Nutraceuticals, Social Interaction, and Psychophysiological Influence on Pet Health and Well-Being: Focus on Dogs and Cats
Abstract
Simple Summary
Abstract
1. Introduction
1.1. Diet and Social Interactions
1.2. Diet and Longevity
1.3. Human–Animal Bonding and Pets’ Well-Being
2. Materials and Methods
3. Results and Discussion
3.1. Omega-3 Fatty Acids
Health Benefits of Omega-3 Fatty Acids and Mechanisms of Action
3.2. Prebiotics and Probiotics
Health Benefits of Pre- and Probiotics and Mechanisms of Action
3.3. Plant Extracts
Health Benefits of Plant Extracts and Mechanisms of Action
3.4. Dietary Supplements
3.4.1. Health Benefits of Vitamins and Mechanisms of Action
3.4.2. Health Benefits of Minerals and Mechanisms of Action
3.4.3. Health Benefits of Glutathione and Mechanisms of Action
3.4.4. Health Benefits of Glucosamine and Chondroitin Sulphate and Mechanisms of Action
3.5. GBA and Gut Health Modulation by Nutraceuticals
3.6. Behavioral Disturbances and Cognitive Impairment Management by Nutraceuticals
3.7. Joint Health Management by Nutraceuticals
3.8. Skin and Coat Management by Nutraceuticals
3.9. Immune Modulation by Nutraceuticals
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
CR | caloric restriction |
PUFAs | Polyunsaturated fatty acids |
SC | short-chain |
ALA | alpha-linolenic acid |
LC | long-chain |
EPA | Eicosapentaenoic acid |
DHA | docosahexaenoic acid |
NSAID | non-steroidal anti-inflammatory drug |
AA | arachidonic acid |
GFR | glomerular filtration rate |
FOS | fructooligosaccharides |
GOS | galactooligosaccharides |
XOS | Xylooligosaccharides |
SCFA | short-chain fatty acids |
GLP-1 | glucagon-like peptide-1 |
CKD | chronic kidney disease |
BUN | blood urea nitrogen |
GBA | gut–brain axis |
NO | nitric oxide |
IL | interleukin |
COX | cyclooxygenase |
TNF | tumor necrosis factor |
SOD | superoxide dismutase |
MBD | mineral and bone disease |
GSH | reduced Glutathione |
ROS | reactive oxygen species |
GSSG | oxidized Glutathione |
OS | oxidative stress |
ALT | alanine transaminase |
AST | alanine aminotransferase |
ALP | alkaline phosphatase |
GGT | gamma-glutamyl transferase |
BIL | bilirubin |
OA | osteoarthritis |
DA | dopamine |
5-HT | serotonin |
GABA | gamma-aminobutyric acid |
ENS | enteric nervous system |
CNS | central nervous system |
ASD | autism spectrum disorders |
PD | Parkinson’s disease |
AD | Alzheimer’s disease |
BCFA | branched-chain fatty acids |
TLR | toll-like receptor |
IBD | inflammatory bowel disease |
FMT | fecal microbiota transplantation |
CBD | Canine Behavioral Checklist |
C-BARQ | Canine Behavioral Assessment & Research Questionnaires |
GHB | 4-hydroxybutyric acid |
BDNF | brain-derived neurotrophic factor |
CDS | cognitive dysfunction syndrome |
MMP | metalloproteinase |
TMAO | trimethylamine-N-oxide |
KO | Krill oil |
NFHD | nonflea hypersensitivity dermatitis |
CAD | canine atopic dermatitis |
CAFR | cutaneous adverse food reaction |
CPP | Chenpi powder |
SIgA | secretory immunoglobulin A |
WBC | white blood cell |
MHC-II | major histocompatibility II complex |
OTC | oxytetracycline |
HCT | hematocrit |
IMHA | immune-mediated anemia |
KCS | keratoconjunctivitis sicca |
SAG | S-acetyl-glutathione |
IgG | Immunoglobulin G |
References
- Calancea, B.-A.; Daina, S.; Macri, A. The science of snacks: A review of dog treats. Front. Anim. Sci. 2024, 5, 1440644. [Google Scholar] [CrossRef]
- Kępińska-Pacelik, J.; Biel, W.; Mizielińska, M.; Iwański, R. Chemical Composition and Palatability of Nutraceutical Dog Snacks. Appl. Sci. 2023, 13, 2806. [Google Scholar] [CrossRef]
- Ho, J.; Hussain, S.; Sparagano, O. Did the COVID-19 Pandemic Spark a Public Interest in Pet Adoption? Front. Vet. Sci. 2021, 8, 647308. [Google Scholar] [CrossRef]
- Barroso, C.; Fonseca, A.J.M.; Cabrita, A.R.J. Vitamins, Minerals and Phytonutrients as Modulators of Canine Immune Function: A Literature Review. Vet. Sci. 2024, 11, 655. [Google Scholar] [CrossRef]
- Overgaauw, P.A.M.; Vinke, C.M.; Hagen, M.; Lipman, L.J.A. A One Health Perspective on the Human-Companion Animal Relationship with Emphasis on Zoonotic Aspects. Int. J. Environ. Res. Public Health 2020, 17, 3789. [Google Scholar] [CrossRef] [PubMed]
- Mosteller, J. Animal-companion extremes and underlying consumer themes. J. Bus. Res. 2008, 61, 512–521. [Google Scholar] [CrossRef]
- Brittany, L.W. Insights-Driven Development of Humanized Foods for Pets. Meat Muscle Biol. 2022, 6, 1–12. [Google Scholar] [CrossRef]
- Schleicher, M.; Cash, S.B.; Freeman, L.M. Determinants of pet food purchasing decisions. Can. Vet. J. 2019, 60, 644–650. [Google Scholar]
- Boya, U.O.; Dotson, M.J.; Hyatt, E.M. A comparison of dog food choice criteria across dog owner segments: An exploratory study. Int. J. Consum. Stud. 2015, 39, 74–82. [Google Scholar] [CrossRef]
- Buchanan, R.L.; Baker, R.C.; Charlton, A.J.; Riviere, J.E.; Standaert, R. Pet food safety: A shared concern. Br. J. Nutr. 2011, 106 (Suppl. S1), S78–S84. [Google Scholar] [CrossRef]
- Bouma, E.M.C.; Dijkstra, A.; Arnt Rosa, S. Owner’s Anthropomorphic Perceptions of Cats’ and Dogs’ Abilities Are Related to the Social Role of Pets, Owners’ Relationship Behaviors, and Social Support. Animals 2023, 13, 3644. [Google Scholar] [CrossRef]
- Prata, J.C. Survey of Pet Owner Attitudes on Diet Choices and Feeding Practices for Their Pets in Portugal. Animals 2022, 12, 2775. [Google Scholar] [CrossRef]
- Michel, K.E.; Willoughby, K.N.; Abood, S.K.; Fascetti, A.J.; Fleeman, L.M.; Freeman, L.M.; Laflamme, D.P.; Bauer, C.; Kemp, B.L.E.; Doren, J.R.V. Attitudes of pet owners toward pet foods and feeding management of cats and dogs. J. Am. Vet. Med. Assoc. 2008, 233, 1699–1703. [Google Scholar] [CrossRef]
- Vinassa, M.; Vergnano, D.; Valle, E.; Giribaldi, M.; Nery, J.; Prola, L.; Bergero, D.; Schiavone, A. Profiling Italian cat and dog owners’ perceptions of pet food quality traits. BMC Vet. Res. 2020, 16, 131. [Google Scholar] [CrossRef] [PubMed]
- Nasri, H.; Baradaran, A.; Shirzad, H.; Rafieian-Kopaei, M. New concepts in nutraceuticals as alternative for pharmaceuticals. Int. J. Prev. Med. 2014, 5, 1487–1499. [Google Scholar] [PubMed]
- Ruiz-Cano, D.; Arnao, M.B. Beneficial Effects of Nutraceuticals, Especially Polyphenols on Canine Health. Pets 2024, 1, 228–254. [Google Scholar] [CrossRef]
- Ahmed, L.; Zagidullin, N. Editorial: Nutraceuticals in cardiovascular diseases and their associated risk conditions. Front. Cardiovasc. Med. 2024, 11, 1468355. [Google Scholar] [CrossRef]
- Makkar, R.; Behl, T.; Bungau, S.; Zengin, G.; Mehta, V.; Kumar, A.; Uddin, M.S.; Ashraf, G.M.; Abdel-Daim, M.M.; Arora, S.; et al. Nutraceuticals in Neurological Disorders. Int. J. Mol. Sci. 2020, 21, 4424. [Google Scholar] [CrossRef]
- Gonzalez-Sarrias, A.; Larrosa, M.; Garcia-Conesa, M.T.; Tomas-Barberan, F.A.; Espin, J.C. Nutraceuticals for older people: Facts, fictions and gaps in knowledge. Maturitas 2013, 75, 313–334. [Google Scholar] [CrossRef]
- Rai, R.H.; Goyal, R.K.; Singh, R.B.; Handjiev, S.; Singh, J.; Darlenska, T.H.; Smail, M.M.A. Chapter 43—Vitamins and minerals as nutraceuticals in cardiovascular diseases and other chronic diseases. In Functional Foods and Nutraceuticals in Metabolic and Non-Communicable Diseases; Singh, R.B., Watanabe, S., Isaza, A.A., Eds.; Academic Press: Cambridge, MA, USA, 2022; pp. 651–670. [Google Scholar] [CrossRef]
- Ahmad, M.F.; Ahmad, F.A.; Ashraf, S.A.; Alsayegh, A.A.; Tabassum, F.; Bantun, F.; Elbandy, M.; Shama, E.; Uddin, S.; Khanam, A. Chapter ten—Microbial vitamins as nutraceuticals and their role as health-promoting agents. In Microbial Vitamins and Carotenoids in Food Biotechnology; Ashraf, S.A., Kuddus, M., Eds.; Academic Press: Cambridge, MA, USA, 2024; pp. 261–298. [Google Scholar] [CrossRef]
- Surana, K.R.; Ahire, E.D.; Patil, S.J.; Mahajan, S.K.; Patil, D.M.; Sonawane, D.D. Introduction to Nutraceutical Vitamins. In Vitamins as Nutraceuticals: Recent Advances and Applications; Ahire, E.D., Keservani, R.K., Surana, K.R., Singh, S., Kesharwani, R.K., Eds.; Scrivener Publishing LLC: Beverly, MA, USA, 2023; pp. 1–34. [Google Scholar] [CrossRef]
- Mišurcová, L.; Machů, L.; Orsavová, J. Chapter 29—Seaweed Minerals as Nutraceuticals. In Advances in Food and Nutrition Research; Kim, S.-K., Ed.; Academic Press: Cambridge, MA, USA, 2011; Volume 64, pp. 371–390. [Google Scholar]
- Desai, S.S.; Mane, V.K. Health Perspective of Nutraceutical Fatty Acids; (Omega-3 and Omega-6 Fatty Acids). In Nutraceutical Fatty Acids from Oleaginous Microalgae; Patel, A.K., Matsakas, L., Eds.; Scrivener Publishing LLC: Beverly, MA, USA, 2020; pp. 227–248. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, X.; Sang, S.; McClements, D.J.; Chen, L.; Long, J.; Jiao, A.; Jin, Z.; Qiu, C. Polyphenols as Plant-Based Nutraceuticals: Health Effects, Encapsulation, Nano-Delivery, and Application. Foods 2022, 11, 2189. [Google Scholar] [CrossRef]
- Sahiner, M.; Yilmaz, A.S.; Gungor, B.; Ayoubi, Y.; Sahiner, N. Therapeutic and Nutraceutical Effects of Polyphenolics from Natural Sources. Molecules 2022, 27, 6225. [Google Scholar] [CrossRef]
- Vamanu, E. Polyphenolic Nutraceuticals to Combat Oxidative Stress Through Microbiota Modulation. Front. Pharmacol. 2019, 10, 492. [Google Scholar] [CrossRef] [PubMed]
- Prakash, D.; Gupta, C. Glucosinolates: The Phytochemicals of Nutraceutical Importance. J. Complement. Integr. Med. 2012, 9, 13. [Google Scholar] [CrossRef] [PubMed]
- Jahangeer, M.; Fatima, R.; Ashiq, M.; Basharat, A.; Qamar, S.A.; Bilal, M.; Iqbal, H. Therapeutic and Biomedical Potentialities of Terpenoids—A Review. J. Pure Appl. Microbiol. 2021, 15, 471–483. [Google Scholar] [CrossRef]
- Archana, O.; Nagadesi, P.K. Mushroom alkaloids as nutraceuticals, bioactive and medicinal properties: A preliminary review. Plant Sci. Today 2024, 11, 651–661. [Google Scholar] [CrossRef]
- Naveen, J.; Baskaran, V. Antidiabetic plant-derived nutraceuticals: A critical review. Eur. J. Nutr. 2018, 57, 1275–1299. [Google Scholar] [CrossRef]
- Calvani, M.; Pasha, A.; Favre, C. Nutraceutical Boom in Cancer: Inside the Labyrinth of Reactive Oxygen Species. Int. J. Mol. Sci. 2020, 21, 1936. [Google Scholar] [CrossRef]
- Maiuolo, J.; Gliozzi, M.; Carresi, C.; Musolino, V.; Oppedisano, F.; Scarano, F.; Nucera, S.; Scicchitano, M.; Bosco, F.; Macri, R.; et al. Nutraceuticals and Cancer: Potential for Natural Polyphenols. Nutrients 2021, 13, 3834. [Google Scholar] [CrossRef]
- Canello, S.; Guidetti, G.; Di Cerbo, A.; Cocco, R. A case of canine dermal melanoma: A nutraceutical approach. Int. J. Appl. Res. Vet. Med. 2018, 16, 117–121. [Google Scholar]
- Moss, J.W.; Ramji, D.P. Nutraceutical therapies for atherosclerosis. Nat. Rev. Cardiol. 2016, 13, 513–532. [Google Scholar] [CrossRef]
- Moss, J.W.E.; Williams, J.O.; Ramji, D.P. Nutraceuticals as therapeutic agents for atherosclerosis. Biochim. Biophys. Acta (BBA) Mol. Basis Dis. 2018, 1864, 1562–1572. [Google Scholar] [CrossRef]
- Sosnowska, B.; Penson, P.; Banach, M. The role of nutraceuticals in the prevention of cardiovascular disease. Cardiovasc. Diagn. Ther. 2017, 7, S21–S31. [Google Scholar] [CrossRef] [PubMed]
- Garg, A.; Garg, S.; Singh, V.; Rai, G.; Prakash, P.; Mishra, N. Chapter 18—Role of nutraceuticals in neurological disease. In Microbiota-Gut-Brain Axis and CNS Disorders; Mishra, N., Kumar, A., Eds.; Academic Press: Cambridge, MA, USA, 2025; pp. 409–439. [Google Scholar] [CrossRef]
- DuBourdieu, D. Veterinary Nutraceuticals Stability Testing. In Nutraceuticals in Veterinary Medicine; Gupta, R.C., Srivastava, A., Lall, R., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 765–774. [Google Scholar] [CrossRef]
- Finno, C.J. Veterinary Pet Supplements and Nutraceuticals. Nutr. Today 2020, 55, 97–101. [Google Scholar] [CrossRef] [PubMed]
- Sankaranarayanan, A. Nutraceuticals in Equine Medicine. In Nutraceuticals in Veterinary Medicine; Springer: Berlin/Heidelberg, Germany, 2019; pp. 649–655. [Google Scholar] [CrossRef]
- Mazzeranghi, F.; Zanotti, C.; Di Cerbo, A.; Verstegen, J.P.; Cocco, R.; Guidetti, G.; Canello, S. Clinical efficacy of nutraceutical diet for cats with clinical signs of cutaneus adverse food reaction (CAFR). Pol. J. Vet. Sci. 2017, 20, 269–276. [Google Scholar] [CrossRef] [PubMed]
- Canello, S.; Guidetti, G.; Di Cerbo, A.; Cocco, R. A Successful Nutraceutical Approach to Manage an Elderly Dog Presenting a Focal Granulomatous Dermatitis with a Concomitant Chronic Otitis. Int. J. Appl. Res. Vet. Med. 2019, 17, 53–56. [Google Scholar]
- Destefanis, S.; Giretto, D.; Muscolo, M.C.; Di Cerbo, A.; Guidetti, G.; Canello, S.; Giovazzino, A.; Centenaro, S.; Terrazzano, G. Clinical evaluation of a nutraceutical diet as an adjuvant to pharmacological treatment in dogs affected by Keratoconjunctivitis sicca. BMC Vet. Res. 2016, 12, 214. [Google Scholar] [CrossRef]
- Destefanis, S.; Giretto, D.; Muscolo, M.C.; Centenaro, S.; Guidetti, G.; Canello, S. Clinical Evaluation of a Nutraceutical Diet as an Adjuvant to Pharmacological Treatment in Dogs Affected by Epiphora. Int. J. Appl. Res. Vet. Med. 2017, 15, 61–66. [Google Scholar]
- Di Cerbo, A.; Centenaro, S.; Beribe, F.; Laus, F.; Cerquetella, M.; Spaterna, A.; Guidetti, G.; Canello, S.; Terrazzano, G. Clinical evaluation of an antiinflammatory and antioxidant diet effect in 30 dogs affected by chronic otitis externa: Preliminary results. Vet. Res. Commun. 2016, 40, 29–38. [Google Scholar] [CrossRef]
- Di Cerbo, A.; Sechi, S.; Canello, S.; Guidetti, G.; Fiore, F.; Cocco, R. Behavioral Disturbances: An Innovative Approach to Monitor the Modulatory Effects of a Nutraceutical Diet. J. Vis. Exp. 2017, 119, e54878. [Google Scholar] [CrossRef]
- Sechi, S.; Di Cerbo, A.; Canello, S.; Guidetti, G.; Chiavolelli, F.; Fiore, F.; Cocco, R. Effects in dogs with behavioural disorders of a commercial nutraceutical diet on stress and neuroendocrine parameters. Vet. Rec. 2017, 180, 18. [Google Scholar] [CrossRef]
- Ciribe, F.; Panzarella, R.; Pisu, M.C.; Di Cerbo, A.; Guidetti, G.; Canello, S. Hypospermia Improvement in Dogs Fed on a Nutraceutical Diet. Sci. World J. 2018, 2018, 9520204. [Google Scholar] [CrossRef]
- Di Cerbo, A.; Guidetti, G.; Canello, S.; Cocco, R. A possible correlation between diet, serum oxytetracycline concentration, and onset of reproductive disturbances in bitches: Clinical observations and preliminary results. Turk. J. Vet. Anim. Sci. 2019, 43, 523–531. [Google Scholar] [CrossRef]
- Di Cerbo, A.; Iannitti, T.; Guidetti, G.; Centenaro, S.; Canello, S.; Cocco, R. A nutraceutical diet based on Lespedeza spp., Vaccinium macrocarpon and Taraxacum officinale improves spontaneous feline chronic kidney disease. Physiol. Rep. 2018, 6, e13737. [Google Scholar] [CrossRef] [PubMed]
- Cortese, L.; Annunziatella, M.; Palatucci, A.T.; Lanzilli, S.; Rubino, V.; Di Cerbo, A.; Centenaro, S.; Guidetti, G.; Canello, S.; Terrazzano, G. An immune-modulating diet increases the regulatory T cells and reduces T helper 1 inflammatory response in Leishmaniosis affected dogs treated with standard therapy. BMC Vet. Res. 2015, 11, 295. [Google Scholar] [CrossRef] [PubMed]
- Di Cerbo, A.; Pezzuto, F.; Canello, S.; Guidetti, G.; Palmieri, B. Therapeutic Effectiveness of a Dietary Supplement for Management of Halitosis in Dogs. J. Vis. Exp. 2015, 101, e52717. [Google Scholar] [CrossRef] [PubMed]
- Canello, S.; Guidetti, G.; Di Cerbo, A.; Scarano, A.; Cocco, R. Unraveling a commercial formula to relieve halitosis in dogs. Int. J. Appl. Res. Vet. Med. 2019, 17, 22–26. [Google Scholar]
- Canello, S.; Centenaro, S.; Guidetti, G. Nutraceutical approach for struvite uroliths management in cats. Int. J. Appl. Res. Vet. Med. 2017, 15, 19–25. [Google Scholar]
- Bauer, J.E. Evaluation of nutraceuticals, dietary supplements, and functional food ingredients for companion animals. J. Am. Vet. Med. Assoc. 2001, 218, 1755–1760. [Google Scholar] [CrossRef]
- Future, M.R. Pet Food Nutraceutical Market to Reach 10.5 USD Billion by 2035 with 4.88% CAGR by Increasing Awareness of Pet Health. 2025. Available online: https://www.einpresswire.com/article/808518673/pet-food-nutraceutical-market-to-reach-10-5-usd-billion-by-2035-with-4-88-cagr-by-increasing-awareness-of-pet-health#:~:text=Pet%20Food%20Nutraceutical%20Market%20was,period%20from%202025%20to%202035 (accessed on 28 May 2025).
