Sonographic Assessment of Hyperechoic Vertical Artifact Characteristics in Lung Ultrasound Using Microconvex, Phased Array, and Linear Transducers
Abstract
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Lung Ultrasound Examination
2.3. Evaluation
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
HVAs | hyperechoic vertical artifacts |
LUS | lung ultrasound |
LUSS | lung ultrasound score |
PA | phased array |
References
- Lichtenstein, D.A.; Meziere, G.A. Relevance of lung ultrasound in the diagnosis of acute respiratory failure: The BLUE protocol. Chest 2008, 134, 117–125. [Google Scholar] [CrossRef]
- Lisciandro, G.R.; Lisciandro, S.C. Lung Ultrasound Fundamentals, “Wet Versus Dry” Lung, Signs of Consolidation in Dogs and Cats. Vet. Clin. N. Am. Small Anim. Pract. 2021, 51, 1125–1140. [Google Scholar] [CrossRef]
- Łobaczewski, A.; Czopowicz, M.; Moroz, A.; Mickiewicz, M.; Stabińska, M.; Petelicka, H.; Frymus, T.; Szaluś-Jordanow, O. Lung Ultrasound for Imaging of B-Lines in Dogs and Cats-A Prospective Study Investigating Agreement Between Three Types of Transducers and the Accuracy in Diagnosing Cardiogenic Pulmonary Edema, Pneumonia and Lung Neoplasia. Animals 2021, 11, 3279. [Google Scholar] [CrossRef]
- Kameda, T.; Kamiyama, N.; Taniguchi, N. The Mechanisms Underlying Vertical Artifacts in Lung Ultrasound and Their Proper Utilization for the Evaluation of Cardiogenic Pulmonary Edema. Diagnostics 2022, 12, 252. [Google Scholar] [CrossRef]
- Ward, J.L.; Murphy, S.D.; Lisciandro, G.R.; Tropf, M.A.; Viall, A.K.; DeFrancesco, T.C. Comparison of curvilinear-array (microconvex) and phased-array transducers for ultrasonography of the lungs in dogs. Am. J. Vet. Res. 2021, 82, 619–628. [Google Scholar] [CrossRef] [PubMed]
- Bobbia, X.; Chabannon, M.; Chevallier, T.; de La Coussaye, J.E.; Lefrant, J.Y.; Pujol, S.; Claret, P.-G.; Zieleskiewicz, L.; Roger, C.; Muller, L. Assessment of five different probes for lung ultrasound in critically ill patients: A pilot study. Am. J. Emerg. Med. 2018, 36, 1265–1269. [Google Scholar] [CrossRef] [PubMed]
- Pivetta, E.; Baldassa, F.; Masellis, S.; Bovaro, F.; Lupia, E.; Maule, M.M. Sources of Variability in the Detection of B-Lines, Using Lung Ultrasound. Ultrasound Med. Biol. 2018, 44, 1212–1216. [Google Scholar] [CrossRef] [PubMed]
- Demi, L.; Wolfram, F.; Klersy, C.; De Silvestri, A.; Ferretti, V.V.; Muller, M.; Miller, D.; Feletti, F.; Wełnicki, M.; Buda, N.; et al. New International Guidelines and Consensus on the Use of Lung Ultrasound. J. Ultrasound Med. 2023, 42, 309–344. [Google Scholar] [CrossRef]
- Buda, N.; Kosiak, W.; Radzikowska, E.; Olszewski, R.; Jassem, E.; Grabczak, E.M.; Pomiecko, A.; PiotrkowskI, J.; Piskunowicz, M.; Sołtysiak, M.; et al. Polish recommendations for lung ultrasound in internal medicine (POLLUS-IM). J. Ultrason. 2018, 18, 198–206. [Google Scholar] [CrossRef]
