Functional Mutations in the VRTN Gene Influence Growth Traits and Meat Quality in Hainan Black Goats
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animal Preparation and Ethics
2.2. Sample Collection and Phenotypic Trait Measurement
2.3. DNA/RNA Extraction and Primer Design
2.4. PCR/qPCR Amplification
2.5. Statistical Analysis
3. Results
3.1. Identification of Missense Mutations in the Goat VRTN Gene
3.2. Tissue-Specific and Developmental Expression of VRTN
3.3. Structural Implications of Missense Mutations in VRTN
3.4. Association of VRTN Polymorphisms with Production Traits
3.5. Effects of Genotype on VRTN Expression
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mureau, C.; d’Oliveira, L.; Peyron, O.; Blaise, E.; Renaud, A.; Balcarcel, A.; Jeanjean, M.; Bonhomme, V.; Bouby, L.; Ros, J.; et al. 8000 years of wild and domestic animal body size data reveal long-term synchrony and recent divergence due to intensified human impact. Proc. Natl. Acad. Sci. USA 2025, 122, e2503428122. [Google Scholar] [CrossRef]
- Wu, H.; Qin, B.; Yang, G.; Shao, Q.; Zhu, J.; Zhou, Y.; Gao, Y.; Zhang, L.; Wang, B.; Ji, P.; et al. Genetic lineages analysis of black goat subpopulations in southern areas of China: Correlation of SNPs and methylation sites in their differentiated genes. Int. J. Biol. Macromol. 2025, 147, 147064. [Google Scholar] [CrossRef] [PubMed]
- An, Z.X.; Shi, L.G.; Hou, G.Y.; Zhou, H.L.; Xun, W.J. Genetic diversity and selection signatures in Hainan black goats revealed by whole-genome sequencing data. Animal 2024, 18, 101147. [Google Scholar] [CrossRef] [PubMed]
- Duan, Y.; Zhang, H.; Zhang, Z.; Gao, J.; Yang, J.; Wu, Z.; Fan, Y.; Xing, Y.; Li, L.; Xiao, S.; et al. VRTN is Required for the Development of Thoracic Vertebrae in Mammals. Int. J. Biol. Sci. 2018, 14, 667–681. [Google Scholar] [CrossRef]
- Yang, J.; Huang, L.; Yang, M.; Fan, Y.; Li, L.; Fang, S.; Deng, W.; Cui, L.; Zhang, Z.; Ai, H.; et al. Possible introgression of the VRTN mutation increasing vertebral number, carcass length and teat number from Chinese pigs into European pigs. Sci. Rep. 2016, 6, 19240. [Google Scholar] [CrossRef]
- Fan, Y.; Xing, Y.; Zhang, Z.; Ai, H.; Ouyang, Z.; Ouyang, J.; Yang, M.; Li, P.; Chen, Y.; Gao, J.; et al. A further look at porcine chromosome 7 reveals VRTN variants associated with vertebral number in Chinese and Western pigs. PLoS ONE 2013, 8, e62534. [Google Scholar] [CrossRef]
- Mikawa, S.; Sato, S.; Nii, M.; Morozumi, T.; Yoshioka, G.; Imaeda, N.; Yamaguchi, T.; Hayashi, T.; Awata, T. Identification of a second gene associated with variation in vertebral number in domestic pigs. BMC Genet. 2011, 12, 5. [Google Scholar] [CrossRef]
- Han, M.; Wang, X.; Du, H.; Cao, Y.; Zhao, Z.; Niu, S.; Bao, X.; Rong, Y.; Ao, X.; Guo, F.; et al. Genome-wide association study identifies candidate genes affecting body conformation traits of Zhongwei goat. BMC Genom. 2025, 26, 37. [Google Scholar] [CrossRef] [PubMed]
- Shao, M.; Wang, M.; Liu, Y.Y.; Ge, Y.W.; Zhang, Y.J.; Shi, D.L. Vegetally localised Vrtn functions as a novel repressor to modulate bmp2b transcription during dorsoventral patterning in zebrafish. Development 2017, 144, 3361–3374. [Google Scholar] [CrossRef]
- Green, H.E.; Oliveira, H.R.; Alvarenga, A.B.; Scramlin-Zuelly, S.; Grossi, D.; Schinckel, A.P.; Brito, L.F. Genomic background of biotypes related to growth, carcass and meat quality traits in Duroc pigs based on principal component analysis. J. Anim. Breed. Genet. 2024, 141, 163–178. [Google Scholar] [CrossRef]
- Wang, K.; Xu, M.; Han, X.; Liu, H.; Han, J.; Sun, W.; Zhou, H. Transcriptome analysis of muscle atrophy in Leizhou black goats: Identification of key genes and insights into limb-girdle muscular dystrophy. BMC Genom. 2025, 26, 80. [Google Scholar] [CrossRef] [PubMed]
- NY/T 630-2002; Mutton Quality Grading. Ministry of Agriculture of the People’s Republic of China: Beijing, China, 2002.
