. Assessing the use of blood microRNA expression patterns for predictive diagnosis of myxomatous mitral valve disease in dogs. Front. Vet. Sci. 2024, 11, 1443847. [Google Scholar] [CrossRef]
- Li, Q.; Freeman, L.; Rush, J.; Laflamme, D. Expression profiling of circulating MicroRNAs in canine myxomatous mitral valve disease. Int. J. Mol. Sci. 2015, 16, 14098–14108. [Google Scholar] [CrossRef]
- Yang, V.K.; Tai, A.K.; Huh, T.P.; Meola, D.M.; Juhr, C.M.; Robinson, N.A.; Hoffman, A.M. Dysregulation of valvular interstitial cell let-7c, miR-17, miR-20a, and miR-30d in naturally occurring canine myxomatous mitral valve disease. PLoS ONE 2018, 13, e0188617. [Google Scholar] [CrossRef]
- Ro, W.-B.; Kang, M.-H.; Song, D.-W.; Lee, S.-H.; Park, H.-M. Expression profile of circulating MicroRNAs in dogs with cardiac hypertrophy: A pilot study. Front. Vet. Sci. 2021, 8, 652224. [Google Scholar] [CrossRef] [PubMed]
- Ro, W.-B.; Kang, M.-H.; Song, D.-W.; Kim, H.-S.; Lee, G.-W.; Park, H.-M. Identification and characterization of circulating MicroRNAs as novel biomarkers in dogs with heart diseases. Front. Vet. Sci. 2021, 8, 729929. [Google Scholar] [CrossRef] [PubMed]
- Jung, S.; Bohan, A. Genome-wide sequencing and quantification of circulating microRNAs for dogs with congestive heart failure secondary to myxomatous mitral valve degeneration. Am. J. Vet. Res. 2018, 79, 163–169. [Google Scholar] [CrossRef] [PubMed]
- Guelfi, G.; Santarelli, N.; Capaccia, C.; Valeri, F.; Caivano, D.; Lepri, E. MicroRNA Expression Profiling in Canine Myxomatous Mitral Valve Disease Highlights Potential Diagnostic Tool and Molecular Pathways. Vet. Sci. 2025, 12, 1029. [Google Scholar] [CrossRef]
| Swedish Breeding Program | Danish Breeding Program | |
|---|---|---|
| Method of screening | Annual cardiac auscultation only | Auscultation + echocardiography |
| Minimal age for breeding | Dogs ≥ 4 years may be bred if free of murmur within the last 8 months; dogs ≥ 2 years allowed if both parents were murmur-free at ≥4 years | Dogs must be free of cardiac disease at each required examination; no breeding permitted before completing scheduled checks |
| Additional parental restrictions | Dogs whose parents developed a murmur before 4 years were excluded from breeding | Results of all screened dogs were publicly available, enabling selection against affected family lines |
| Follow-up examinations | Mandatory within 8 months before mating; males over 7 years of age without murmur may be bred without further evaluation | Required at 18 months, 4 years, and 6 years to maintain breeding eligibility |
| Overall effectiveness | Considered ineffective in reducing MMVD prevalence | Considered effective, demonstrating clear epidemiological improvement |
| Locus/Gene | Location | Proposed Effect/Mechanism | References |
|---|---|---|---|
| ACE | CFA9 | - Lower circulating ACE activity - No effect on ACE inhibition with ACE-I - Aldosterone breakthrough despite ACE-I suggests non-ACE/tissue RAAS leading to ongoing fibroblast activation, ECM remodeling and electrical, and structural remodeling of the valve and myocardium -Variant present in various breeds | [29,31,32,33,34] |