- Elrod, S.M.; Hofmeister, E.H. Veterinarians’ attitudes towards use of nutraceuticals. Can. J. Vet. Res. 2019, 83, 291–297. [Google Scholar]
- McNicholas, J.; Gilbey, A.; Rennie, A.; Ahmedzai, S.; Dono, J.A.; Ormerod, E. Pet ownership and human health: A brief review of evidence and issues. BMJ 2005, 331, 1252–1254. [Google Scholar] [CrossRef]
- Monks, S.; Clark, A. The role of pets in the lives of people with dementia: A scoping review. Aging Ment. Health 2024, 28, 1419–1426. [Google Scholar] [CrossRef]
- Health, N.i. Health Benefits of Human-Animal Interactions. 2018. Available online: https://newsinhealth.nih.gov/2018/02/power-pets (accessed on 6 June 2025).
- Hodgson, K.; Darling, M. Zooeyia: An essential component of “One Health”. Can. Vet. J. 2011, 52, 189–191. [Google Scholar]
- Wensley, S.P. Animal welfare and the human-animal bond: Considerations for veterinary faculty, students, and practitioners. J. Vet. Med. Educ. 2008, 35, 532–539. [Google Scholar] [CrossRef] [PubMed]
- Kienzle, E.; Bergler, R.; Mandernach, A. A comparison of the feeding behavior and the human-animal relationship in owners of normal and obese dogs. J. Nutr. 1998, 128, 2779S–2782S. [Google Scholar] [CrossRef] [PubMed]
- Downes, M.J.; Devitt, C.; Downes, M.T.; More, S.J. Understanding the context for pet cat and dog feeding and exercising behaviour among pet owners in Ireland: A qualitative study. Ir. Vet. J. 2017, 70, 29. [Google Scholar] [CrossRef] [PubMed]
- Hennessy, M.B.; Voith, V.L.; Young, T.L.; Hawke, J.L.; Centrone, J.; McDowell, A.L.; Linden, F.; Davenport, G.M. Exploring Human Interaction and Diet Effects on the Behavior of Dogs in a Public Animal Shelter. J. Appl. Anim. Welf. Sci. 2002, 5, 253–273. [Google Scholar] [CrossRef]
- Nielson, S.A.; Khosa, D.K.; Verbrugghe, A.; Clow, K.M. Talking treats: A qualitative study to understand the importance of treats in the pet-caregiver relationship. Prev. Vet. Med. 2024, 226, 106163. [Google Scholar] [CrossRef]
- Delgado, M.; Dantas, L.M.S. Feeding Cats for Optimal Mental and Behavioral Well-Being. Vet. Clin. N. Am. Small Anim. Pract. 2020, 50, 939–953. [Google Scholar] [CrossRef]
- Rawlings, J.M.; Culham, N. Halitosis in dogs and the effect of periodontal therapy. J. Nutr. 1998, 128, 2715S–2716S. [Google Scholar] [CrossRef]
- Eaton, R.; Emmas, S.-A.; Whelan, F.; Groom, A. A randomised, double-blind, placebo-controlled trial, assessing the effect of a nutraceutical tablet in the management of stress in pet dogs. Appl. Anim. Behav. Sci. 2021, 242, 105416. [Google Scholar] [CrossRef]
- Stott, G.H. What is Animal Stress and How is it Measured? J. Anim. Sci. 1981, 52, 150–153. [Google Scholar] [CrossRef]
- Fan, Z.; Bian, Z.; Huang, H.; Liu, T.; Ren, R.; Chen, X.; Zhang, X.; Wang, Y.; Deng, B.; Zhang, L. Dietary Strategies for Relieving Stress in Pet Dogs and Cats. Antioxidants 2023, 12, 545. [Google Scholar] [CrossRef]
- Beerda, B.; Schilder, M.B.H.; van Hooff, J.A.R.A.M.; de Vries, H.W.; Mol, J.A. Behavioural, saliva cortisol and heart rate responses to different types of stimuli in dogs. Appl. Anim. Behav. Sci. 1998, 58, 365–381. [Google Scholar] [CrossRef]
- Buller, K.; Ballantyne, K.C. Living with and loving a pet with behavioral problems: Pet owners’ experiences. J. Vet. Behav. 2020, 37, 41–47. [Google Scholar] [CrossRef]
- Adams, V.J.; Watson, P.; Carmichael, S.; Gerry, S.; Penell, J.; Morgan, D.M. Exceptional longevity and potential determinants of successful ageing in a cohort of 39 Labrador retrievers: Results of a prospective longitudinal study. Acta Vet. Scand. 2016, 58, 29. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Wang, Y.; Zhu, Z.; Li, L. The Role of Plant Extracts in Enhancing Nutrition and Health for Dogs and Cats: Safety, Benefits, and Applications. Vet. Sci. 2024, 11, 426. [Google Scholar] [CrossRef]
- Butterwick, R.F. Impact of nutrition on ageing the process. Bridging the gap: The animal perspective. Br. J. Nutr. 2015, 113, S23–S25. [Google Scholar] [CrossRef]
- Fadnes, L.T.; Celis-Morales, C.; Økland, J.-M.; Parra-Soto, S.; Livingstone, K.M.; Ho, F.K.; Pell, J.P.; Balakrishna, R.; Javadi Arjmand, E.; Johansson, K.A.; et al. Life expectancy can increase by up to 10 years following sustained shifts towards healthier diets in the United Kingdom. Nat. Food 2023, 4, 961–965. [Google Scholar] [CrossRef]
- Hu, F.B. Diet strategies for promoting healthy aging and longevity: An epidemiological perspective. J. Int. Med. 2024, 295, 508–531. [Google Scholar] [CrossRef]
- Lo, W.C.; Hu, T.H.; Shih, C.Y.; Lin, H.H.; Hwang, J.S. Impact of Healthy Lifestyle Factors on Life Expectancy and Lifetime Health Care Expenditure: Nationwide Cohort Study. JMIR Public Health Surveill. 2024, 10, e57045. [Google Scholar] [CrossRef]
- Taylor, E.J.; Adams, C.; Neville, R. Some nutritional aspects of ageing in dogs and cats. Proc. Nutr. Soc. 1995, 54, 645–656. [Google Scholar] [CrossRef] [PubMed]
- Blanchard, T.; Mugnier, A.; Boulet, F.; Meynadier, A.; Priymenko, N. Epidemiological and clinical profiles of young and senior dogs fed a standard diet. Prev. Vet. Med. 2025, 240, 106537. [Google Scholar] [CrossRef]
- Kraft, W. Geriatrics in canine and feline internal medicine. Eur. J. Med. Res. 1998, 3, 31–41. [Google Scholar] [PubMed]
- Bontempo, V. Nutrition and Health of Dogs and Cats: Evolution of Petfood. Vet. Res. Commun. 2005, 29, 45–50. [Google Scholar] [CrossRef] [PubMed]
- Sparkes, A.H. Feeding old cats--an update on new nutritional therapies. Top. Companion. Anim. Med. 2011, 26, 37–42. [Google Scholar] [CrossRef]
- Hall, J.A.; Yerramilli, M.; Obare, E.; Yerramilli, M.; Panickar, K.S.; Bobe, G.; Jewell, D.E. Nutritional interventions that slow the age-associated decline in renal function in a canine geriatric model for elderly humans. J. Nutr. Health Aging 2016, 20, 1010–1023. [Google Scholar] [CrossRef]
- Haake, J.; Meyerhoff, N.; Meller, S.; Twele, F.; Charalambous, M.; Wilke, V.; Volk, H. Investigating Owner Use of Dietary Supplements in Dogs with Canine Cognitive Dysfunction. Animals 2023, 13, 3056. [Google Scholar] [CrossRef]
- Kealy, R.D.; Lawler, D.F.; Ballam, J.M.; Mantz, S.L.; Biery, D.N.; Greeley, E.H.; Lust, G.; Segre, M.; Smith, G.K.; Stowe, H.D. Effects of diet restriction on life span and age-related changes in dogs. J. Am. Vet. Med. Assoc. 2002, 220, 1315–1320. [Google Scholar] [CrossRef]
- Trepanowski, J.F.; Canale, R.E.; Marshall, K.E.; Kabir, M.M.; Bloomer, R.J. Impact of caloric and dietary restriction regimens on markers of health and longevity in humans and animals: A summary of available findings. Nutr. J. 2011, 10, 107. [Google Scholar] [CrossRef]
- Lawler, D.F.; Larson, B.T.; Ballam, J.M.; Smith, G.K.; Biery, D.N.; Evans, R.H.; Greeley, E.H.; Segre, M.; Stowe, H.D.; Kealy, R.D. Diet restriction and ageing in the dog: Major observations over two decades. Br. J. Nutr. 2008, 99, 793–805. [Google Scholar] [CrossRef]
- Vendelbo, M.H.; Nair, K.S. Mitochondrial longevity pathways. Biochim. Biophys. Acta (BBA) Mol. Cell Res. 2011, 1813, 634–644. [Google Scholar] [CrossRef] [PubMed]
- Carrillo, A.E.; Flouris, A.D. Caloric restriction and longevity: Effects of reduced body temperature. Ageing Res. Rev. 2011, 10, 153–162. [Google Scholar] [CrossRef] [PubMed]
- Watroba, M.; Szukiewicz, D. Sirtuins at the Service of Healthy Longevity. Front. Physiol. 2021, 12, 724506. [Google Scholar] [CrossRef] [PubMed]
- Pavlović, I.; Khatib, S.; Milisav, I.; Mahajna, J. Nutraceuticals for Promoting Longevity. Curr. Nutraceuticals 2020, 1, 18–32. [Google Scholar] [CrossRef]
- Rees, C.A.; Bauer, J.E.; Burkholder, W.J.; Kennis, R.A.; Dunbar, B.L.; Bigley, C.E. Effects of dietary flax seed and sunflower seed supplementation on normal canine serum polyunsaturated fatty acids and skin and hair coat condition scores. Vet. Dermatol. 2001, 12, 111–117. [Google Scholar] [CrossRef]
- Yoon, D.; Kim, Y.J.; Lee, W.K.; Choi, B.R.; Oh, S.M.; Lee, Y.S.; Kim, J.K.; Lee, D.Y. Metabolic Changes in Serum Metabolome of Beagle Dogs Fed Black Ginseng. Metabolites 2020, 10, 517. [Google Scholar] [CrossRef]
- Kim, Y.J.; Lee, D.Y.; Park, H.-E.; Yoon, D.; Lee, B.; Kim, J.G.; Im, K.-H.; Lee, Y.-S.; Lee, W.-K.; Kim, J.K. Serum Metabolic Profiling Reveals Potential Anti-Inflammatory Effects of the Intake of Black Ginseng Extracts in Beagle Dogs. Molecules 2020, 25, 3759. [Google Scholar] [CrossRef]
- Pinna, C.; Giuditta, V.C.; Vladimiro, C.; Teresa, R.-E.M.; Claudio, S.; Monica, G.; Paolo, G.P.; Biagi, G. An in vitro evaluation of the effects of a Yucca schidigera extract and chestnut tannins on composition and metabolic profiles of canine and feline faecal microbiota. Arch. Anim. Nutr. 2017, 71, 395–412. [Google Scholar] [CrossRef]
- Barry, K.A.; Hernot, D.C.; Middelbos, I.S.; Francis, C.; Dunsford, B.; Swanson, K.S.; Fahey, G.C., Jr. Low-level fructan supplementation of dogs enhances nutrient digestion and modifies stool metabolite concentrations, but does not alter fecal microbiota populations. J. Anim. Sci. 2009, 87, 3244–3252. [Google Scholar] [CrossRef]
- Soares, N.M.M.; Bastos, T.S.; Kaelle, G.C.B.; de Souza, R.B.M.d.S.; de Oliveira, S.G.; Félix, A.P. Digestibility and Palatability of the Diet and Intestinal Functionality of Dogs Fed a Blend of Yeast Cell Wall and Oregano Essential Oil. Animals 2023, 13, 2527. [Google Scholar] [CrossRef]
- Campigotto, G.; Alba, D.F.; Sulzbach, M.M.; Dos Santos, D.S.; Souza, C.F.; Baldissera, M.D.; Gundel, S.; Ourique, A.F.; Zimmer, F.; Petrolli, T.G.; et al. Dog food production using curcumin as antioxidant: Effects of intake on animal growth, health and feed conservation. Arch. Anim. Nutr. 2020, 74, 397–413. [Google Scholar] [CrossRef]
- Sgorlon, S.; Stefanon, B.; Sandri, M.; Colitti, M. Nutrigenomic activity of plant derived compounds in health and disease: Results of a dietary intervention study in dog. Res. Vet. Sci. 2016, 109, 142–148. [Google Scholar] [CrossRef]
- Baumgartner-Parzer, S.M.; Waldenberger, F.R.; Freudenthaler, A.; Ginouvès-Guerdoux, A.; McGahie, D.; Gatto, H. The Natural Antioxidants, Pomegranate Extract and Soy Isoflavones, Favourably Modulate Canine Endothelial Cell Function. Int. Sch. Res. Not. 2012, 2012, 590328. [Google Scholar] [CrossRef] [PubMed]
- Yu, M.; Xue, J.; Li, Y.; Zhang, W.; Ma, D.; Liu, L.; Zhang, Z. Resveratrol protects against arsenic trioxide-induced nephrotoxicity by facilitating arsenic metabolism and decreasing oxidative stress. Arch. Toxicol. 2013, 87, 1025–1035. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, M.; Okada, Y.; Ueno, H.; Mizorogi, T.; Ohara, K.; Kawasumi, K.; Suruga, K.; Kadokura, K.; Ohnishi, Y.; Arai, T. Effects of Supplementation with Anti-Inflammatory Compound Extracted from Herbs in Healthy and Obese Cats. Vet. Med. 2020, 11, 39–44. [Google Scholar] [CrossRef]
- Rahman, S.U.; Huang, Y.; Zhu, L.; Chu, X.; Junejo, S.A.; Zhang, Y.; Khan, I.M.; Li, Y.; Feng, S.; Wu, J.; et al. Tea polyphenols attenuate liver inflammation by modulating obesity-related genes and down-regulating COX-2 and iNOS expression in high fat-fed dogs. BMC Vet. Res. 2020, 16, 234. [Google Scholar] [CrossRef] [PubMed]
- Fu, J.-h.; Zheng, Y.-q.; Li, P.; Li, X.-z.; Shang, X.-h.; Liu, J.-x. Hawthorn leaves flavonoids decreases inflammation related to acute myocardial ischemia/reperfusion in anesthetized dogs. Chin. J. Integr. Med. 2013, 19, 582–588. [Google Scholar] [CrossRef]
- Zhang, M.; Mo, R.; Wang, H.; Liu, T.; Zhang, G.; Wu, Y. Grape seed proanthocyanidin improves intestinal inflammation in canine through regulating gut microbiota and bile acid compositions. FASEB J. 2023, 37, e23285. [Google Scholar] [CrossRef]
- Gantt, W.H.; Newton, J.E.; Royer, F.L.; Stephens, J.H. Effect of person. 1966. Integr. Physiol. Behav. Sci. 1991, 26, 145–160. [Google Scholar] [CrossRef]
- Lynch, J.J.; McCarthy, J.F. Social responding in dogs: Heart rate changes to a person. Psychophysiology 1969, 5, 389–393. [Google Scholar] [CrossRef]
- Mârza, S.M.; Munteanu, C.; Papuc, I.; Radu, L.; Diana, P.; Purdoiu, R.C. Behavioral, Physiological, and Pathological Approaches of Cortisol in Dogs. Animals 2024, 14, 3536. [Google Scholar] [CrossRef] [PubMed]
- Csoltova, E.; Martineau, M.; Boissy, A.; Gilbert, C. Behavioral and physiological reactions in dogs to a veterinary examination: Owner-dog interactions improve canine well-being. Physiol. Behav. 2017, 177, 270–281. [Google Scholar] [CrossRef] [PubMed]
- Bergamasco, L.; Osella, M.C.; Savarino, P.; Larosa, G.; Ozella, L.; Manassero, M.; Badino, P.; Odore, R.; Barbero, R.; Re, G. Heart rate variability and saliva cortisol assessment in shelter dog: Human–animal interaction effects. Appl. Anim. Behav. Sci. 2010, 125, 56–68. [Google Scholar] [CrossRef]
- Shiverdecker, M.D.; Schiml, P.A.; Hennessy, M.B. Human interaction moderates plasma cortisol and behavioral responses of dogs to shelter housing. Physiol. Behav. 2013, 109, 75–79. [Google Scholar] [CrossRef]
- Thielke, L.E.; Udell, M.A. The role of oxytocin in relationships between dogs and humans and potential applications for the treatment of separation anxiety in dogs. Biol. Rev. Camb. Philos. Soc. 2017, 92, 378–388. [Google Scholar] [CrossRef]
- Odendaal, J.S.; Meintjes, R.A. Neurophysiological correlates of affiliative behaviour between humans and dogs. Vet. J. 2003, 165, 296–301. [Google Scholar] [CrossRef]
- Handlin, L.; Hydbring-Sandberg, E.; Nilsson, A.; Ejdebäck, M.; Jansson, A.; Uvnäs-Moberg, K. Short-Term Interaction between Dogs and Their Owners: Effects on Oxytocin, Cortisol, Insulin and Heart Rate—An Exploratory Study. Anthrozoös 2011, 24, 301–315. [Google Scholar] [CrossRef]
- Handlin, L.; Nilsson, A.; Ejdebäck, M.; Hydbring-Sandberg, E.; Uvnas-Moberg, K. Associations between the psychological characteristics of the human-dog relationship and oxytocin and cortisol levels. Anthrozoös 2012, 25, 215–228. [Google Scholar] [CrossRef]
- Rehnberg, L.K.; Robert, K.A.; Watson, S.J.; Peters, R.A. The effects of social interaction and environmental enrichment on the space use, behaviour and stress of owned housecats facing a novel environment. Appl. Anim. Behav. Sci. 2015, 169, 51–61. [Google Scholar] [CrossRef]
- Vitale, K.R.; Frank, D.H.; Conroy, J.; Udell, M.A.R. Cat Foster Program Outcomes: Behavior, Stress, and Cat–Human Interaction. Animals 2022, 12, 2166. [Google Scholar] [CrossRef]
- Gourkow, N.; Hamon, S.C.; Phillips, C.J.C. Effect of gentle stroking and vocalization on behaviour, mucosal immunity and upper respiratory disease in anxious shelter cats. Prev. Vet. Med. 2014, 117, 266–275. [Google Scholar] [CrossRef] [PubMed]
- National Institute of Health. Omega-3 Fatty Acids. 2024. Available online: https://ods.od.nih.gov/factsheets/Omega3FattyAcids-HealthProfessional/ (accessed on 15 June 2025).