- Liu, J.; Guo, G.; Kurepa, D.; Volpicelli, G.; Sorantin, E.; Lovrenski, J.; Alonso-Ojembarrena, A.; Hsieh, K.-S.; Lodha, A.; Yeh, T.F.; et al. Specification and guideline for technical aspects and scanning parameter settings of neonatal lung ultrasound examination. J. Matern. Fetal Neonatal Med. 2022, 35, 1003–1016. [Google Scholar] [CrossRef]
- Liu, J.; Copetti, R.; Sorantin, E.; Lovrenski, J.; Rodriguez-Fanjul, J.; Kurepa, D.; Feng, X.; Cattaross, L.; Zhang, H.; Hwang, M.; et al. Protocol and Guidelines for Point-of-Care Lung Ultrasound in Diagnosing Neonatal Pulmonary Diseases Based on International Expert Consensus. J. Vis. Exp. 2019, 145, e58990. [Google Scholar]
- Kraszewska, K.; Gajewski, M.; Boysen, S. Case report: Application of color Doppler sonography for the assessment of pulmonary consolidations in a dog. Front. Vet. Sci. 2023, 10, 1275929. [Google Scholar] [CrossRef]
- Kraszewska, K.; Gajewski, M.; Boysen, S.; Buda, N. Retrospective Evaluation of Subpleural Consolidations Using Lung Ultrasound in 634 Dogs and 347 Cats. Animals 2025, 15, 549. [Google Scholar] [CrossRef]
- Schmickl, C.N.; Menon, A.A.; Dhokarh, R.; Seth, B.; Schembri, F. Optimizing B-lines on lung ultrasound: An in-vitro to in-vivo pilot study with clinical implications. J. Clin. Monit. Comput. 2020, 34, 277–284. [Google Scholar] [CrossRef] [PubMed]
- Buda, N.; Skoczylas, A.; Demi, M.; Wojteczek, A.; Cylwik, J.; Soldati, G. Clinical Impact of Vertical Artifacts Changing with Frequency in Lung Ultrasound. Diagnostics 2021, 11, 401. [Google Scholar] [CrossRef] [PubMed]
- Duggan, N.M.; Goldsmith, A.J.; Saud, A.A.A.; Ma, I.W.; Shokoohi, H.; Liteplo, A.S. Optimizing Lung Ultrasound: The Effect of Depth, Gain and Focal Position on Sonographic B-Lines. Ultrasound Med. Biol. 2022, 48, 1509–1517. [Google Scholar] [CrossRef] [PubMed]
- Matthias, I.; Panebianco, N.L.; Maltenfort, M.G.; Dean, A.J.; Baston, C. Effect of Machine Settings on Ultrasound Assessment of B-lines. J. Ultrasound Med. 2020, 40, 2039–2046. [Google Scholar] [CrossRef]
- Oricco, S.; Medico, D.; Tommasi, I.; Bini, R.M.; Rabozzi, R. Lung ultrasound score in dogs and cats: A reliability study. J. Vet. Intern. Med. 2023, 38, 336–345. [Google Scholar] [CrossRef]
- Granger, K.L.; Guieu, L.; Boysen, S.R. Inter-rater agreement and characterization of pleural line and subpleural fields in canine lung ultrasound: A comparative pilot study between high-frequency linear and curvilinear transducers using B- and M-mode ultrasonographic profiles. Ultrasound J. 2025, 17, 3. [Google Scholar] [CrossRef]
- Armenise, A.; Boysen, R.S.; Rudloff, E.; Neri, L.; Spattini, G.; Storti, E. Veterinary-focused assessment with sonography for trauma-airway, breathing, circulation, disability and exposure: A prospective observational study in 64 canine trauma patients. J. Small Anim. Pract. 2019, 60, 173–182. [Google Scholar] [CrossRef]
- Demi, M.; Buda, N.; Soldati, G. Vertical Artifacts in Lung Ultrasonography: Some Common Clinician Questions and the Related Engineer Answers. Diagnostics 2022, 12, 215. [Google Scholar] [CrossRef] [PubMed]