- Wang, K.; Kang, Z.; Jiang, E.; Yan, H.; Zhu, H.; Liu, J.; Qu, L.; Lan, X.; Pan, C. Genetic effects of DSCAML1 identified in genome-wide association study revealing strong associations with litter size and semen quality in goat (Capra hircus). Theriogenology 2020, 146, 20–25. [Google Scholar] [CrossRef]
- Huang, J.; Xu, M.; Zhang, Y.; Han, J.; Zhou, H.; Wang, K. Missense Mutations in FDNC5 Associated with Morphometric Traits and Meat Quality in Hainan Black Goats. Animals 2025, 15, 565. [Google Scholar] [CrossRef] [PubMed]
- Jiang, N.; Liu, C.; Lan, T.; Zhang, Q.; Cao, Y.; Pu, G.; Niu, P.; Zhang, Z.; Li, Q.; Zhou, J.; et al. Polymorphism of VRTN Gene g.20311_20312ins291 Was Associated with the Number of Ribs, Carcass Diagonal Length and Cannon Bone Circumference in Suhuai Pigs. Animals 2020, 10, 484. [Google Scholar] [CrossRef]
- Bersuker, K.; Peterson, C.W.H.; To, M.; Sahl, S.J.; Savikhin, V.; Grossman, E.A.; Nomura, D.K.; Olzmann, J.A. A Proximity Labeling Strategy Provides Insights into the Composition and Dynamics of Lipid Droplet Proteomes. Dev. Cell. 2018, 44, 97–112.e7. [Google Scholar] [CrossRef]
- Nakano, H.; Sato, S.; Uemoto, Y.; Kikuchi, T.; Shibata, T.; Kadowaki, H.; Kobayashi, E.; Suzuki, K. Effect of VRTN gene polymorphisms on Duroc pig production and carcass traits, and their genetic relationships. Anim. Sci. J. 2015, 86, 125–131. [Google Scholar] [CrossRef]
- Burgos, C.; Latorre, P.; Altarriba, J.; Carrodeguas, J.A.; Varona, L.; López-Buesa, P. Allelic frequencies of NR6A1 and VRTN, two genes that affect vertebrae number in diverse pig breeds: A study of the effects of the VRTN insertion on phenotypic traits of a Duroc × Landrace-Large White cross. Meat Sci. 2015, 100, 150–155. [Google Scholar] [CrossRef]
- Johnsson, M.; Jungnickel, M.K. Evidence for and localization of proposed causative variants in cattle and pig genomes. Genet. Sel. Evol. 2021, 53, 67. [Google Scholar] [CrossRef]
- Ryu, Y.C.; Lee, E.A.; Chai, H.H.; Park, J.E.; Kim, J.M. Effects of a Novel p.A41P Mutation in the Swine Myogenic factor 5 (MYF5) Gene on Protein Stabilizing, Muscle Fiber Characteristics and Meat Quality. Korean J. Food Sci. Anim. Resour. 2018, 38, 711–717. [Google Scholar]
- Padula, M.C.; Leccese, P.; Lascaro, N.; Carbone, T.; Limongi, A.R.; Radice, R.P.; Padula, A.A.; D’Angelo, S.; Martelli, G. From structure to function for the characterization of ERAP1 active site in Behçet syndrome. A novel polymorphism associated with known gene variations. Mol. Immunol. 2020, 117, 155–159. [Google Scholar] [CrossRef] [PubMed]
- Zammit, P.S. Function of the myogenic regulatory factors Myf5, MyoD, Myogenin and MRF4 in skeletal muscle, satellite cells and regenerative myogenesis. Semin. Cell Dev. Biol. 2017, 72, 19–32. [Google Scholar] [CrossRef] [PubMed]
- Wardle, F.C. Master control: Transcriptional regulation of mammalian Myod. J. Muscle Res. Cell Motil. 2019, 40, 211–226. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Wu, X.; Cai, H.; Pan, C.; Lei, C.; Chen, H.; Lan, X. Genetic variants and effects on milk traits of the caprine paired-like homeodomain transcription factor 2 (PITX2) gene in dairy goats. Gene 2013, 532, 203–210. [Google Scholar] [CrossRef]