- Abhari, K.; Mousavi Khaneghah, A. Alternative extraction techniques to obtain, isolate and purify proteins and bioactive from aquaculture and by-products. Adv. Food Nutr. Res. 2020, 92, 35–52. [Google Scholar] [CrossRef] [PubMed]
- Takic, M.; Pokimica, B.; Petrovic-Oggiano, G.; Popovic, T. Effects of Dietary α-Linolenic Acid Treatment and the Efficiency of Its Conversion to Eicosapentaenoic and Docosahexaenoic Acids in Obesity and Related Diseases. Molecules 2022, 27, 4471. [Google Scholar] [CrossRef] [PubMed]
- Rajaram, S. Health benefits of plant-derived α-linolenic acid123. Am. J. Clin. Nutr. 2014, 100, 443S–448S. [Google Scholar] [CrossRef]
- Kranz, S.; Huss, L.; Dobbs-Oates, J. Food Sources of EPA and DHA in the Diets of American Children, NHANES 2003–2010. BAOJ Nutr. 2015, 1, 5. [Google Scholar] [CrossRef]
- Brenna, J.T.; Salem, N., Jr.; Sinclair, A.J.; Cunnane, S.C. α-Linolenic acid supplementation and conversion to n-3 long-chain polyunsaturated fatty acids in humans. Prostaglandins Leukot. Essent. Fat. Acids 2009, 80, 85–91. [Google Scholar] [CrossRef]
- Stoeckel, K.; Nielsen, L.H.; Fuhrmann, H.; Bachmann, L. Fatty acid patterns of dog erythrocyte membranes after feeding of a fish-oil based DHA-rich supplement with a base diet low in n-3 fatty acids versus a diet containing added n-3 fatty acids. Acta Vet. Scand. 2011, 53, 57. [Google Scholar] [CrossRef]
- Lenox, C.E.; Bauer, J.E. Potential Adverse Effects of Omega-3 Fatty Acids in Dogs and Cats. J. Vet. Int. Med. 2013, 27, 217–226. [Google Scholar] [CrossRef]
- Bauer, J.E. Responses of dogs to dietary omega-3 fatty acids. J. Am. Vet. Med. Assoc. 2007, 231, 1657–1661. [Google Scholar] [CrossRef]
- Bauer, J.E. Metabolic basis for the essential nature of fatty acids and the unique dietary fatty acid requirements of cats. J. Am. Vet. Med. Assoc. 2006, 229, 1729–1732. [Google Scholar] [CrossRef]
- Masmeijer, C.; van Leenen, K.; De Cremer, L.; Deprez, P.; Cox, E.; Devriendt, B.; Pardon, B. Effects of omega-3 fatty acids on immune, health and growth variables in veal calves. Prev. Vet. Med. 2020, 179, 104979. [Google Scholar] [CrossRef] [PubMed]
- Yaqoob, P.; Calder, P. Effects of dietary lipid manipulation upon inflammatory mediator production by murine macrophages. Cell Immunol. 1995, 163, 120–128. [Google Scholar] [CrossRef] [PubMed]
- Baker, E.J.; Yusof, M.H.; Yaqoob, P.; Miles, E.A.; Calder, P.C. Omega-3 fatty acids and leukocyte-endothelium adhesion: Novel anti-atherosclerotic actions. Mol. Asp. Med. 2018, 64, 169–181. [Google Scholar] [CrossRef] [PubMed]
- De Caterina, R.; Cybulsky, M.A.; Clinton, S.K.; Gimbrone, M.A., Jr.; Libby, P. Omega-3 fatty acids and endothelial leukocyte adhesion molecules. Prostaglandins Leukot. Essent. Fat. Acids 1995, 52, 191–195. [Google Scholar] [CrossRef]
- Hughes, D.A.; Southon, S.; Pinder, A.C. (n-3) Polyunsaturated Fatty Acids Modulate the Expression of Functionally Associated Molecules on Human Monocytes in Vitro1. J. Nutr. 1996, 126, 603–610. [Google Scholar] [CrossRef]
- Miles, E.A.; Wallace, F.A.; Calder, P.C. Dietary fish oil reduces intercellular adhesion molecule 1 and scavenger receptor expression on murine macrophages. Atherosclerosis 2000, 152, 43–50. [Google Scholar] [CrossRef]
- Sanderson, P.; Calder, P.C. Dietary fish oil diminishes lymphocyte adhesion to macrophage and endothelial cell monolayers. Immunology 1998, 94, 79–87. [Google Scholar] [CrossRef]
- Giacobbe, J.; Benoiton, B.; Zunszain, P.; Pariante, C.M.; Borsini, A. The Anti-Inflammatory Role of Omega-3 Polyunsaturated Fatty Acids Metabolites in Pre-Clinical Models of Psychiatric, Neurodegenerative, and Neurological Disorders. Front. Psychiatry 2020, 11, 122. [Google Scholar] [CrossRef]
- Fritsch, D.A.; Allen, T.A.; Dodd, C.E.; Jewell, D.E.; Sixby, K.A.; Leventhal, P.S.; Brejda, J.; Hahn, K.A. A multicenter study of the effect of dietary supplementation with fish oil omega-3 fatty acids on carprofen dosage in dogs with osteoarthritis. J. Am. Vet. Med. Assoc. 2010, 236, 535–539. [Google Scholar] [CrossRef]
- Roush, J.K.; Dodd, C.E.; Fritsch, D.A.; Allen, T.A.; Jewell, D.E.; Schoenherr, W.D.; Richardson, D.C.; Leventhal, P.S.; Hahn, K.A. Multicenter veterinary practice assessment of the effects of omega-3 fatty acids on osteoarthritis in dogs. J. Am. Vet. Med. Assoc. 2010, 236, 59–66. [Google Scholar] [CrossRef]
- Richards, T.L.; Burron, S.; Ma, D.W.L.; Pearson, W.; Trevizan, L.; Minikhiem, D.; Grant, C.; Patterson, K.; Shoveller, A.K. Effects of dietary camelina, flaxseed, and canola oil supplementation on inflammatory and oxidative markers, transepidermal water loss, and coat quality in healthy adult dogs. Front. Vet. Sci. 2023, 10, 1085890. [Google Scholar] [CrossRef]
- Logas, D.; Kunkle, G.A. Double-blinded Crossover Study with Marine Oil Supplementation Containing High-dose icosapentaenoic Acid for the Treatment of Canine Pruritic Skin Disease. Vet. Dermatol. 1994, 5, 99–104. [Google Scholar] [CrossRef]
- Mueller, R.S.; Fieseler, K.V.; Fettman, M.J.; Zabel, S.; Rosychuk, R.A.W.; Ogilvie, G.K.; Greenwalt, T.L. Effect of omega-3 fatty acids on canine atopic dermatitis. J. Small Anim. Pract. 2004, 45, 293–297. [Google Scholar] [CrossRef]
- Zhang, Z.-X.; Lin, Y.-C.; Lian, M.; Li, Y.-F.; Chen, J.-F.; Ma, X.-L.; Guo, D.-S.; Yang, G.; Sun, X.-M. Evaluation of the efficacy and safety of omega-3 fatty acid nutritional supplements from Schizochytrium sp. in dog food. Algal. Res. 2025, 89, 104072. [Google Scholar] [CrossRef]
- Billman, G.E.; Kang, J.X.; Leaf, A. Prevention of ischemia-induced cardiac Sudden death by n−3 polyunsaturated fatty acids in dogs. Lipids 1997, 32, 1161–1168. [Google Scholar] [CrossRef] [PubMed]
- Leaf, A. The electrophysiologic basis for the antiarrhythmic and anticonvulsant effects of n−3 polyunsaturated fatty acids: Heart and brain. Lipids 2001, 36, S107–S110. [Google Scholar] [CrossRef] [PubMed]
- Hock, C.E.; Beck, L.D.; Bodine, R.C.; Reibel, D.K. Influence of dietary n-3 fatty acids on myocardial ischemia and reperfusion. Am. J. Physiol. Heart Circ. Physiol. 1990, 259, H1518–H1526. [Google Scholar] [CrossRef]
- Quattrone, A.; Belabbas, R.; Fehri, N.E.; Agradi, S.; Mazzola, S.M.; Barbato, O.; Dal Bosco, A.; Mattioli, S.; Failla, S.; Abdel-Kafy, E.-S.M.; et al. The Effect of Dietary Plant-Derived Omega 3 Fatty Acids on the Reproductive Performance and Gastrointestinal Health of Female Rabbits. Vet. Sci. 2024, 11, 457. [Google Scholar] [CrossRef]
- Wathes, D.C.; Abayasekara, D.R.; Aitken, R.J. Polyunsaturated fatty acids in male and female reproduction. Biol. Reprod. 2007, 77, 190–201. [Google Scholar] [CrossRef]
- Falsig, A.-M.L.; Gleerup, C.S.; Knudsen, U.B. The influence of omega-3 fatty acids on semen quality markers: A systematic PRISMA review. Andrology 2019, 7, 794–803. [Google Scholar] [CrossRef]
- Brown, S.A.; Brown, C.A.; Crowell, W.A.; Barsanti, J.A.; Kang, C.-W.; Allen, T.; Cowell, C.; Finco, D.R. Effects of dietary polyunsaturated fatty acid supplementation in early renal insufficiency in dogs. J. Lab. Clin. Med. 2000, 135, 275–286. [Google Scholar] [CrossRef]
- Brown, S.A.; Brown, C.A.; Crowell, W.A.; Barsanti, J.A.; Allen, T.; Cowell, C.; Finco, D.R. Beneficial effects of chronic administration of dietary ω-3 polyunsaturated fatty acids in dogs with renal insufficiency. J. Lab. Clin. Med. 1998, 131, 447–455. [Google Scholar] [CrossRef]
- Salem, N., Jr.; Litman, B.; Kim, H.-Y.; Gawrisch, K. Mechanisms of action of docosahexaenoic acid in the nervous system. Lipids 2001, 36, 945–959. [Google Scholar] [CrossRef]
- McNamara, R.K.; Carlson, S.E. Role of omega-3 fatty acids in brain development and function: Potential implications for the pathogenesis and prevention of psychopathology. Prostaglandins Leukot Essent Fat. Acids 2006, 75, 329–349. [Google Scholar] [CrossRef] [PubMed]
- Blanchard, T.; Eppe, J.; Mugnier, A.; Delfour, F.; Meynadier, A. Enhancing cognitive functions in aged dogs and cats: A systematic review of enriched diets and nutraceuticals. GeroScience 2025, 47, 2925–2947. [Google Scholar] [CrossRef] [PubMed]
- Hill, C.; Guarner, F.; Reid, G.; Gibson, G.R.; Merenstein, D.J.; Pot, B.; Morelli, L.; Canani, R.B.; Flint, H.J.; Salminen, S.; et al. The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat. Rev. Gastroenterol. Hepatol. 2014, 11, 506–514. [Google Scholar] [CrossRef] [PubMed]
- Fuller, R. Probiotics in man and animals. J. Appl. Bacteriol. 1989, 66, 365–378. [Google Scholar] [CrossRef]
- Kayser, E.; He, F.; Nixon, S.; Howard-Varona, A.; Lamelas, A.; Martinez-Blanch, J.; Chenoll, E.; Davenport, G.M.; de Godoy, M.R.C. Effects of supplementation of live and heat-treated Bifidobacterium animalis subspecies lactis CECT 8145 on glycemic and insulinemic response, fecal microbiota, systemic biomarkers of inflammation, and white blood cell gene expression of adult dogs. J. Anim. Sci. 2024, 102, skae291. [Google Scholar] [CrossRef]
- Bampidis, V.; Azimonti, G.; de Lourdes Bastos, M.; Christensen, H.; Dusemund, B.; Fa smon Durjava, M.; Kouba, M.; López-Alonso, M.; López Puente, S.; Marcon, F.; et al. Safety and efficacy of a feed additive consisting of Bacillus velezensis DSM 15544 (Calsporin ®) for piglets (suckling and weaned), pigs for fattening, sows in order to have benefit in piglets, ornamental fish, dogs and all avian species (Asahi Biocycle Co.). EFSA J. 2021, 19, 6903. [Google Scholar] [CrossRef]
- Yang, Q.; Wu, Z. Gut Probiotics and Health of Dogs and Cats: Benefits, Applications, and Underlying Mechanisms. Microorganisms 2023, 11, 2452. [Google Scholar] [CrossRef]
- Jugan, M.C.; Rudinsky, A.J.; Gordon, A.; Kramer, D.L.; Daniels, J.B.; Paliy, O.; Boyaka, P.; Gilor, C. Effects of oral Akkermansia muciniphila supplementation in healthy dogs following antimicrobial administration. Am. J. Vet. Res. 2018, 79, 884–892. [Google Scholar] [CrossRef]
- Xu, J.; Wen, C.; Song, G.; Lesaux, A.A.; Zhang, H.; Luo, Y. Effect of yeast probiotic Saccharomyces cerevisiae on the gut health of dogs undergoing rapid dietary transition. Front. Microbiol. 2025, 16, 1561660. [Google Scholar] [CrossRef] [PubMed]
- Marshall-Jones, Z.V.; Baillon, M.-L.A.; Croft, J.M.; Butterwick, R.F. Effects of Lactobacillus acidophilus DSM13241 as a probiotic in healthy adult cats. Am. J. Vet. Res. 2006, 67, 1005–1012. [Google Scholar] [CrossRef] [PubMed]
- De Filippis, F.; Esposito, A.; Ercolini, D. Outlook on next-generation probiotics from the human gut. Cell. Mol. Life Sci. 2022, 79, 76. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.-J.; Lin, T.-L.; Tsai, Y.-L.; Wu, T.-R.; Lai, W.-F.; Lu, C.-C.; Lai, H.-C. Next generation probiotics in disease amelioration. J. Food Drug Anal. 2019, 27, 615–622. [Google Scholar] [CrossRef]
- Grześkowiak, Ł.; Endo, A.; Beasley, S.; Salminen, S. Microbiota and probiotics in canine and feline welfare. Anaerobe 2015, 34, 14–23. [Google Scholar] [CrossRef]
- Gorzelanna, Z.; Mamrot, A.; Będkowska, D.; Bubak, J.; Miszczak, M. Exploring the Potential of Novel Animal-Origin Probiotics as Key Players in One Health: Opportunities and Challenges. Int. J. Mol. Sci. 2025, 26, 5143. [Google Scholar] [CrossRef]
- Davani-Davari, D.; Negahdaripour, M.; Karimzadeh, I.; Seifan, M.; Mohkam, M.; Masoumi, S.J.; Berenjian, A.; Ghasemi, Y. Prebiotics: Definition, Types, Sources, Mechanisms, and Clinical Applications. Foods 2019, 8, 92. [Google Scholar] [CrossRef]
- Gibson, G.R.; Hutkins, R.; Sanders, M.E.; Prescott, S.L.; Reimer, R.A.; Salminen, S.J.; Scott, K.; Stanton, C.; Swanson, K.S.; Cani, P.D.; et al. Expert consensus document: The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nat. Rev. Gastroenterol. Hepatol. 2017, 14, 491–502. [Google Scholar] [CrossRef]
- Ravanal, M.C.; Contador, C.A.; Wong, W.-T.; Zhang, Q.; Roman-Benn, A.; Ah-Hen, K.S.; Ulloa, P.E.; Lam, H.-M. Prebiotics in animal nutrition: Harnessing agro-industrial waste for improved gut health and performance. Anim. Nutr. 2025, 21, 179–192. [Google Scholar] [CrossRef]
- Rose, L.; Rose, J.; Gosling, S.; Holmes, M. Efficacy of a Probiotic-Prebiotic Supplement on Incidence of Diarrhea in a Dog Shelter: A Randomized, Double-Blind, Placebo-Controlled Trial. J. Vet. Int. Med. 2017, 31, 377–382. [Google Scholar] [CrossRef] [PubMed]