- Demi, M.; Soldati, G.; Ramalli, A. Lung Ultrasound Artifacts Interpreted as Pathology Footprints. Diagnostics 2023, 13, 1139. [Google Scholar] [CrossRef]
- Demi, M.; Prediletto, R.; Soldati, G.; Demi, L. Physical Mechanisms Providing Clinical Information from Ultrasound Lung Images: Hypotheses and Early Confirmations. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2020, 67, 612–623. [Google Scholar] [CrossRef] [PubMed]
- Kameda, T.; Kamiyama, N.; Kobayashi, H.; Kanayama, Y.; Taniguchi, N. Ultrasonic B-Line-Like Artifacts Generated with Simple Experimental Models Provide Clues to Solve Key Issues in B-Lines. Ultrasound Med. Biol. 2019, 45, 1617–1626. [Google Scholar] [CrossRef] [PubMed]
- Soldati, G.; Giunta, V.; Sher, S.; Melosi, F.; Dini, C. “Synthetic” comets: A new look at lung sonography. Ultrasound Med. Biol. 2011, 37, 1762–1770. [Google Scholar] [CrossRef]
- Soldati, G.; Copetti, R.; Sher, S. Sonographic interstitial syndrome: The sound of lung water. J. Ultrasound Med. 2009, 28, 163–174. [Google Scholar] [CrossRef]
- Yue Lee, F.C.; Jenssen, C.; Dietrich, C.F. A common misunderstanding in lung ultrasound: The comet tail artefact. Med. Ultrason. 2018, 20, 379–384. [Google Scholar] [CrossRef]
Questions | Answers |
---|---|
Part 1: the assessment of individual clips for image quality | |
1. Are hyperechoic vertical artifacts (HVAs) visible? | Yes/No |
2. If yes, do HVAs meet the criteria of B-lines? * | Yes, all HVAs meet the criteria Yes, but only some HVAs meet the criteria No; none of HVAs meet the criteria |
3. If the answer to 2. was “Yes, some HVAs meet the criteria” or “No”, name which criteria are not met | Pick from the list: arise from the pleural line; moves with lung sliding; extends to the bottom of the screen |
4. Is the number of HVAs easy to count? | 1—easy; 2—somewhat challenging; 3—very difficult; 4—not able to assess |
5. If the answer is 3 or 4, explain why | Pick from the list: the edges are not clear; artifacts blend; too grainy; move too quickly; variable width. Also, count HVAs that reach the bottom of the screen and ones that don’t. |
6. Assign a LUSS score for HVAs † | 0—≤2HVAs; 1—≤50% pleural line occupied by HVAs; 2—50–100% pleural line occupied by HVAs |
7. Rate the overall quality of the image with regard to the ability to assess B-lines on a scale from 1 to 100 | Open question |
8. What is the reason for such assessment, name the features of artifacts that are influencing your judgement. | Pick from the list: the edges are not clear; artifacts blend; too grainy; variable width; variable vertical echogenicity |
Part 2: the comparison of paired clips | |
1. In your opinion are these two clips of equal quality? | Yes/No |
2. If No, which one do you consider higher quality? | Left/Right |
3. Why do you think the quality of that image is better? | Mark one or more answers: Contrast between vertical artifact and surrounding tissue is greater The movement of vertical artifacts is easier to assess Vertical artifacts are easier to count The pleural line quality is easier to assess |