| NEBL1-3 (nebulette) | CFA2 | - Intronic/regulatory variants at NEBL are linked to reduced nebulette isoform expression in papillary muscle - Impaired sarcomere and mechanotransduction and papillary muscle dysfunction - Association with higher LA:Ao ratio and LVIDd supports a modifier effect on severity/earlier onset of MMVD - Variant described in CKCS and Dachshunds; commercial test available for Cavaliers | [39,40] |
| HEPACAM2 | CFA14 | - ROH enrichment at/near HEPACAM2 suggests selection/enriched risk haplotypes - Hypothesized adhesion/mitotic dysregulation in VICs or leaflet cells leading to aberrant tissue integrity and maladaptive remodeling under hemodynamic stress | [48,49] |
| CDK6 | CFA14 | - ROH signal and pathway placement within TGF-β - Dysregulated VIC proliferation/activation - Sustaining the myofibroblastic (aVIC) phenotype and ECM remodeling that thickens/deforms leaflets | [48,49] |
| FAH | CFA3 | - ROH enrichment - Interacts with ADAMTSL4 - Mechanistically, altered tyrosine catabolism could raise oxidative/alkylating stress, disturbing VIC homeostasis and matrix turnover, thereby amplifying leaflet degeneration | [49] |
| COL1A2/COL5A1 (collagen genes) | CFA14/CFA9 | - COL5A1 intronic and nonsense variants reported in CKCS - COL1A2 variant associated with MMVD in Poodles; limited data in CKCS - Collagen dysregulation contributes to ECM architecture changes | [14,51,54] |
| SERT | CFA9 | - Altered 5-HT transport may contribute to susceptibility or earlier onset of MMVD - Maltese dogs show putative risk variants; none replicated in CKCS - Serotonin—TGF-β interaction remains important mechanistically despite lack of breed-specific variants | [55,56,57] |
| miRNA | Non-coding genome | - Dysregulation of miRNAs (e.g., miR-21, miR-29, miR-133, miR-30, let-7 family) promotes TGF-β-driven activation of VICs and ECM remodeling - No pathogenic miRNA-coding mutations identified in CKCS - Likely secondary to TGF-β activation and biomechanical stress | [58,59,60,61,62,63,64,65,66] |
| TGF-β signaling network (pathway) | Multiple loci | - MMVD leaflets show upregulated TGF-β signaling, α-SMA induction in VICs, and MMP/TIMP imbalance, driving ECM disorganization, leaflet thickening, and deformity - Acts as a genetic modifier pathway that may intersect with CDK6 and other candidates - No single causal SNP established | [44,45,47] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lewicki, M.; Górczyńska-Kosiorz, S.B.; Frydrychowski, P.; Sidoruk, Z.; Noszczyk-Nowak, A. Genetic Basis of Myxomatous Mitral Valve Disease in Cavalier King Charles Spaniel Dogs—A Review. Vet. Sci. 2025, 12, 1144. https://doi.org/10.3390/vetsci12121144
Lewicki M, Górczyńska-Kosiorz SB, Frydrychowski P, Sidoruk Z, Noszczyk-Nowak A. Genetic Basis of Myxomatous Mitral Valve Disease in Cavalier King Charles Spaniel Dogs—A Review. Veterinary Sciences. 2025; 12(12):1144. https://doi.org/10.3390/vetsci12121144
Chicago/Turabian StyleLewicki, Maksymilian, Sylwia Barbara Górczyńska-Kosiorz, Piotr Frydrychowski, Zuzanna Sidoruk, and Agnieszka Noszczyk-Nowak. 2025. "Genetic Basis of Myxomatous Mitral Valve Disease in Cavalier King Charles Spaniel Dogs—A Review" Veterinary Sciences 12, no. 12: 1144. https://doi.org/10.3390/vetsci12121144
APA StyleLewicki, M., Górczyńska-Kosiorz, S. B., Frydrychowski, P., Sidoruk, Z., & Noszczyk-Nowak, A. (2025). Genetic Basis of Myxomatous Mitral Valve Disease in Cavalier King Charles Spaniel Dogs—A Review. Veterinary Sciences, 12(12), 1144. https://doi.org/10.3390/vetsci12121144