- Armian, A.M.; Pourjafar, H.; Gharamaleki, M.N. Study of the Effect of Synbiotic Diet on Haematological and Oxidative Indexes Changes in Male Dogs. Vet. Med. Sci. 2025, 11, e70290. [Google Scholar] [CrossRef] [PubMed]
- Fernandez-Pinteno, A.; Pilla, R.; Manteca, X.; Suchodolski, J.; Torre, C.; Salas-Mani, A. Age-associated changes in intestinal health biomarkers in dogs. Front. Vet. Sci. 2023, 10, 1213287. [Google Scholar] [CrossRef] [PubMed]
- Shah, H.; Trivedi, M.; Gurjar, T.; Sahoo, D.K.; Jergens, A.E.; Yadav, V.K.; Patel, A.; Pandya, P. Decoding the Gut Microbiome in Companion Animals: Impacts and Innovations. Microorganisms 2024, 12, 1831. [Google Scholar] [CrossRef]
- Beloshapka, A.N.; Wolff, A.K.; Swanson, K.S. Effects of feeding polydextrose on faecal characteristics, microbiota and fermentative end products in healthy adult dogs. Br. J. Nutr. 2012, 108, 638–644. [Google Scholar] [CrossRef]
- Perini, M.P.; Pedrinelli, V.; Marchi, P.H.; Henríquez, L.B.F.; Zafalon, R.V.A.; Vendramini, T.H.A.; Balieiro, J.C.d.C.; Brunetto, M.A. Potential Effects of Prebiotics on Gastrointestinal and Immunological Modulation in the Feeding of Healthy Dogs: A Review. Fermentation 2023, 9, 693. [Google Scholar] [CrossRef]
- Bosch, G.; Verbrugghe, A.; Hesta, M.; Holst, J.J.; van der Poel, A.F.; Janssens, G.P.; Hendriks, W.H. The effects of dietary fibre type on satiety-related hormones and voluntary food intake in dogs. Br. J. Nutr. 2009, 102, 318–325. [Google Scholar] [CrossRef]
- Alexander, C.; Cross, T.L.; Devendran, S.; Neumer, F.; Theis, S.; Ridlon, J.M.; Suchodolski, J.S.; de Godoy, M.R.C.; Swanson, K.S. Effects of prebiotic inulin-type fructans on blood metabolite and hormone concentrations and faecal microbiota and metabolites in overweight dogs. Br. J. Nutr. 2018, 120, 711–720. [Google Scholar] [CrossRef]
- Respondek, F.; Swanson, K.S.; Belsito, K.R.; Vester, B.M.; Wagner, A.; Istasse, L.; Diez, M. Short-Chain Fructooligosaccharides Influence Insulin Sensitivity and Gene Expression of Fat Tissue in Obese Dogs12. J. Nutr. 2008, 138, 1712–1718. [Google Scholar] [CrossRef]
- Pilla, R.; Suchodolski, J.S. The Gut Microbiome of Dogs and Cats, and the Influence of Diet. Vet. Clin. N. Am. Small Anim. Pract. 2021, 51, 605–621. [Google Scholar] [CrossRef]
- Sanders, M.E.; Merenstein, D.J.; Reid, G.; Gibson, G.R.; Rastall, R.A. Probiotics and prebiotics in intestinal health and disease: From biology to the clinic. Nat. Rev. Gastroenterol. Hepatol. 2019, 16, 605–616. [Google Scholar] [CrossRef] [PubMed]
- Li, H.Y.; Zhou, D.D.; Gan, R.Y.; Huang, S.Y.; Zhao, C.N.; Shang, A.; Xu, X.Y.; Li, H.B. Effects and Mechanisms of Probiotics, Prebiotics, Synbiotics, and Postbiotics on Metabolic Diseases Targeting Gut Microbiota: A Narrative Review. Nutrients 2021, 13, 3211. [Google Scholar] [CrossRef] [PubMed]
- Yan, F.; Polk, D.B. Probiotics and Probiotic-Derived Functional Factors—Mechanistic Insights Into Applications for Intestinal Homeostasis. Front. Immunol. 2020, 11, 1428. [Google Scholar] [CrossRef] [PubMed]
- Bastos, T.S.; Souza, C.M.M.; Legendre, H.; Richard, N.; Pilla, R.; Suchodolski, J.S.; de Oliveira, S.G.; Lesaux, A.A.; Félix, A.P. Effect of Yeast Saccharomyces cerevisiae as a Probiotic on Diet Digestibility, Fermentative Metabolites, and Composition and Functional Potential of the Fecal Microbiota of Dogs Submitted to an Abrupt Dietary Change. Microorganisms 2023, 11, 506. [Google Scholar] [CrossRef]
- Bastos, T.S.; de Lima, D.C.; Souza, C.M.M.; Maiorka, A.; de Oliveira, S.G.; Bittencourt, L.C.; Félix, A.P. Bacillus subtilis and Bacillus licheniformis reduce faecal protein catabolites concentration and odour in dogs. BMC Vet. Res. 2020, 16, 116. [Google Scholar] [CrossRef]
- Sun, H.Y.; Kim, K.P.; Bae, C.H.; Choi, A.J.; Paik, H.D.; Kim, I.H. Evaluation of Weissella Cibaria JW15 Probiotic Derived from Fermented Korean Vegetable Product Supplementation in Diet on Performance Characteristics in Adult Beagle Dog. Animals 2019, 9, 581. [Google Scholar] [CrossRef]
- Fusi, E.; Rizzi, R.; Polli, M.; Cannas, S.; Giardini, A.; Bruni, N.; Marelli, S.P. Effects of Lactobacillus acidophilus D2/CSL (CECT 4529) supplementation on healthy cat performance. Vet. Rec. Open 2019, 6, e000368. [Google Scholar] [CrossRef]
- Li, Y.; Ali, I.; Lei, Z.; Li, Y.; Yang, M.; Yang, C.; Li, L. Effect of a Multistrain Probiotic on Feline Gut Health through the Fecal Microbiota and Its Metabolite SCFAs. Metabolites 2023, 13, 228. [Google Scholar] [CrossRef]
- Rossi, G.; Gioacchini, G.; Pengo, G.; Suchodolski, J.S.; Jergens, A.E.; Allenspach, K.; Gavazza, A.; Scarpona, S.; Berardi, S.; Galosi, L.; et al. Enterocolic increase of cannabinoid receptor type 1 and type 2 and clinical improvement after probiotic administration in dogs with chronic signs of colonic dysmotility without mucosal inflammatory changes. Neurogastroenterol. Motil. 2020, 32, e13717. [Google Scholar] [CrossRef]
- Xu, H.; Zhao, F.; Hou, Q.; Huang, W.; Liu, Y.; Zhang, H.; Sun, Z. Metagenomic analysis revealed beneficial effects of probiotics in improving the composition and function of the gut microbiota in dogs with diarrhoea. Food Funct. 2019, 10, 2618–2629. [Google Scholar] [CrossRef]
- Ziese, A.-L.; Suchodolski, J.S.; Hartmann, K.; Busch, K.; Anderson, A.; Sarwar, F.; Sindern, N.; Unterer, S. Effect of probiotic treatment on the clinical course, intestinal microbiome, and toxigenic Clostridium perfringens in dogs with acute hemorrhagic diarrhea. PLoS ONE 2018, 13, e0204691. [Google Scholar] [CrossRef]
- Zha, M.; Zhu, S.; Chen, Y. Probiotics and Cat Health: A Review of Progress and Prospects. Microorganisms 2024, 12, 1080. [Google Scholar] [CrossRef] [PubMed]
- Tsai, C.-W.; Huang, H.-W.; Lee, Y.-J.; Chen, M.-J. Investigating the Efficacy of Kidney-Protective Lactobacillus Mixture-Containing Pet Treats in Feline Chronic Kidney Disease and Its Possible Mechanism. Animals 2024, 14, 630. [Google Scholar] [CrossRef] [PubMed]
- Ansari, F.; Neshat, M.; Pourjafar, H.; Jafari, S.M.; Samakkhah, S.A.; Mirzakhani, E. The role of probiotics and prebiotics in modulating of the gut-brain axis. Front. Nutr. 2023, 10, 1173660. [Google Scholar] [CrossRef] [PubMed]
- Mondo, E.; Barone, M.; Soverini, M.; D’Amico, F.; Cocchi, M.; Petrulli, C.; Mattioli, M.; Marliani, G.; Candela, M.; Accorsi, P.A. Gut microbiome structure and adrenocortical activity in dogs with aggressive and phobic behavioral disorders. Heliyon 2020, 6, e03311. [Google Scholar] [CrossRef]
- Kirchoff, N.S.; Udell, M.A.R.; Sharpton, T.J. The gut microbiome correlates with conspecific aggression in a small population of rescued dogs (Canis familiaris). PeerJ 2019, 7, e6103. [Google Scholar] [CrossRef]
- Pellowe, S.D.; Zhang, A.; Bignell, D.R.D.; Pena-Castillo, L.; Walsh, C.J. Gut microbiota composition is related to anxiety and aggression scores in companion dogs. Sci. Rep. 2025, 15, 24336. [Google Scholar] [CrossRef]
- Yeh, Y.-M.; Lye, X.-Y.; Lin, H.-Y.; Wong, J.-Y.; Wu, C.-C.; Huang, C.-L.; Tsai, Y.-C.; Wang, L.-C. Effects of Lactiplantibacillus plantarum PS128 on alleviating canine aggression and separation anxiety. Appl. Anim. Behav. Sci. 2022, 247, 105569. [Google Scholar] [CrossRef]
- Bijaoui, E.M.M.; Zimmerman, N.P. Efficacy of a Novel Lactiplantibacillus plantarum Strain (LP815TM) in Reducing Canine Aggression and Anxiety: A Randomized Placebo-Controlled Trial with Qualitative and Quantitative Assessment. Animals 2025, 15, 2280. [Google Scholar] [CrossRef]
- Markowiak, P.; Śliżewska, K. The role of probiotics, prebiotics and synbiotics in animal nutrition. Gut Pathog. 2018, 10, 21. [Google Scholar] [CrossRef]
- Liu, X.; Zhao, H.; Wong, A. Accounting for the health risk of probiotics. Heliyon 2024, 10, e27908. [Google Scholar] [CrossRef]
- Kerek, A.; Szabó, E.; Szabó, Á.; Papp, M.; Bányai, K.; Kardos, G.; Kaszab, E.; Bali, K.; Jerzsele, Á. Investigating antimicrobial resistance genes in probiotic products for companion animals. Front. Vet. Sci. 2024, 11, 1464351. [Google Scholar] [CrossRef]
- Lee, D.; Goh, T.W.; Kang, M.G.; Choi, H.J.; Yeo, S.Y.; Yang, J.; Huh, C.S.; Kim, Y.Y.; Kim, Y. Perspectives and advances in probiotics and the gut microbiome in companion animals. J. Anim. Sci. Technol. 2022, 64, 197–217. [Google Scholar] [CrossRef]
- Romero, B.; Susperregui, J.; Sahagún, A.M.; Diez, M.J.; Fernández, N.; García, J.J.; López, C.; Sierra, M.; Díez, R. Use of medicinal plants by veterinary practitioners in Spain: A cross-sectional survey. Front. Vet. Sci. 2022, 9, 1060738. [Google Scholar] [CrossRef]
- Kumar, A.; P, N.; Kumar, M.; Jose, A.; Tomer, V.; Oz, E.; Proestos, C.; Zeng, M.; Elobeid, T.; K, S.; et al. Major Phytochemicals: Recent Advances in Health Benefits and Extraction Method. Molecules 2023, 28, 887. [Google Scholar] [CrossRef] [PubMed]
- Ivanova, S.; Sukhikh, S.; Popov, A.; Shishko, O.; Nikonov, I.; Kapitonova, E.; Krol, O.; Larina, V.; Noskova, S.; Babich, O. Medicinal plants: A source of phytobiotics for the feed additives. J. Agric. Food Res. 2024, 16, 101172. [Google Scholar] [CrossRef]
- Manach, C.; Scalbert, A.; Morand, C.; Rémésy, C.; Jiménez, L. Polyphenols: Food sources and bioavailability. Am. J. Clin. Nutr. 2004, 79, 727–747. [Google Scholar] [CrossRef] [PubMed]
- Waheed Janabi, A.H.; Kamboh, A.A.; Saeed, M.; Xiaoyu, L.; BiBi, J.; Majeed, F.; Naveed, M.; Mughal, M.J.; Korejo, N.A.; Kamboh, R.; et al. Flavonoid-rich foods (FRF): A promising nutraceutical approach against lifespan-shortening diseases. Iran. J. Basic Med. Sci. 2020, 23, 140–153. [Google Scholar] [CrossRef]
- Li, A.-N.; Li, S.; Zhang, Y.-J.; Xu, X.-R.; Chen, Y.-M.; Li, H.-B. Resources and Biological Activities of Natural Polyphenols. Nutrients 2014, 6, 6020–6047. [Google Scholar] [CrossRef]
- Green, A.S.; Fascetti, A.J. Meeting the Vitamin A Requirement: The Efficacy and Importance of beta-Carotene in Animal Species. Sci. World J. 2016, 2016, 7393620. [Google Scholar] [CrossRef]
- Salehi, B.; Quispe, C.; Sharifi-Rad, J.; Cruz-Martins, N.; Nigam, M.; Mishra, A.P.; Konovalov, D.A.; Orobinskaya, V.; Abu-Reidah, I.M.; Zam, W.; et al. Phytosterols: From Preclinical Evidence to Potential Clinical Applications. Front. Pharmacol. 2020, 11, 599959. [Google Scholar] [CrossRef]
- Borin-Crivellenti, S.; Crivellenti, L.Z.; de Oliveira, F.R.; Costa, P.B.; Alvarenga, A.W.O.; Rezende, L.R.; Gouvêa, F.N.; Assef, N.D.; Branco, L.d.O. Effect of phytosterols on reducing low-density lipoprotein cholesterol in dogs. Domest. Anim. Endocrinol. 2021, 76, 106610. [Google Scholar] [CrossRef] [PubMed]
- Reichling, J.; Schmokel, H.; Fitzi, J.; Bucher, S.; Saller, R. Dietary support with Boswellia resin in canine inflammatory joint and spinal disease. Schweiz. Arch. Tierheilkd. 2004, 146, 71–79. [Google Scholar] [CrossRef] [PubMed]
- Metwaly, A.M.; Lianlian, Z.; Luqi, H.; Deqiang, D. Black Ginseng and Its Saponins: Preparation, Phytochemistry and Pharmacological Effects. Molecules 2019, 24, 1856. [Google Scholar] [CrossRef] [PubMed]
- Qu, Q.; Zhang, W.; Xuan, Z.; Chen, R.; Ma, Y.; Huang, Y.; Hu, Y.; Lin, Y.; Liu, M.; Lv, W.; et al. Evaluation of Anti-Inflammatory Effects of Six Ginsenosides and Rg1 Regulation of Macrophage Polarization and Metabolites to Alleviate Colitis. Antioxidants 2025, 14, 283. [Google Scholar] [CrossRef]
- Siddiqui, M.Z. Boswellia serrata, a potential antiinflammatory agent: An overview. Indian J. Pharm. Sci. 2011, 73, 255–261. [Google Scholar]
- Umar, S.; Umar, K.; Sarwar, A.H.M.G.; Khan, A.; Ahmad, N.; Ahmad, S.; Katiyar, C.K.; Husain, S.A.; Khan, H.A. Boswellia serrata extract attenuates inflammatory mediators and oxidative stress in collagen induced arthritis. Phytomedicine 2014, 21, 847–856. [Google Scholar] [CrossRef]
- Lee, K.W.; Yamato, O.; Tajima, M.; Kuraoka, M.; Omae, S.; Maede, Y. Hematologic changes associated with the appearance of eccentrocytes after intragastric administration of garlic extract to dogs. Am. J. Vet. Res. 2000, 61, 1446–1450. [Google Scholar] [CrossRef]
- Quintavalla, F. Phytotherapeutic Approaches in Canine Pediatrics. Vet. Sci. 2024, 11, 133. [Google Scholar] [CrossRef]
- Burns, K. Assessing pet supplements American Veterinary Medical Association. 2017. Available online: https://www.avma.org/javma-news/2017-01-15/assessing-pet-supplements#:~:text=The%20supplements%20that%20hold%20promise,been%20shown%20to%20be%20questionable (accessed on 18 June 2025).