4. Is the quality of B-lines equal on both clips? | Yes/No |
5. If No, where is the quality of B-lines better? | Left/Right |
95% CI | ||||
---|---|---|---|---|
Parameter | Concordance Coefficient | p | LL | UL |
Are HVAs visible? | 1.00 a | <0.001 | 1.00 | 1.00 |
Do HVAs meet the criteria of B-lines? | 0.59 b | 0.002 | 0.38 | 0.75 |
Not met: HVAs arise from the pleural line | −0.06 a | 0.758 | −0.17 | 0.00 |
Not met: HVAs move with lung sliding | 0.75 a | <0.001 | 0.45 | 1.00 |
Not met: HVAs extend to the bottom of the screen | 0.58 a | 0.003 | 0.22 | 0.90 |
Are HVAs easy to count? | 0.74 b | <0.001 | 0.53 | 0.86 |
HVA edges not clear | 0.51 a | 0.008 | 0.13 | 0.79 |
HVAs blend | 0.51 a | 0.008 | 0.15 | 0.75 |
HVAs grainy | 0.83 a | <0.001 | 0.58 | 1.00 |
HVAs move too quickly | 0.07 a | 0.729 | −0.29 | 0.51 |
HVAs of variable width | 0.43 a | 0.032 | 0.00 | 0.75 |
Number of HVAs reaching the bottom of the screen | 0.58 c | 0.003 | 0.15 | 0.79 |
Number of HVAs not reaching the bottom of the screen | 0.87 c | <0.001 | 0.49 | 0.97 |
LUSS value | 0.90 b | <0.001 | 0.73 | 0.98 |
Overall image quality scale | 0.82 c | <0.001 | 0.66 | 0.93 |
HVA edges not clear | 0.37 a | 0.058 | 0.02 | 0.75 |
HVAs blend | 0.58 a | 0.002 | 0.27 | 0.87 |
HVAs grainy | 0.35 a | 0.072 | −0.05 | 0.79 |
HVAs of variable width | 0.26 a | 0.202 | −0.15 | 0.57 |
HVAs of variable echogenicity | 0.41 a | 0.045 | 0.00 | 0.75 |
Pair: equal image quality | 0.63 a | <0.001 | 0.00 | 1.00 |
Image of higher quality | 0.80 a | <0.001 | 0.49 | 1.00 |
Superior HVA echogenicity | 1.00 a | <0.001 | 1.00 | 1.00 |
HVA movement easier to assess | 0.05 a | 0.786 | −0.31 | 0.42 |
HVAs easier to count | 0.72 a | <0.001 | 0.46 | 1.00 |
Pleural line easier to assess | 0.90 a | <0.001 | 0.60 | 1.00 |
Pleural line abnormalities more visible | 0.78 a | <0.001 | 0.00 | 1.00 |
Pair: equal B-line quality | 0.83 a | <0.001 | 0.00 | 1.00 |
Image with higher B-line quality | 0.79 a | <0.001 | 0.47 | 1.00 |
Transducer Type | ||||
---|---|---|---|---|
Microconvex (N = 16) | PA (N = 16) | Linear (N = 16) | ||
M ± SD/n (%) | M ± SD/n (%) | M ± SD/n (%) | p | |
Are HVAs visible? (+) | 16 (100.0%) | 16 (100.0%) | 16 (100.0%) | 1.000 |
Do HVAs meet the criteria of B-lines? | 0.024 | |||
Yes, all meet | 8 (50.0%) AB | 12 (75.0%) B | 3 (18.8%) A | |
Yes, some meet | 7 (43.8%) | 3 (18.8%) | 9 (56.3%) | |
No | 1 (6.3%) | 1 (6.3%) | 4 (24.0%) | |
Arise from the pleural line (+) | 0 (0.0%) | 1 (6.3%) | 2 (12.5%) | 0.344 |
Move with lung sliding (+) | 4 (25.0%) | 2 (12.5%) | 4 (25.0%) | 0.603 |
Extend to the bottom of the screen (+) | 8 (50.0%) AB | 3 (18.8%) A | 10 (62.5%) B | 0.037 |
HVAs easy to count | <0.001 | |||
Easy | 0 (0.0%) A | 0 (0.0%) A | 6 (35.7%) B | |
Somewhat challenging | 8 (50.0%) | 2 (12.5%) | 6 (35.7%) | |
Very difficult | 6 (37.5%) | 9 (56.3%) | 4 (25.0%) | |
Not able to assess | 2 (12.5%) AB | 5 (31.3%) B | 0 (0.0%) A | |
Edges not clear_1 (+) | 9 (56.3%) B | 15 (93.8%) C | 2 (12.5%) A | <0.001 |