- Youness, R.A.; Dawoud, A.; ElTahtawy, O.; Farag, M.A. Fat-soluble vitamins: Updated review of their role and orchestration in human nutrition throughout life cycle with sex differences. Nutr. Metab. 2022, 19, 60. [Google Scholar] [CrossRef]
- Lykstad, J.; Sharma, S. Biochemistry, Water Soluble Vitamins. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2025. [Google Scholar]
- Shastak, Y.; Pelletier, W. Pet Wellness and Vitamin A: A Narrative Overview. Animals 2024, 14, 1000. [Google Scholar] [CrossRef] [PubMed]
- Kritikos, G.; Parr, J.M.; Verbrugghe, A. The Role of Thiamine and Effects of Deficiency in Dogs and Cats. Vet. Sci. 2017, 4, 59. [Google Scholar] [CrossRef]
- EFSA Panel on Additives and Products or Substances used in Animal Feed (EFSA FEEDAP Panel); Rychen, G.; Aquilina, G.; Azimonti, G.; Bampidis, V.; Bastos, M.d.L.; Bories, G.; Chesson, A.; Cocconcelli, P.S.; Flachowsky, G.; et al. Safety and efficacy of vitamin B2 (riboflavin) produced by Ashbya gossypii DSM 23096 for all animal species based on a dossier submitted by BASF SE. EFSA J. 2018, 16, e05337. [Google Scholar] [CrossRef]
- Chu, V.; Fascetti, A.J.; Larsen, J.A.; Montano, M.; Giulivi, C. Factors influencing vitamin B6 status in domestic cats: Age, disease, and body condition score. Sci. Rep. 2024, 14, 2037. [Google Scholar] [CrossRef]
- Gordon, D.S.; Rudinsky, A.J.; Guillaumin, J.; Parker, V.J.; Creighton, K.J. Vitamin C in Health and Disease: A Companion Animal Focus. Top. Companion Anim. Med. 2020, 39, 100432. [Google Scholar] [CrossRef]
- Clarke, K.E.; Hurst, E.A.; Mellanby, R.J. Vitamin D metabolism and disorders in dogs and cats. J. Small Anim. Pract. 2021, 62, 935–947. [Google Scholar] [CrossRef]
- Mellanby, R.J. Beyond the skeleton: The role of vitamin D in companion animal health. J. Small Anim. Pract. 2016, 57, 175–180. [Google Scholar] [CrossRef]
- Jewell, D.E.; Motsinger, L.A.; Paetau-Robinson, I. Effect of dietary antioxidants on free radical damage in dogs and cats. J. Anim. Sci. 2024, 102, skae153. [Google Scholar] [CrossRef]
- Kohn, B.; Weingart, C.; Giger, U. Haemorrhage in seven cats with suspected anticoagulant rodenticide intoxication. J. Feline Med. Surg. 2003, 5, 295–304. [Google Scholar] [CrossRef]
- Mooney, E.; Agostini, G.; Griebsch, C.; Hickey, M. Intravenous vitamin K1 normalises prothrombin time in 1 hour in dogs with anticoagulant rodenticide toxicosis. Aust. Vet. J. 2020, 98, 225–231. [Google Scholar] [CrossRef]
- Sadler, R.A.; Shoveller, A.K.; Shandilya, U.K.; Charchoglyan, A.; Wagter-Lesperance, L.; Bridle, B.W.; Mallard, B.A.; Karrow, N.A. Beyond the Coagulation Cascade: Vitamin K and Its Multifaceted Impact on Human and Domesticated Animal Health. Curr. Issues Mol. Biol. 2024, 46, 7001–7031. [Google Scholar] [CrossRef]
- Li, P.; Wu, G. Characteristics of Nutrition and Metabolism in Dogs and Cats. Adv. Exp. Med. Biol. 2024, 1446, 55–98. [Google Scholar] [CrossRef]
- Irungbam, K.; Chavhan, S.; Kulkarni, S.; Sonphule, A.; Naik, L.; Hanah, S. Hypervitaminosis or Vitamin Poisoning in Animals. North-East Vet. 2013, 13, 3–6+8. [Google Scholar]
- Crossley, V.J.; Bovens, C.P.; Pineda, C.; Hibbert, A.; Finch, N.C. Vitamin D toxicity of dietary origin in cats fed a natural complementary kitten food. JFMS Open Rep. 2017, 3, 2055116917743613. [Google Scholar] [CrossRef] [PubMed]
- Mellanby, R.J.; Mee, A.P.; Berry, J.L.; Herrtage, M.E. Hypercalcaemia in two dogs caused by excessive dietary supplementation of vitamin D. J. Small Anim. Pract. 2005, 46, 334–338. [Google Scholar] [CrossRef] [PubMed]
- Siddiqui, K.; Bawazeer, N.; Scaria Joy, S. Variation in Macro and Trace Elements in Progression of Type 2 Diabetes. Sci. World J. 2014, 2014, 461591. [Google Scholar] [CrossRef]
- Stepanova, M.V.; Sotnikova, L.F.; Zaitsev, S.Y. Relationships between the Content of Micro- and Macroelements in Animal Samples and Diseases of Different Etiologies. Animals 2023, 13, 852. [Google Scholar] [CrossRef]
- Pajarillo, E.A.B.; Lee, E.; Kang, D.-K. Trace metals and animal health: Interplay of the gut microbiota with iron, manganese, zinc, and copper. Anim. Nutr. 2021, 7, 750–761. [Google Scholar] [CrossRef]
- Razzaque, M.S.; Wimalawansa, S.J. Minerals and Human Health: From Deficiency to Toxicity. Nutrients 2025, 17, 454. [Google Scholar] [CrossRef]
- Mondola, P.; Damiano, S.; Sasso, A.; Santillo, M. The Cu, Zn Superoxide Dismutase: Not Only a Dismutase Enzyme. Front. Physiol. 2016, 7, 594. [Google Scholar] [CrossRef]
- Pereira, A.M.; Maia, M.R.G.; Fonseca, A.J.M.; Cabrita, A.R.J. Zinc in Dog Nutrition, Health and Disease: A Review. Animals 2021, 11, 978. [Google Scholar] [CrossRef]
- Colombini, S. Canine Zinc-Responsive Dermatosis. Vet. Clin. N. Am. Small Anim. Pract. 1999, 29, 1373–1383. [Google Scholar] [CrossRef]
- van den Broek, A.H.M.; Thoday, K.L. Skin disease in dogs associated with zinc deficiency: A report of five cases. J. Small Anim. Pract. 1986, 27, 313–323. [Google Scholar] [CrossRef]
- White, S.D.; Bourdeau, P.; Rosychuk, R.A.W.; Cohen, B.; Bonenberger, T.; Fieseler, K.V.; Ihrke, P.; Chapman, P.L.; Schultheiss, P.; Zur, G.; et al. Zinc-responsive dermatosis in dogs: 41 cases and literature review. Vet. Dermatol. 2001, 12, 101–109. [Google Scholar] [CrossRef] [PubMed]
- Soltanian, A.; Khoshnegah, J.; Heidarpour, M. Comparison of serum trace elements and antioxidant levels in terrier dogs with or without behavior problems. Appl. Anim. Behav. Sci. 2016, 180, 87–92. [Google Scholar] [CrossRef]
- Yu, J.; Jenkins, E.; Podadera, J.M.; Proschogo, N.; Chan, R.; Boland, L. Zinc toxicosis in a cat associated with ingestion of a metal screw nut. J. Feline Med. Surg. Open Rep. 2022, 8, 20551169221136464. [Google Scholar] [CrossRef]
- Vitale, S.; Hague, D.W.; Foss, K.; de Godoy, M.C.; Selmic, L.E. Comparison of Serum Trace Nutrient Concentrations in Epileptics Compared to Healthy Dogs. Front. Vet. Sci. 2019, 6, 467. [Google Scholar] [CrossRef]
- Stockman, J.; Villaverde, C.; Corbee, R.J. Calcium, Phosphorus, and Vitamin D in Dogs and Cats: Beyond the Bones. Vet. Clin. N. Am. Small Anim. Pract. 2021, 51, 623–634. [Google Scholar] [CrossRef]
- Bailey, L.E.; Ong, S.D.; Queen, G.M. Calcium movement during contraction in the cat heart. J. Mol. Cell. Cardiol. 1972, 4, 121–138. [Google Scholar] [CrossRef]
- Laflamme, D.; Backus, R.; Brown, S.; Butterwick, R.; Czarnecki-Maulden, G.; Elliott, J.; Fascetti, A.; Polzin, D. A review of phosphorus homeostasis and the impact of different types and amounts of dietary phosphate on metabolism and renal health in cats. J. Vet. Int. Med. 2020, 34, 2187–2196. [Google Scholar] [CrossRef]
- Anand, A.; Aoyagi, H. Understudied Hyperphosphatemia (Chronic Kidney Disease) Treatment Targets and New Biological Approaches. Medicina 2023, 59, 959. [Google Scholar] [CrossRef]
- Groman, R.P. Acute management of calcium disorders. Top. Companion. Anim. Med. 2012, 27, 167–171. [Google Scholar] [CrossRef]
- Holowaychuk, M.K.; Hansen, B.D.; DeFrancesco, T.C.; Marks, S.L. Ionized Hypocalcemia in Critically Ill Dogs. J. Vet. Int. Med. 2009, 23, 509–513. [Google Scholar] [CrossRef] [PubMed]
- Holowaychuk, M.K. Hypocalcemia of critical illness in dogs and cats. Vet. Clin. N. Am. Small Anim. Pract. 2013, 43, 1299–1317. [Google Scholar] [CrossRef] [PubMed]
- Dobenecker, B.; Kienzle, E.; Siedler, S. The Source Matters–Effects of High Phosphate Intake from Eight Different Sources in Dogs. Animals 2021, 11, 3456. [Google Scholar] [CrossRef] [PubMed]
- Blanca, P.-M.; María Luisa, F.-R.; Guadalupe, M.; Fátima, C.-L. Oxidative Stress in Canine Diseases: A Comprehensive Review. Antioxidants 2024, 13, 1396. [Google Scholar] [CrossRef]
- Gu, X.; Gao, C.-q. New horizons for selenium in animal nutrition and functional foods. Anim. Nutr. 2022, 11, 80–86. [Google Scholar] [CrossRef]
- Zentrichová, V.; Pechová, A.; Kovaříková, S. Selenium and Dogs: A Systematic Review. Animals 2021, 11, 418. [Google Scholar] [CrossRef]
- Liu, Y.; Li, W.; Guo, M.; Li, C.; Qiu, C. Protective Role of Selenium Compounds on the Proliferation, Apoptosis, and Angiogenesis of a Canine Breast Cancer Cell Line. Biol. Trace Elem. Res. 2016, 169, 86–93. [Google Scholar] [CrossRef]
- Fico, M.E.; Poirier, K.A.; Watrach, A.M.; Watrach, M.A.; Milner, J.A. Differential effects of selenium on normal and neoplastic canine mammary cells. Cancer Res. 1986, 46, 3384–3388. [Google Scholar]
- Chiang, E.C.; Bostwick, D.G.; Waters, D.J. Homeostatic housecleaning effect of selenium: Evidence that noncytotoxic oxidant-induced damage sensitizes prostate cancer cells to organic selenium-triggered apoptosis. Biofactors 2013, 39, 575–588. [Google Scholar] [CrossRef]
- Soetan, K.; Olaiya, C.; Oyewole, O. The importance of mineral elements for humans, domestic animals and plants: A review. Afr. J. Food Sci. 2009, 4, 200–222. [Google Scholar]
- Adam, F.; Elliott, J.; Dandrieux, J.; Blackwood, L. Poisoning: Zinc toxicity in two dogs associated with the ingestion of identification tags. Vet. Rec. 2011, 168, 84–85. [Google Scholar] [CrossRef] [PubMed]
- Brutlag, A.G.; Flint, C.T.C.; Puschner, B. Iron Intoxication in a Dog Consequent to the Ingestion of Oxygen Absorber Sachets in Pet Treat Packaging. J. Med. Toxicol. 2012, 8, 76–79. [Google Scholar] [CrossRef] [PubMed]
- Wu, G.; Fang, Y.Z.; Yang, S.; Lupton, J.R.; Turner, N.D. Glutathione metabolism and its implications for health. J. Nutr. 2004, 134, 489–492. [Google Scholar] [CrossRef]
- Pizzorno, J. Glutathione! Integr. Med. 2014, 13, 8–12. [Google Scholar]
- Mari, M.; Morales, A.; Colell, A.; Garcia-Ruiz, C.; Fernandez-Checa, J.C. Mitochondrial glutathione, a key survival antioxidant. Antioxid. Redox. Signal. 2009, 11, 2685–2700. [Google Scholar] [CrossRef]
- Biswas, S.K.; Rahman, I. Environmental toxicity, redox signaling and lung inflammation: The role of glutathione. Mol. Asp. Med. 2009, 30, 60–76. [Google Scholar] [CrossRef]
- Pizzorno, J. Is Mercury Toxicity an Epidemic? (Part II). Integr. Med. 2009, 8, 8–12. [Google Scholar]
- Averill-Bates, D.A. The antioxidant glutathione. Vitam. Horm. 2023, 121, 109–141. [Google Scholar] [CrossRef]
- Fiser, B.; Jojart, B.; Csizmadia, I.G.; Viskolcz, B. Glutathione--hydroxyl radical interaction: A theoretical study on radical recognition process. PLoS ONE 2013, 8, e73652. [Google Scholar] [CrossRef]
- Haddad, J.J.; Harb, H.L. L-gamma-Glutamyl-L-cysteinyl-glycine (glutathione; GSH) and GSH-related enzymes in the regulation of pro- and anti-inflammatory cytokines: A signaling transcriptional scenario for redox(y) immunologic sensor(s)? Mol. Immunol. 2005, 42, 987–1014. [Google Scholar] [CrossRef] [PubMed]
- Michałek, M.; Tabiś, A.; Pasławska, U.; Noszczyk-Nowak, A. Antioxidant defence and oxidative stress markers in cats with asymptomatic and symptomatic hypertrophic cardiomyopathy: A pilot study. BMC Vet. Res. 2020, 16, 26. [Google Scholar] [CrossRef] [PubMed]
- Ruparell, A.; Alexander, J.E.; Eyre, R.; Carvell-Miller, L.; Leung, Y.B.; Evans, S.J.M.; Holcombe, L.J.; Heer, M.; Watson, P. Glycine supplementation can partially restore oxidative stress-associated glutathione deficiency in ageing cats. Br. J. Nutr. 2024, 131, 1947–1961. [Google Scholar] [CrossRef]
- Jewell, D.E.; Toll, P.W.; Wedekind, K.J.; Zicker, S.C. Effect of increasing dietary antioxidants on concentrations of vitamin E and total alkenals in serum of dogs and cats. Vet. Ther. 2000, 1, 264–272. [Google Scholar]
- Viviano, K.R.; Lavergne, S.N.; Goodman, L.; Vanderwielen, B.; Grundahl, L.; Padilla, M.; Trepanier, L.A. Glutathione, cysteine, and ascorbate concentrations in clinically ill dogs and cats. J. Vet. Int. Med. 2009, 23, 250–257. [Google Scholar] [CrossRef]
- Center, S.A.; Warner, K.L.; Erb, H.N. Liver glutathione concentrations in dogs and cats with naturally occurring liver disease. Am. J. Vet. Res. 2002, 63, 1187–1197. [Google Scholar] [CrossRef]
- Burgunder, J.M.; Lauterburg, B.H. Decreased production of glutathione in patients with cirrhosis. Eur. J. Clin. Investig. 1987, 17, 408–414. [Google Scholar] [CrossRef]
- Lu, S.C. Dysregulation of glutathione synthesis in liver disease. Liver Res. 2020, 4, 64–73. [Google Scholar] [CrossRef]
- Weschawalit, S.; Thongthip, S.; Phutrakool, P.; Asawanonda, P. Glutathione and its antiaging and antimelanogenic effects. Clin. Cosmet. Investig. Dermatol. 2017, 10, 147–153. [Google Scholar] [CrossRef]
- Sinha, R.; Sinha, I.; Calcagnotto, A.; Trushin, N.; Haley, J.S.; Schell, T.D.; Richie, J.P., Jr. Oral supplementation with liposomal glutathione elevates body stores of glutathione and markers of immune function. Eur. J. Clin. Nutr. 2018, 72, 105–111. [Google Scholar] [CrossRef]
- Honda, Y.; Kessoku, T.; Sumida, Y.; Kobayashi, T.; Kato, T.; Ogawa, Y.; Tomeno, W.; Imajo, K.; Fujita, K.; Yoneda, M.; et al. Efficacy of glutathione for the treatment of nonalcoholic fatty liver disease: An open-label, single-arm, multicenter, pilot study. BMC Gastroenterol. 2017, 17, 96. [Google Scholar] [CrossRef]
- Vulcano, L.A.; Confalonieri, O.; Franci, R.; Tapia, M.O.; Soraci, A.L. Efficacy of free glutathione and niosomal glutathione in the treatment of acetaminophen-induced hepatotoxicity in cats. Open Vet. J. 2013, 3, 56–63. [Google Scholar] [CrossRef] [PubMed]
- Martello, E.; Perondi, F.; Bisanzio, D.; Lippi, I.; Meineri, G.; Gabriele, V. Antioxidant Effect of a Dietary Supplement Containing Fermentative S-Acetyl-Glutathione and Silybin in Dogs with Liver Disease. Vet. Sci. 2023, 10, 131. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Martín, S.; González-Cantalapiedra, A.; Muñoz, F.; García-González, M.; Permuy, M.; López-Peña, M. Glucosamine and Chondroitin Sulfate: Is There Any Scientific Evidence for Their Effectiveness as Disease-Modifying Drugs in Knee Osteoarthritis Preclinical Studies?—A Systematic Review from 2000 to 2021. Animals 2021, 11, 1608. [Google Scholar] [CrossRef] [PubMed]
- Brito, R.; Costa, D.; Dias, C.; Cruz, P.; Barros, P. Chondroitin Sulfate Supplements for Osteoarthritis: A Critical Review. Cureus 2023, 15, e40192. [Google Scholar] [CrossRef]
- Rajesh, A.; Sajeev, D.; Kumaar, R.N.; Rangasamy, J.; Nair, S.C. Chondroitin sulfate: From bioactive molecule to versatile drug delivery system for advancing regenerative medicine. Int. J. Biol. Macromol. 2025, 311, 143746. [Google Scholar] [CrossRef]
- Kelso, J.M. Potential food allergens in medications. J. Allergy Clin. Immunol. 2014, 133, 1509–1518. [Google Scholar] [CrossRef]
- Henrotin, Y.; Mobasheri, A.; Marty, M. Is there any scientific evidence for the use of glucosamine in the management of human osteoarthritis? Arthritis Res. Ther. 2012, 14, 201. [Google Scholar] [CrossRef]
- Lippiello, L.; Woodward, J.; Karpman, R.; Hammad, T.A. In vivo chondroprotection and metabolic synergy of glucosamine and chondroitin sulfate. Clin. Orthop. Relat. Res. 2000, 381, 229–240. [Google Scholar] [CrossRef]
- Sen, R.; Hurley, J.A. Osteoarthritis. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2025. [Google Scholar]
- Anderson, K.L.; O’Neill, D.G.; Brodbelt, D.C.; Church, D.B.; Meeson, R.L.; Sargan, D.; Summers, J.F.; Zulch, H.; Collins, L.M. Prevalence, duration and risk factors for appendicular osteoarthritis in a UK dog population under primary veterinary care. Sci. Rep. 2018, 8, 5641. [Google Scholar] [CrossRef]
- Slingerland, L.I.; Hazewinkel, H.A.W.; Meij, B.P.; Picavet, P.; Voorhout, G. Cross-sectional study of the prevalence and clinical features of osteoarthritis in 100 cats. Vet. J. 2011, 187, 304–309. [Google Scholar] [CrossRef]
- Rychel, J.K. Diagnosis and treatment of osteoarthritis. Top. Companion. Anim. Med. 2010, 25, 20–25. [Google Scholar] [CrossRef] [PubMed]
- Wood, M.J.; Miller, R.E.; Malfait, A.M. The Genesis of Pain in Osteoarthritis: Inflammation as a Mediator of Osteoarthritis Pain. Clin. Geriatr. Med. 2022, 38, 221–238. [Google Scholar] [CrossRef] [PubMed]
- Epstein, M.E.; Rodanm, I.; Griffenhagen, G.; Kadrlik, J.; Petty, M.C.; Robertson, S.A.; Simpson, W. 2015 AAHA/AAFP pain management guidelines for dogs and cats. J. Feline Med. Surg. 2015, 17, 251–272. [Google Scholar] [CrossRef] [PubMed]
- Vasiliadis, H.S.; Tsikopoulos, K. Glucosamine and chondroitin for the treatment of osteoarthritis. World J. Orthop. 2017, 8, 1–11. [Google Scholar] [CrossRef]
- Bai, H.; Liu, T.; Wang, H.; Li, Y.; Wang, Z. Chondroitin sulfate alleviated lipopolysaccharide-induced arthritis in feline and canine articular chondrocytes through regulation of neurotrophic signaling pathways and apoptosis. Tissue Cell 2024, 91, 102642. [Google Scholar] [CrossRef]
- Silva, F.S.; Yoshinari, N.H.; Castro, R.R.; Girão, V.C.C.; Pompeu, M.M.L.; de Andrade Feitosa, J.P.; Rocha, F.A.C. Combined glucosamine and chondroitin sulfate provides functional and structural benefit in the anterior cruciate ligament transection model. Clin. Rheumatol. 2009, 28, 109–117. [Google Scholar] [CrossRef]
- Terencio, M.C.; Ferrándiz, M.L.; Carceller, M.C.; Ruhí, R.; Dalmau, P.; Vergés, J.; Montell, E.; Torrent, A.; Alcaraz, M.J. Chondroprotective effects of the combination chondroitin sulfate-glucosamine in a model of osteoarthritis induced by anterior cruciate ligament transection in ovariectomised rats. Biomed. Pharmacother. 2016, 79, 120–128. [Google Scholar] [CrossRef]
- McCarthy, G.; O’Donovan, J.; Jones, B.; McAllister, H.; Seed, M.; Mooney, C. Randomised double-blind, positive-controlled trial to assess the efficacy of glucosamine/chondroitin sulfate for the treatment of dogs with osteoarthritis. Vet. J. 2007, 174, 54–61. [Google Scholar] [CrossRef]
- Kampa, N.; Kaenkangploo, D.; Jitpean, S.; Srithunyarat, T.; Seesupa, S.; Hoisang, S.; Yongvanit, K.; Kamlangchai, P.; Tuchpramuk, P.; Lascelles, B.D.X. Study of the effectiveness of glucosamine and chondroitin sulfate, marine based fatty acid compounds (PCSO-524 and EAB-277), and carprofen for the treatment of dogs with hip osteoarthritis: A prospective, block-randomized, double-blinded, placebo-controlled clinical trial. Front. Vet. Sci. 2023, 10, 1033188. [Google Scholar] [CrossRef]
- Moreau, M.; Dupuis, J.; Bonneau, N.H.; Desnoyers, M. Clinical evaluation of a nutraceutical, carprofen and meloxicam for the treatment of dogs with osteoarthritis. Vet. Rec. 2003, 152, 323–329. [Google Scholar] [CrossRef]
- Aragon, C.L.; Hofmeister, E.H.; Budsberg, S.C. Systematic review of clinical trials of treatments for osteoarthritis in dogs. J. Am. Vet. Med. Assoc. 2007, 230, 514–521. [Google Scholar] [CrossRef]
- Gupta, R.C.; Canerdy, T.D.; Lindley, J.; Konemann, M.; Minniear, J.; Carroll, B.A.; Hendrick, C.; Goad, J.T.; Rohde, K.; Doss, R.; et al. Comparative therapeutic efficacy and safety of type-II collagen (uc-II), glucosamine and chondroitin in arthritic dogs: Pain evaluation by ground force plate. J. Anim. Physiol. Anim. Nutr. 2012, 96, 770–777. [Google Scholar] [CrossRef]
- Scott, R.M.; Evans, R.; Conzemius, M.G. Efficacy of an oral nutraceutical for the treatment of canine osteo arthritis. Vet. Comp. Orthop. Traumatol. 2017, 30, 318–323. [Google Scholar] [CrossRef] [PubMed]
- Shi, P.; Xu, S.; Yang, Z.; Wang, L.; Wu, Y.; Li, Y.; Zhu, Z. Harnessing gut microbiota for longevity: Insights into mechanisms and genetic manipulation. iMetaOmics 2024, 1, e36. [Google Scholar] [CrossRef]
- Biagi, E.; Franceschi, C.; Rampelli, S.; Severgnini, M.; Ostan, R.; Turroni, S.; Consolandi, C.; Quercia, S.; Scurti, M.; Monti, D.; et al. Gut Microbiota and Extreme Longevity. Curr. Biol. 2016, 26, 1480–1485. [Google Scholar] [CrossRef] [PubMed]
- Badal, V.D.; Vaccariello, E.D.; Murray, E.R.; Yu, K.E.; Knight, R.; Jeste, D.V.; Nguyen, T.T. The Gut Microbiome, Aging, and Longevity: A Systematic Review. Nutrients 2020, 12, 3759. [Google Scholar] [CrossRef]
- Sacoor, C.; Marugg, J.D.; Lima, N.R.; Empadinhas, N.; Montezinho, L. Gut-Brain Axis Impact on Canine Anxiety Disorders: New Challenges for Behavioral Veterinary Medicine. Vet. Med. Int. 2024, 2024, 2856759. [Google Scholar] [CrossRef]
- Tripathi, A.; Debelius, J.; Brenner, D.A.; Karin, M.; Loomba, R.; Schnabl, B.; Knight, R. The gut–liver axis and the intersection with the microbiome. Nat. Rev. Gastroenterol. Hepatol. 2018, 15, 397–411. [Google Scholar] [CrossRef]
- Yang, T.; Richards, E.M.; Pepine, C.J.; Raizada, M.K. The gut microbiota and the brain–gut–kidney axis in hypertension and chronic kidney disease. Nat. Rev. Nephrol. 2018, 14, 442–456. [Google Scholar] [CrossRef]
- Marsland, B.J.; Trompette, A.; Gollwitzer, E.S. The Gut-Lung Axis in Respiratory Disease. Ann. Am. Thorac. Soc. 2015, 12 (Suppl. S2), S150–S156. [Google Scholar] [CrossRef]
- Margolis, K.G.; Cryan, J.F.; Mayer, E.A. The Microbiota-Gut-Brain Axis: From Motility to Mood. Gastroenterology 2021, 160, 1486–1501. [Google Scholar] [CrossRef] [PubMed]
- Martin, C.R.; Osadchiy, V.; Kalani, A.; Mayer, E.A. The Brain-Gut-Microbiome Axis. Cell. Mol. Gastroenterol. Hepatol. 2018, 6, 133–148. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Chen, X.; Gong, P.; Li, G.; Yao, W.; Yang, W. The Gut–Organ-Axis Concept: Advances the Application of Gut-on-Chip Technology. Int. J. Mol. Sci. 2023, 24, 4089. [Google Scholar] [CrossRef] [PubMed]
- Scriven, M.; Dinan, T.G.; Cryan, J.F.; Wall, M. Neuropsychiatric Disorders: Influence of Gut Microbe to Brain Signalling. Diseases 2018, 6, 78. [Google Scholar] [CrossRef]
- Doenyas, C.; Clarke, G.; Cserjési, R. Gut–brain axis and neuropsychiatric health: Recent advances. Sci. Rep. 2025, 15, 3415. [Google Scholar] [CrossRef]
- Choi, T.-Y.; Choi, Y.P.; Koo, J.W. Mental Disorders Linked to Crosstalk between The Gut Microbiome and The Brain. Exp. Neurobiol. 2020, 29, 403–416. [Google Scholar] [CrossRef]
- Auteri, M.; Zizzo, M.G.; Serio, R. GABA and GABA receptors in the gastrointestinal tract: From motility to inflammation. Pharmacol. Res. 2015, 93, 11–21. [Google Scholar] [CrossRef]
- Liu, L.; Huh, J.R.; Shah, K. Microbiota and the gut-brain-axis: Implications for new therapeutic design in the CNS. eBioMedicine 2022, 77, 103908. [Google Scholar] [CrossRef]
- Carabotti, M.; Scirocco, A.; Maselli, M.A.; Severi, C. The gut-brain axis: Interactions between enteric microbiota, central and enteric nervous systems. Ann. Gastroenterol. 2015, 28, 203–209. [Google Scholar]
- Chen, Y.; Xu, J.; Chen, Y. Regulation of Neurotransmitters by the Gut Microbiota and Effects on Cognition in Neurological Disorders. Nutrients 2021, 13, 2099. [Google Scholar] [CrossRef]
- Qu, S.; Yu, Z.; Zhou, Y.; Wang, S.; Jia, M.; Chen, T.; Zhang, X. Gut microbiota modulates neurotransmitter and gut-brain signaling. Microbiol. Res. 2024, 287, 127858. [Google Scholar] [CrossRef]
- Parashar, A.; Udayabanu, M. Gut microbiota regulates key modulators of social behavior. Eur. Neuropsychopharmacol. 2016, 26, 78–91. [Google Scholar] [CrossRef] [PubMed]
- Berger, M.; Gray, J.A.; Roth, B.L. The Expanded Biology of Serotonin. Annu. Rev. Med. 2009, 60, 355–366. [Google Scholar] [CrossRef] [PubMed]
- Missale, C.; Nash, S.R.; Robinson, S.W.; Jaber, M.; Caron, M.G. Dopamine Receptors: From Structure to Function. Physiol. Rev. 1998, 78, 189–225. [Google Scholar] [CrossRef] [PubMed]
- Mohebi, A.; Pettibone, J.R.; Hamid, A.A.; Wong, J.-M.T.; Vinson, L.T.; Patriarchi, T.; Tian, L.; Kennedy, R.T.; Berke, J.D. Dissociable dopamine dynamics for learning and motivation. Nature 2019, 570, 65–70. [Google Scholar] [CrossRef]
- Cryan, J.F.; O’Mahony, S.M. The microbiome-gut-brain axis: From bowel to behavior. Neurogastroenterol. Motil. 2011, 23, 187–192. [Google Scholar] [CrossRef]
- Luna, R.A.; Foster, J.A. Gut brain axis: Diet microbiota interactions and implications for modulation of anxiety and depression. Curr. Opin. Biotechnol. 2015, 32, 35–41. [Google Scholar] [CrossRef]
- Ambrosini, Y.M.; Borcherding, D.; Kanthasamy, A.; Kim, H.J.; Willette, A.A.; Jergens, A.; Allenspach, K.; Mochel, J.P. The Gut-Brain Axis in Neurodegenerative Diseases and Relevance of the Canine Model: A Review. Front. Aging Neurosci. 2019, 11, 130. [Google Scholar] [CrossRef]
- Li, S.; Zhuo, M.; Huang, X.; Huang, Y.; Zhou, J.; Xiong, D.; Li, J.; Liu, Y.; Pan, Z.; Li, H.; et al. Altered gut microbiota associated with symptom severity in schizophrenia. PeerJ 2020, 8, e9574. [Google Scholar] [CrossRef] [PubMed]
- Malan-Müller, S.; Valles-Colomer, M.; Palomo, T.; Leza, J.C. The gut-microbiota-brain axis in a Spanish population in the aftermath of the COVID-19 pandemic: Microbiota composition linked to anxiety, trauma, and depression profiles. Gut Microbes 2023, 15, 2162306. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.; Ling, Z.; Zhang, Y.; Mao, H.; Ma, Z.; Yin, Y.; Wang, W.; Tang, W.; Tan, Z.; Shi, J.; et al. Altered fecal microbiota composition in patients with major depressive disorder. Brain Behav. Immun. 2015, 48, 186–194. [Google Scholar] [CrossRef] [PubMed]
- Kim, C.-S.; Shin, G.-E.; Cheong, Y.; Shin, J.H.; Shin, D.-M.; Chun, W.Y. Experiencing social exclusion changes gut microbiota composition. Transl. Psychiatry 2022, 12, 254. [Google Scholar] [CrossRef]
- Silvestrino, M.; Pirolo, M.; Bianco, A.; Castellana, S.; Del Sambro, L.; Tarallo, V.D.; Guardabassi, L.; Zatelli, A.; Gernone, F. Idiopathic epilepsy in dogs is associated with dysbiotic faecal microbiota. Anim. Microbiome 2025, 7, 31. [Google Scholar] [CrossRef]
- Gernone, F.; Uva, A.; Silvestrino, M.; Cavalera, M.A.; Zatelli, A. Role of Gut Microbiota through Gut-Brain Axis in Epileptogenesis: A Systematic Review of Human and Veterinary Medicine. Biology 2022, 11, 1290. [Google Scholar] [CrossRef]
- Suchodolski, J.S.; Dowd, S.E.; Wilke, V.; Steiner, J.M.; Jergens, A.E. 16S rRNA Gene Pyrosequencing Reveals Bacterial Dysbiosis in the Duodenum of Dogs with Idiopathic Inflammatory Bowel Disease. PLoS ONE 2012, 7, e39333. [Google Scholar] [CrossRef]
- Suchodolski, J.S.; Markel, M.E.; Garcia-Mazcorro, J.F.; Unterer, S.; Heilmann, R.M.; Dowd, S.E.; Kachroo, P.; Ivanov, I.; Minamoto, Y.; Dillman, E.M.; et al. The Fecal Microbiome in Dogs with Acute Diarrhea and Idiopathic Inflammatory Bowel Disease. PLoS ONE 2012, 7, e51907. [Google Scholar] [CrossRef]
- Isaiah, A.; Parambeth, J.C.; Steiner, J.M.; Lidbury, J.A.; Suchodolski, J.S. The fecal microbiome of dogs with exocrine pancreatic insufficiency. Anaerobe 2017, 45, 50–58. [Google Scholar] [CrossRef]
- Breczko, W.J.; Bubak, J.; Miszczak, M. The Importance of Intestinal Microbiota and Dysbiosis in the Context of the Development of Intestinal Lymphoma in Dogs and Cats. Cancers 2024, 16, 2255. [Google Scholar] [CrossRef]
- Aziz, T.; Hussain, N.; Hameed, Z.; Lin, L. Elucidating the role of diet in maintaining gut health to reduce the risk of obesity, cardiovascular and other age-related inflammatory diseases: Recent challenges and future recommendations. Gut Microbes 2024, 16, 2297864. [Google Scholar] [CrossRef]