HVAs blend (+) | 6 (37.5%) A | 13 (81.3%) B | 7 (43.8%) AB | 0.027 |
HVAs grainy (+) | 3 (18.8%) A | 16 (100.0%) B | 1 (6.4%) A | <0.001 |
Move too quickly (+) | 6 (37.5%) | 10 (62.5%) | 5 (31.3%) | 0.169 |
Variable width (+) | 7 (43.8%) | 11 (68.8%) | 5 (31.3%) | 0.097 |
HVAs that reach the bottom of the screen | 6.72 ± 7.03 | 3.91 ± 4.36 | 3.88 ± 3.69 | 0.389 |
HVAs that do not reach the bottom of the screen | 0.94 ± 1.18 A | 0.28 ± 0.89 A | 3.79 ± 3.64 B | <0.001 |
LUSS value | 0.370 | |||
<25% | 2 (12.5%) | 4 (25.0%) | 5 (31.3%) | |
<50% | 6 (37.5%) | 2 (12.5%) | 5 (31.3%) | |
50–100% | 8 (50.0%) | 10 (62.5%) | 6 (37.5%) | |
Overall image quality | 77.81 ± 10.16 B | 32.19 ± 25.95 A | 80.00 ± 10.80 B | <0.001 |
HVA edges not clear (+) | 11 (68.8%) B | 16 (100.0%) C | 4 (25.0%) A | <0.001 |
HVAs blend (+) | 9 (56.3%) AB | 14 (87.5%) B | 6 (37.5%) A | 0.014 |
HVAs too grainy (+) | 5 (31.3%) A | 16 (100.0%) B | 5 (31.3%) A | <0.001 |
Variable width (+) | 12 (75.0%) | 13 (81.3%) | 7 (43.8%) | 0.055 |
Variable echogenicity (+) | 10 (62.5%) | 7 (43.8%) | 10 (62.5%) | 0.467 |
Dependent Variable | Microconvex (n = 16) | PA (n = 16) | Linear (n = 16) | F | η2 |
---|---|---|---|---|---|
M ± SD | M ± SD | M ± SD | |||
Better quality | 1.31 ± 0.36 B | 0.00 ± 0.00 C | 1.69 ± 0.36 A | 145.89 *** | 0.87 |
Superior HVA echogenicity | 1.22 ± 0.26 B | 0.00 ± 0.00 C | 1.78 ± 0.26 A | 303.21 *** | 0.93 |
HVA movement easier to assess | 1.28 ± 0.45 A | 0.78 ± 0.41 B | 0.94 ± 0.36 AB | 6.36 ** | 0.22 |
HVAs easier to count | 1.31 ± 0.36 B | 0.03 ± 0.13 C | 1.66 ± 0.35 A | 130.99 *** | 0.85 |
Pleural line quality easier to assess | 1.22 ± 0.26 B | 0.00 ± 0.00 C | 1.78 ± 0.26 A | 303.21 *** | 0.93 |
Higher HVA quality | 1.22 ± 0.36 B | 0.03 ± 0.13 C | 1.75 ± 0.32 A | 149.94 *** | 0.87 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gajewski, M.; Kraszewska, K.; Gommeren, K.; Boysen, S. Sonographic Assessment of Hyperechoic Vertical Artifact Characteristics in Lung Ultrasound Using Microconvex, Phased Array, and Linear Transducers. Vet. Sci. 2025, 12, 949. https://doi.org/10.3390/vetsci12100949
Gajewski M, Kraszewska K, Gommeren K, Boysen S. Sonographic Assessment of Hyperechoic Vertical Artifact Characteristics in Lung Ultrasound Using Microconvex, Phased Array, and Linear Transducers. Veterinary Sciences. 2025; 12(10):949. https://doi.org/10.3390/vetsci12100949
Chicago/Turabian StyleGajewski, Michał, Katarzyna Kraszewska, Kris Gommeren, and Søren Boysen. 2025. "Sonographic Assessment of Hyperechoic Vertical Artifact Characteristics in Lung Ultrasound Using Microconvex, Phased Array, and Linear Transducers" Veterinary Sciences 12, no. 10: 949. https://doi.org/10.3390/vetsci12100949
APA StyleGajewski, M., Kraszewska, K., Gommeren, K., & Boysen, S. (2025). Sonographic Assessment of Hyperechoic Vertical Artifact Characteristics in Lung Ultrasound Using Microconvex, Phased Array, and Linear Transducers. Veterinary Sciences, 12(10), 949. https://doi.org/10.3390/vetsci12100949