- Lee, A.H.; Lin, C.-Y.; Do, S.; Oba, P.M.; Belchik, S.E.; Steelman, A.J.; Schauwecker, A.; Swanson, K.S. Dietary supplementation with fiber, “biotics,” and spray-dried plasma affects apparent total tract macronutrient digestibility and the fecal characteristics, fecal microbiota, and immune function of adult dogs. J. Anim. Sci. 2022, 100, skac048. [Google Scholar] [CrossRef]
- Lin, C.Y.; Alexander, C.; Steelman, A.J.; Warzecha, C.M.; de Godoy, M.R.C.; Swanson, K.S. Effects of a Saccharomyces cerevisiae fermentation product on fecal characteristics, nutrient digestibility, fecal fermentative end-products, fecal microbial populations, immune function, and diet palatability in adult dogs1. J. Anim. Sci. 2019, 97, 1586–1599. [Google Scholar] [CrossRef]
- Finet, S.; He, F.; Clark, L.V.; de Godoy, M.R.C. Functional properties of miscanthus fiber and prebiotic blends in extruded canine diets. J. Anim. Sci. 2022, 100, skac078. [Google Scholar] [CrossRef] [PubMed]
- Song, H.; Lee, J.; Yi, S.; Kim, W.-H.; Kim, Y.; Namgoong, B.; Choe, A.; Cho, G.; Shin, J.; Park, Y.; et al. Red Ginseng Dietary Fiber Shows Prebiotic Potential by Modulating Gut Microbiota in Dogs. Microbiol. Spectr. 2023, 11, e00949-23. [Google Scholar] [CrossRef] [PubMed]
- Oba, P.M.; De La Guardia Hidrogo, V.M.; Kelly, J.; Saunders-Blades, J.; Steelman, A.J.; Swanson, K.S. Effects of diets supplemented with bioactive peptides on nutrient digestibility, immune cell responsiveness, and fecal characteristics, microbiota, and metabolites of adult cats. J. Anim. Sci. 2024, 102, skae104. [Google Scholar] [CrossRef] [PubMed]
- de Oliveira Matheus, L.F.; Risolia, L.W.; Ernandes, M.C.; de Souza, J.M.; Oba, P.M.; Vendramini, T.H.A.; Pedrinelli, V.; Henríquez, L.B.F.; de Oliveira Massoco, C.; Pontieri, C.F.F.; et al. Effects of Saccharomyces cerevisiae cell wall addition on feed digestibility, fecal fermentation and microbiota and immunological parameters in adult cats. BMC Vet. Res. 2021, 17, 351. [Google Scholar] [CrossRef]
- Xia, J.; Cui, Y.; Guo, Y.; Liu, Y.; Deng, B.; Han, S. The Function of Probiotics and Prebiotics on Canine Intestinal Health and Their Evaluation Criteria. Microorganisms 2024, 12, 1248. [Google Scholar] [CrossRef]
- Kim, D.-H.; Jeong, D.; Kang, I.-B.; Lim, H.-W.; Cho, Y.; Seo, K.-H. Modulation of the intestinal microbiota of dogs by kefir as a functional dairy product. J. Dairy Sci. 2019, 102, 3903–3911. [Google Scholar] [CrossRef]
- Wang, W.; Xu, L.; Cao, Y.; Liu, G.; Zhang, Y.; Wang, X.; Mao, X. Effects of supplementation with krill oil on blood parameters, hair quality, and fecal microbiota in male beagle dogs. Front. Microbiol. 2025, 16, 1587149. [Google Scholar] [CrossRef]
- Molina, R.A.; Villar, M.D.; Miranda, M.H.; Maldonado, N.C.; Vignolo, G.M.; Nader-Macias, M.E.F. A multi-strain probiotic promoted recovery of puppies from gastroenteritis in a randomized, double-blind, placebo-controlled study. Can. Vet. J. 2023, 64, 666–673. [Google Scholar]
- Rossi, G.; Cerquetella, M.; Gavazza, A.; Galosi, L.; Berardi, S.; Mangiaterra, S.; Mari, S.; Suchodolski, J.S.; Lidbury, J.A.; Steiner, J.M.; et al. Rapid Resolution of Large Bowel Diarrhea after the Administration of a Combination of a High-Fiber Diet and a Probiotic Mixture in 30 Dogs. Vet. Sci. 2020, 7, 21. [Google Scholar] [CrossRef] [PubMed]
- Nixon, S.L.; Rose, L.; Muller, A.T. Efficacy of an orally administered anti-diarrheal probiotic paste (Pro-Kolin Advanced) in dogs with acute diarrhea: A randomized, placebo-controlled, double-blinded clinical study. J. Vet. Int. Med. 2019, 33, 1286–1294. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Gallego, C.; Junnila, J.; Männikkö, S.; Hämeenoja, P.; Valtonen, E.; Salminen, S.; Beasley, S. A canine-specific probiotic product in treating acute or intermittent diarrhea in dogs: A double-blind placebo-controlled efficacy study. Vet. Microbiol. 2016, 197, 122–128. [Google Scholar] [CrossRef] [PubMed]
- Atuahene, D.; Mukarram, S.A.; Balouei, F.; Antwi, A. Gut Health Optimization in Canines and Felines: Exploring the Role of Probiotics and Nutraceuticals. Pets 2024, 1, 135–151. [Google Scholar] [CrossRef]
- Kiełbik, P.; Witkowska-Piłaszewicz, O. The Relationship between Canine Behavioral Disorders and Gut Microbiome and Future Therapeutic Perspectives. Animals 2024, 14, 2048. [Google Scholar] [CrossRef]
- Voith, V.L. The impact of companion animal problems on society and the role of veterinarians. Vet. Clin. N. Am. Small Anim. Pract. 2009, 39, 327–345. [Google Scholar] [CrossRef]
- Powell, L.; Watson, B.; Serpell, J. Understanding feline feelings: An investigation of cat owners’ perceptions of problematic cat behaviors. Appl. Anim. Behav. Sci. 2023, 266, 106025. [Google Scholar] [CrossRef]
- Kubinyi, E.; Bel Rhali, S.; Sándor, S.; Szabó, A.; Felföldi, T. Gut Microbiome Composition is Associated with Age and Memory Performance in Pet Dogs. Animals 2020, 10, 1488. [Google Scholar] [CrossRef]
- Baik, J.-H. Dopamine Signaling in reward-related behaviors. Front. Neural Circuits 2013, 7, 152. [Google Scholar] [CrossRef]
- Jie, F.; Yin, G.; Yang, W.; Yang, M.; Gao, S.; Lv, J.; Li, B. Stress in Regulation of GABA Amygdala System and Relevance to Neuropsychiatric Diseases. Front. Neurosci. 2018, 12, 562. [Google Scholar] [CrossRef]
- Rosado, B.; García-Belenguer, S.; León, M.; Chacón, G.; Villegas, A.; Palacio, J. Blood concentrations of serotonin, cortisol and dehydroepiandrosterone in aggressive dogs. Appl. Anim. Behav. Sci. 2010, 123, 124–130. [Google Scholar] [CrossRef]
- León, M.; Rosado, B.; García-Belenguer, S.; Chacón, G.; Villegas, A.; Palacio, J. Assessment of serotonin in serum, plasma, and platelets of aggressive dogs. J. Vet. Behav. 2012, 7, 348–352. [Google Scholar] [CrossRef]
- González-Martínez, Á.; Muñiz de Miguel, S.; Graña, N.; Costas, X.; Diéguez, F.J. Serotonin and Dopamine Blood Levels in ADHD-Like Dogs. Animals 2023, 13, 1037. [Google Scholar] [CrossRef] [PubMed]
- Riva, J.; Bondiolotti, G.; Michelazzi, M.; Verga, M.; Carenzi, C. Anxiety related behavioural disorders and neurotransmitters in dogs. Appl. Anim. Behav. Sci. 2008, 114, 168–181. [Google Scholar] [CrossRef]
- Homer, B.; Judd, J.; Mohammadi Dehcheshmeh, M.; Ebrahimie, E.; Trott, D.J. Gut Microbiota and Behavioural Issues in Production, Performance, and Companion Animals: A Systematic Review. Animals 2023, 13, 1458. [Google Scholar] [CrossRef]
- Gorzelanna, Z.; Miszczak, M. Through the Intestines to the Head? That Is, How the Gastrointestinal Microbiota Affects the Behavior of Companion Animals. Pets 2024, 1, 201–215. [Google Scholar] [CrossRef]
- Cannas, S.; Tonini, B.; Belà, B.; Di Prinzio, R.; Pignataro, G.; Di Simone, D.; Gramenzi, A. Effect of a novel nutraceutical supplement (Relaxigen Pet dog) on the fecal microbiome and stress-related behaviors in dogs: A pilot study. J. Vet. Behav. 2021, 42, 37–47. [Google Scholar] [CrossRef]
- Roy, A.-S.; Aberkane, F.Z.; Cisse, S.; Guibert, A.; Richard, D.; Lerouzic, M.; Suor-cherer, S.; Boisard, S.; Guilet, D.; Benarbia, M.E.A.B.; et al. Metabolomics provides novel understanding of Melissa officinalis mechanism of action ensuring its calming effect on dogs. BMC Vet. Res. 2025, 21, 459. [Google Scholar] [CrossRef]
- Ozawa, M.; Inoue, M.; Uchida, K.; Chambers, J.K.; Takeuch, Y.; Nakayama, H. Physical signs of canine cognitive dysfunction. J. Vet. Med. Sci. 2019, 81, 1829–1834. [Google Scholar] [CrossRef]
- Landsberg, G.M.; Denenberg, S.; Araujo, J.A. Cognitive dysfunction in cats: A syndrome we used to dismiss as ‘old age’. J. Feline Med. Surg. 2010, 12, 837–848. [Google Scholar] [CrossRef]
- Sechi, S.; Chiavolelli, F.; Spissu, N.; Di Cerbo, A.; Canello, S.; Guidetti, G.; Fiore, F.; Cocco, R. An Antioxidant Dietary Supplement Improves Brain-Derived Neurotrophic Factor Levels in Serum of Aged Dogs: Preliminary Results. J. Vet. Med. 2015, 2015, 412501. [Google Scholar] [CrossRef]
- Reichling, J.; Frater-Schröder, M.; Herzog, K.; Bucher, S.; Saller, R. Reduction of behavioural disturbances in elderly dogs supplemented with a standardised Ginkgo leaf extract. Schweiz. Arch. Tierheilk. 2006, 158, 257–263. [Google Scholar] [CrossRef] [PubMed]
- Araujo, J.A.; Landsberg, G.M.; Milgram, N.W.; Miolo, A. Improvement of short-term memory performance in aged beagles by a nutraceutical supplement containing phosphatidylserine, Ginkgo biloba, vitamin E, and pyridoxine. Can. Vet. J. 2008, 49, 379–385. [Google Scholar] [PubMed]
- Pero, M.E.; Cortese, L.; Mastellone, V.; Tudisco, R.; Musco, N.; Scandurra, A.; D’Aniello, B.; Vassalotti, G.; Bartolini, F.; Lombardi, P. Effects of a Nutritional Supplement on Cognitive Function in Aged Dogs and on Synaptic Function of Primary Cultured Neurons. Animals 2019, 9, 393. [Google Scholar] [CrossRef] [PubMed]
- McGrath, A.P.; Horschler, D.J.; Hancock, L. Feline Cognition and the Role of Nutrition: An Evolutionary Perspective and Historical Review. Animals 2024, 14, 1967. [Google Scholar] [CrossRef]
- Hoffman, J.M.; Tolbert, M.K.; Promislow, D.E.L.; The Dog Aging Project Consortium. Demographic factors associated with joint supplement use in dogs from the Dog Aging Project. Front. Vet. Sci. 2022, 9, 906521. [Google Scholar] [CrossRef]
- Vandeweerd, J.M.; Coisnon, C.; Clegg, P.; Cambier, C.; Pierson, A.; Hontoir, F.; Saegerman, C.; Gustin, P.; Buczinski, S. Systematic review of efficacy of nutraceuticals to alleviate clinical signs of osteoarthritis. J. Vet. Int. Med. 2012, 26, 448–456. [Google Scholar] [CrossRef]
- Barbeau-Grégoire, M.; Otis, C.; Cournoyer, A.; Moreau, M.; Lussier, B.; Troncy, E. A 2022 Systematic Review and Meta-Analysis of Enriched Therapeutic Diets and Nutraceuticals in Canine and Feline Osteoarthritis. Int. J. Mol. Sci. 2022, 23, 10384. [Google Scholar] [CrossRef]
- Johnson, K.A.; Lee, A.H.; Swanson, K.S. Nutrition and nutraceuticals in the changing management of osteoarthritis for dogs and cats. J. Am. Vet. Med. Assoc. 2020, 256, 1335–1341. [Google Scholar] [CrossRef]
- Gildea, E.; Scales-Theobald, E.; Thompson, J.; Cook, A.; Forde, K.; Skingley, G.; Lawrie, S.; Williamson, N.; Panter, C. Development and validation of a quality of life and treatment satisfaction measure in canine osteoarthritis. Front. Vet. Sci. 2024, 11, 1377019. [Google Scholar] [CrossRef]
- Martinez, S.E.; Chen, Y.; Ho, E.A.; Martinez, S.A.; Davies, N.M. Pharmacological effects of a C-phycocyanin-based multicomponent nutraceutical in an in-vitro canine chondrocyte model of osteoarthritis. Can. J. Vet. Res. 2015, 79, 241–249. [Google Scholar]
- Beale, B.S. Use of nutraceuticals and chondroprotectants in osteoarthritic dogs and cats. Vet. Clin. N. Am. Small Anim. Pract. 2004, 34, 271–289, viii. [Google Scholar] [CrossRef]
- Mehler, S.J.; May, L.R.; King, C.; Harris, W.S.; Shah, Z. A prospective, randomized, double blind, placebo-controlled evaluation of the effects of eicosapentaenoic acid and docosahexaenoic acid on the clinical signs and erythrocyte membrane polyunsaturated fatty acid concentrations in dogs with osteoarthritis. Prostaglandins Leukot. Essent. Fat. Acids 2016, 109, 1–7. [Google Scholar] [CrossRef]
- Servet, E.; Biourge, V.; Marniquet, P. Dietary intervention can improve clinical signs in osteoarthritic dogs. J. Nutr. 2006, 136, 1995S–1997S. [Google Scholar] [CrossRef] [PubMed]
- Musco, N.; Vassalotti, G.; Mastellone, V.; Cortese, L.; Della Rocca, G.; Molinari, M.L.; Calabro, S.; Tudisco, R.; Cutrignelli, M.I.; Lombardi, P. Effects of a nutritional supplement in dogs affected by osteoarthritis. Vet. Med. Sci. 2019, 5, 325–335. [Google Scholar] [CrossRef] [PubMed]
- Roush, J.K.; Cross, A.R.; Renberg, W.C.; Dodd, C.E.; Sixby, K.A.; Fritsch, D.A.; Allen, T.A.; Jewell, D.E.; Richardson, D.C.; Leventhal, P.S.; et al. Evaluation of the effects of dietary supplementation with fish oil omega-3 fatty acids on weight bearing in dogs with osteoarthritis. J. Am. Vet. Med. Assoc. 2010, 236, 67–73. [Google Scholar] [CrossRef] [PubMed]
- Bauer, J.E. Therapeutic use of fish oils in companion animals. J. Am. Vet. Med. Assoc. 2011, 239, 1441–1451. [Google Scholar] [CrossRef]
- Comblain, F.; Serisier, S.; Barthelemy, N.; Balligand, M.; Henrotin, Y. Review of dietary supplements for the management of osteoarthritis in dogs in studies from 2004 to 2014. J. Vet. Pharmacol. Ther. 2016, 39, 1–15. [Google Scholar] [CrossRef]
- Fritsch, D.; Allen, T.A.; Dodd, C.E.; Jewell, D.E.; Sixby, K.A.; Leventhal, P.S.; Hahn, K.A. Dose-titration effects of fish oil in osteoarthritic dogs. J. Vet. Int. Med. 2010, 24, 1020–1026. [Google Scholar] [CrossRef]
- Corbee, R.J.; Barnier, M.M.; van de Lest, C.H.; Hazewinkel, H.A. The effect of dietary long-chain omega-3 fatty acid supplementation on owner’s perception of behaviour and locomotion in cats with naturally occurring osteoarthritis. J. Anim. Physiol. Anim. Nutr. 2013, 97, 846–853. [Google Scholar] [CrossRef]
- Eckert, T.; Jährling-Butkus, M.; Louton, H.; Burg-Roderfeld, M.; Zhang, R.; Zhang, N.; Hesse, K.; Petridis, A.K.; Kožár, T.; Steinmeyer, J.; et al. Efficacy of Chondroprotective Food Supplements Based on Collagen Hydrolysate and Compounds Isolated from Marine Organisms. Mar. Drugs 2021, 19, 542. [Google Scholar] [CrossRef] [PubMed]
- Stabile, M.; Girelli, C.R.; Lacitignola, L.; Samarelli, R.; Crovace, A.; Fanizzi, F.P.; Staffieri, F. 1H-NMR metabolomic profile of healthy and osteoarthritic canine synovial fluid before and after UC-II supplementation. Sci. Rep. 2022, 12, 19716. [Google Scholar] [CrossRef] [PubMed]
- Dobenecker, B.; Böswald, L.F.; Reese, S.; Steigmeier-Raith, S.; Trillig, L.; Oesser, S.; Schunck, M.; Meyer-Lindenberg, A.; Hugenberg, J. The oral intake of specific Bioactive Collagen Peptides (BCP) improves gait and quality of life in canine osteoarthritis patients—A translational large animal model for a nutritional therapy option. PLoS ONE 2024, 19, e0308378. [Google Scholar] [CrossRef]
- Manfredi, S.; Di Ianni, F.; Di Girolamo, N.; Canello, S.; Gnudi, G.; Guidetti, G.; Miduri, F.; Fabbi, M.; Daga, E.; Parmigiani, E.; et al. Effect of a commercially available fish-based dog food enriched with nutraceuticals on hip and elbow dysplasia in growing Labrador retrievers. Can. J. Vet. Res. 2018, 82, 154–158. [Google Scholar] [PubMed]
- Comblain, F.; Barthélémy, N.; Lefèbvre, M.; Schwartz, C.; Lesponne, I.; Serisier, S.; Feugier, A.; Balligand, M.; Henrotin, Y. A randomized, double-blind, prospective, placebo-controlled study of the efficacy of a diet supplemented with curcuminoids extract, hydrolyzed collagen and green tea extract in owner’s dogs with osteoarthritis. BMC Vet. Res. 2017, 13, 395. [Google Scholar] [CrossRef]
- Soontornvipart, K.; Wongsirichatchai, P.; Phongphuwanan, A.; Chatdarong, K.; Vimolmangkang, S. Cannabidiol plus krill oil supplementation improves chronic stifle osteoarthritis in dogs: A double-blind randomized controlled trial. Vet. J. 2024, 308, 106227. [Google Scholar] [CrossRef]
- Leong, D.J.; Gu, X.I.; Li, Y.; Lee, J.Y.; Laudier, D.M.; Majeska, R.J.; Schaffler, M.B.; Cardoso, L.; Sun, H.B. Matrix metalloproteinase-3 in articular cartilage is upregulated by joint immobilization and suppressed by passive joint motion. Matrix Biol. 2010, 29, 420–426. [Google Scholar] [CrossRef]
- Isaka, S.; Someya, A.; Nakamura, S.; Naito, K.; Nozawa, M.; Inoue, N.; Sugihara, F.; Nagaoka, I.; Kaneko, K. Evaluation of the effect of oral administration of collagen peptides on an experimental rat osteoarthritis model. Exp. Ther. Med. 2017, 13, 2699–2706. [Google Scholar] [CrossRef]
- Nakatani, S.; Mano, H.; Sampei, C.; Shimizu, J.; Wada, M. Chondroprotective effect of the bioactive peptide prolyl-hydroxyproline in mouse articular cartilage in vitro and in vivo. Osteoarthr. Cartil. 2009, 17, 1620–1627. [Google Scholar] [CrossRef]
- Stabile, M.; Fracassi, L.; Lacitignola, L.; Garcia-Pedraza, E.; Girelli, C.R.; Calculli, C.; D’Uggento, A.M.; Ribecco, N.; Crovace, A.; Fanizzi, F.P.; et al. Effects of a feed supplement, containing undenatured type II collagen (UC II®) and Boswellia Serrata, in the management of mild/moderate mobility disorders in dogs: A randomized, double-blind, placebo controlled, cross-over study. PLoS ONE 2024, 19, e0305697. [Google Scholar] [CrossRef]
- Martello, E.; Bigliati, M.; Adami, R.; Biasibetti, E.; Bisanzio, D.; Meineri, G.; Bruni, N. Efficacy of a dietary supplement in dogs with osteoarthritis: A randomized placebo-controlled, double-blind clinical trial. PLoS ONE 2022, 17, e0263971. [Google Scholar] [CrossRef]
- Malik, M.; Dixit, C.P.; Jacob, J.; Goswami, S. Chapter 17—Diseases of integument system of dogs and cats. In Introduction to Diseases, Diagnosis, and Management of Dogs and Cats; Rana, T., Ed.; Academic Press: Cambridge, MA, USA, 2024; pp. 257–270. [Google Scholar] [CrossRef]
- Saseendran, A.; Sherin K, G.; Banakar, P.; Rajkumar, G.; Ganapathy, J.; Sheethal, C. Skin Disease in Companion Animals: A Nutritional Impact. Indian J. Nat. Sci. (IJONS) 2016, 6, 10923–10931. [Google Scholar]
- Sun, X.; Ma, Y.; Gao, Y.; Li, J.; Li, Y.; Lv, L. Nutrients regulation of skin cells from canines and cats via Wnt/β-catenin signaling pathway. Front. Vet. Sci. 2025, 12, 1486201. [Google Scholar] [CrossRef] [PubMed]
- Watson, T.D. Diet and skin disease in dogs and cats. J. Nutr. 1998, 128, 2783S–2789S. [Google Scholar] [CrossRef] [PubMed]
- Combarros, D.; Castilla-Castaño, E.; Lecru, L.A.; Pressanti, C.; Amalric, N.; Cadiergues, M.C. A prospective, randomized, double blind, placebo-controlled evaluation of the effects of an n-3 essential fatty acids supplement (Agepi® ω3) on clinical signs, and fatty acid concentrations in the erythrocyte membrane, hair shafts and skin surface of dogs with poor quality coats. Prostaglandins Leukot. Essent. Fat. Acids 2020, 159, 102140. [Google Scholar] [CrossRef]
- Noli, C.; della Valle, M.F.; Miolo, A.; Medori, C.; Schievano, C.; The Skinalia Clinical Research Group. Effect of dietary supplementation with ultramicronized palmitoylethanolamide in maintaining remission in cats with nonflea hypersensitivity dermatitis: A double-blind, multicentre, randomized, placebo-controlled study. Vet. Dermatol. 2019, 30, 387-e117. [Google Scholar] [CrossRef]
- Kim, H.; Rather, I.A.; Kim, H.; Kim, S.; Kim, T.; Jang, J.; Seo, J.; Lim, J.; Park, Y.-H. A Double-Blind, Placebo Controlled-Trial of a Probiotic Strain Lactobacillus sakei Probio-65 for the Prevention of Canine Atopic Dermatitis. J. Microbiol. Biotechnol. 2015, 25, 1966–1969. [Google Scholar] [CrossRef]
- Song, H.; Mun, S.-H.; Han, D.-W.; Kang, J.-H.; An, J.-U.; Hwang, C.-Y.; Cho, S. Probiotics ameliorate atopic dermatitis by modulating the dysbiosis of the gut microbiota in dogs. BMC Microbiol. 2025, 25, 228. [Google Scholar] [CrossRef]
- Amundson, L.A.; Millican, A.A.; Swensson, E.; McGilliard, M.L.; Tomlinson, D. Effect of Supplemental Trace Mineral Source on Haircoat and Activity Levels in Senior Dogs. Animals 2025, 15, 686. [Google Scholar] [CrossRef]
- Kirby, N.A.; Hester, S.L.; Rees, C.A.; Kennis, R.A.; Zoran, D.L.; Bauer, J.E. Skin surface lipids and skin and hair coat condition in dogs fed increased total fat diets containing polyunsaturated fatty acids. J. Anim. Physiol. Anim. Nutr. 2009, 93, 505–511. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Dong, H.; Chang, X.; Chen, Q.; Wang, L.; Chen, S.; Chen, L.; Wang, R.; Ge, S.; Wang, P.; et al. Bifidobacterium lactis and Lactobacillus plantarum Enhance Immune Function and Antioxidant Capacity in Cats through Modulation of the Gut Microbiota. Antioxidants 2024, 13, 764. [Google Scholar] [CrossRef] [PubMed]
- Olivry, T.; Mueller, R.S. Critically appraised topic on adverse food reactions of companion animals (3): Prevalence of cutaneous adverse food reactions in dogs and cats. BMC Vet. Res. 2017, 13, 51. [Google Scholar] [CrossRef] [PubMed]
- Vogelnest, L.; Cheng, K. Cutaneous adverse food reactions in cats: Retrospective evaluation of 17 cases in a dermatology referral population (2001–2011). Aust. Vet. J. 2013, 91, 443–451. [Google Scholar] [CrossRef]
- Gaschen, F.P.; Merchant, S.R. Adverse Food Reactions in Dogs and Cats. Vet. Clin. Small Anim. Pract. 2011, 41, 361–379. [Google Scholar] [CrossRef]
- Scrimshaw, N.S.; Suskind, R.M. Interactions of Nutrition and Infection. Dent. Clin. N. Am. 1976, 20, 461–472. [Google Scholar] [CrossRef]
- Munteanu, C.; Schwartz, B. The relationship between nutrition and the immune system. Front. Nutr. 2022, 9, 1082500. [Google Scholar] [CrossRef]
- Wu, D.; Lewis, E.D.; Pae, M.; Meydani, S.N. Nutritional Modulation of Immune Function: Analysis of Evidence, Mechanisms, and Clinical Relevance. Front. Immunol. 2019, 9, 3160. [Google Scholar] [CrossRef]
- Calder, P.C.; Carr, A.C.; Gombart, A.F.; Eggersdorfer, M. Optimal Nutritional Status for a Well-Functioning Immune System Is an Important Factor to Protect against Viral Infections. Nutrients 2020, 12, 1181. [Google Scholar] [CrossRef]
- Medoro, A.; Davinelli, S.; Colletti, A.; Di Micoli, V.; Grandi, E.; Fogacci, F.; Scapagnini, G.; Cicero, A.F.G. Nutraceuticals as Modulators of Immune Function: A Review of Potential Therapeutic Effects. Prev. Nutr. Food Sci. 2023, 28, 89–107. [Google Scholar] [CrossRef]
- Wang, W.; Xu, L.; Zhang, Y.; Cao, Y.; Yang, Y.; Liu, G.; Mao, X. Effects of Chenpi (Citrus reticulata cv. Chachiensis) on serum antioxidant enzymes, inflammatory factors, and intestinal health in Beagle dogs. Front. Microbiol. 2025, 15, 1415860. [Google Scholar] [CrossRef]
- Stuyven, E.; Verdonck, F.; Van Hoek, I.; Daminet, S.; Duchateau, L.; Remon, J.P.; Goddeeris, B.M.; Cox, E. Oral administration of beta-1,3/1,6-glucan to dogs temporally changes total and antigen-specific IgA and IgM. Clin. Vaccine Immunol. 2010, 17, 281–285. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, L.G.; Endrighi, M.; Lisenko, K.G.; de Oliveira, M.R.D.; Damasceno, M.R.; Claudino, J.A.; Gutierres, P.G.; Peconick, A.P.; Saad, F.M.d.O.B.; Zangeronimo, M.G. Oat beta-glucan as a dietary supplement for dogs. PLoS ONE 2018, 13, e0201133. [Google Scholar] [CrossRef]
- Rentas, M.F.; Pedreira, R.S.; Perini, M.P.; Risolia, L.W.; Zafalon, R.V.A.; Alvarenga, I.C.; Vendramini, T.H.A.; Balieiro, J.C.C.; Pontieri, C.F.F.; Brunetto, M.A. Galactoligosaccharide and a prebiotic blend improve colonic health and immunity of adult dogs. PLoS ONE 2020, 15, e0238006. [Google Scholar] [CrossRef] [PubMed]
- Luo, J.B.; Zhang, L.; Fu, M.; Hong, Y.; Du, X.Y.; Cheng, G.Q.; Xia, J.Y.; Dong, H. Astragalus polysaccharide (APS) supplement in beagle dogs after castration: Effects on the haematology and serum chemistry profiles, immune response, and oxidative stress status. Vet. Med. Sci. 2023, 9, 98–110. [Google Scholar] [CrossRef] [PubMed]
- Kayser, E.; Castaneda, P.L.; Soto-Diaz, K.; Steelman, A.J.; Murphy, A.; Spindola, M.; He, F.; de Godoy, M.R.C. Functional properties of Ganoderma lucidum supplementation in canine nutrition. J. Anim. Sci. 2024, 102, skae051. [Google Scholar] [CrossRef]
- Rutherfurd-Markwick, K.J.; Hendriks, W.H.; Morel, P.C.H.; Thomas, D.G. The potential for enhancement of immunity in cats by dietary supplementation. Vet. Immunol. Immunopathol. 2013, 152, 333–340. [Google Scholar] [CrossRef]
- Rossi, G.; Pengo, G.; Galosi, L.; Berardi, S.; Tambella, A.M.; Attili, A.R.; Gavazza, A.; Cerquetella, M.; Jergens, A.E.; Guard, B.C.; et al. Effects of the Probiotic Mixture Slab51® (SivoMixx®) as Food Supplement in Healthy Dogs: Evaluation of Fecal Microbiota, Clinical Parameters and Immune Function. Front. Vet. Sci. 2020, 7, 613. [Google Scholar] [CrossRef]
- Guidetti, G.; Di Cerbo, A.; Giovazzino, A.; Rubino, V.; Palatucci, A.T.; Centenaro, S.; Fraccaroli, E.; Cortese, L.; Bonomo, M.G.; Ruggiero, G.; et al. In Vitro Effects of Some Botanicals with Anti-Inflammatory and Antitoxic Activity. J. Immunol. Res. 2016, 2016, 5457010. [Google Scholar] [CrossRef]
- Di Cerbo, A.; Scarano, A.; Pezzuto, F.; Guidetti, G.; Canello, S.; Pinetti, D.; Genovese, F.; Corsi, L. Oxytetracycline-Protein Complex: The Dark Side of Pet Food. Open Public Health J. 2018, 11, 162–169. [Google Scholar] [CrossRef]
- Di Cerbo, A.; Canello, S.; Guidetti, G.; Fiore, F.; Corsi, L.; Rubattu, N.; Testa, C.; Cocco, R. Adverse food reactions in dogs due to antibiotic residues in pet food: A preliminary study. Vet. Ital. 2018, 54, 137–146. [Google Scholar] [CrossRef]
- Di Cerbo, A.; Pezzuto, F.; Guidetti, G.; Canello, S.; Corsi, L. Tetracyclines: Insights and Updates of their Use in Human and Animal Pathology and their Potential Toxicity. Open Biochem. J. 2019, 13, 1–12. [Google Scholar] [CrossRef]
- Segarra, S.; Miró, G.; Montoya, A.; Pardo-Marín, L.; Teichenné, J.; Ferrer, L.; Cerón, J.J. Prevention of disease progression in Leishmania infantum-infected dogs with dietary nucleotides and active hexose correlated compound. Parasites Vectors 2018, 11, 103. [Google Scholar] [CrossRef]
- Meydani, S.N.; Wu, D.; Santos, M.S.; Hayek, M.G. Antioxidants and immune response in aged persons: Overview of present evidence. Am. J. Clin. Nutr. 1995, 62, 1462S–1476S. [Google Scholar] [CrossRef]
- Perondi, F.; Bisanzio, D.; Adami, R.; Lippi, I.; Meineri, G.; Cutrignelli, M.I.; Massa, S.; Martello, E. The effect of a diet supplement containing S-acetyl-glutathione (SAG) and other antioxidant natural ingredients on glutathione peroxidase in healthy dogs: A pilot study. Ital. J. Anim. Sci. 2023, 22, 589–593. [Google Scholar] [CrossRef]
Nutraceutical Substance | Mechanism of Action | Clinical Outcome | Animal Model | Contribution to Longevity |
---|---|---|---|---|
Omega-3 Fatty Acids |
| |||
Prebiotics and Probiotics |
|
|
| |
Plant Extracts |
| |||
Dietary supplements |
|
|
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nicotra, M.; Iannitti, T.; Di Cerbo, A. Nutraceuticals, Social Interaction, and Psychophysiological Influence on Pet Health and Well-Being: Focus on Dogs and Cats. Vet. Sci. 2025, 12, 964. https://doi.org/10.3390/vetsci12100964
Nicotra M, Iannitti T, Di Cerbo A. Nutraceuticals, Social Interaction, and Psychophysiological Influence on Pet Health and Well-Being: Focus on Dogs and Cats. Veterinary Sciences. 2025; 12(10):964. https://doi.org/10.3390/vetsci12100964
Chicago/Turabian StyleNicotra, Mario, Tommaso Iannitti, and Alessandro Di Cerbo. 2025. "Nutraceuticals, Social Interaction, and Psychophysiological Influence on Pet Health and Well-Being: Focus on Dogs and Cats" Veterinary Sciences 12, no. 10: 964. https://doi.org/10.3390/vetsci12100964
APA StyleNicotra, M., Iannitti, T., & Di Cerbo, A. (2025). Nutraceuticals, Social Interaction, and Psychophysiological Influence on Pet Health and Well-Being: Focus on Dogs and Cats. Veterinary Sciences, 12(10), 964. https://doi.org/10.3390/vetsci12100964