- Fetcho, J.R. A review of the organization and evolution of motoneurons innervating the axial musculature of vertebrates. Brain Res. 1987, 434, 243–280. [Google Scholar] [CrossRef]
- Benoit, B.; Meugnier, E.; Castelli, M.; Chanon, S.; Vieille-Marchiset, A.; Durand, C.; Bendridi, N.; Pesenti, S.; Monternier, P.A.; Durieux, A.C.; et al. Fibroblast growth factor 19 regulates skeletal muscle mass and ameliorates muscle wasting in mice. Nat. Med. 2017, 23, 990–996. [Google Scholar] [CrossRef]
- Han, X.; Goh, K.Y.; Lee, W.X.; Choy, S.M.; Tang, H.W. The Importance of mTORC1-Autophagy Axis for Skeletal Muscle Diseases. Int. J. Mol. Sci. 2022, 24, 297. [Google Scholar] [CrossRef]
- Dou, M.; Li, M.; Zheng, Z.; Chen, Q.; Wu, Y.; Wang, J.; Shan, H.; Wang, F.; Dai, X.; Li, Y.; et al. A missense mutation in RRM1 contributes to animal tameness. Sci. Adv. 2023, 9, eadf4068. [Google Scholar] [CrossRef]
- Li, K.; Liu, Y.; He, X.; Tao, L.; Jiang, Y.; Lan, R.; Hong, Q.; Chu, M. A Novel SNP in the Promoter Region of IGF1 Associated With Yunshang Black Goat Kidding Number via Promoting Transcription Activity by SP1. Front. Cell Dev. Biol. 2022, 10, 873095. [Google Scholar] [CrossRef] [PubMed]
Loci | Size | Genotypic Frequencies | HWE | Population Parameters | |||||
---|---|---|---|---|---|---|---|---|---|
n | Ref | Ref/Mut | Mut | p-Value | Ho | He | Ne | PIC | |
SNP1 p.Asp688Asp | 300 | 110 | 179 | 11 | p < 0.05 | 0.260 | 0.252 | 1.336 | 0.446 |
SNP2 p.Pro615Ser | 1195 | 747 | 416 | 32 | p < 0.05 | 0.304 | 0.282 | 1.392 | 0.321 |
SNP3 p.Arg490Lys | 1195 | 972 | 202 | 21 | p < 0.05 | 0.145 | 0.157 | 1.186 | 0.183 |
SNP4 p.Thr476Met | 290 | 269 | 21 | 0 | p < 0.05 | 0.093 | 0.088 | 1.097 | 0.088 |
Traits | Genotypes (Mean ± SE) | p Values | ||
---|---|---|---|---|
Ref | Ref/Mut | Mut | ||
body height (cm) | 52.52 ± 0.66 | 52.57 ± 0.73 | 52.47 ± 0.52 | 0.881 |
chest depth (cm) | 26.23 ± 0.47 | 25.82 ± 0.74 | 26.12 ± 0.57 | 0.472 |
chest width (cm) | 15.82 a ± 0.42 | 15.07 b ± 0.37 | 15.21 b ± 0.54 | 0.035 |
body length (cm) | 66.23 ± 1.02 | 64.87 ± 0.83 | 65.33 ± 0.95 | 0.053 |
chest circumference (cm) | 72.32 a ± 0.92 | 68.44 b ± 1.07 | 69.83 b ± 1.13 | 0.034 |
withers height (cm) | 54.88 ± 0.82 | 54.08 ± 0.61 | 55.32 ± 0.97 | 0.363 |
hip width (cm) | 18.53 a ± 0.86 | 16.96 b ± 0.69 | 17.82 a ± 0.60 | 0.043 |
body weight (kg) | 27.31 ± 1.27 | 25.45 ± 0.72 | 26.35 ± 0.58 | 0.235 |
Carcass weight (kg) | 9.78 a ± 0.41 | 9.34 b ± 0.31 | 9.29 b ± 0.37 | 0.039 |
cross-section area of longissimus dorsi lumboismuscle (cm2) | 7.85 a ± 0.51 | 7.27 a ± 0.36 | 7.43 b ± 0.41 | 0.054 |
water loss rate (%) | 4.62 ± 0.19 | 4.70 ± 0.21 | 4.55 ± 0.17 | 0.749 |
water holding capacity (%) | 4.58 ± 0.23 | 4.63 ± 0.21 | 4.70 ± 0.34 | 0.613 |
shear force (N) | 49.72 a ± 0.31 | 48.35 b ± 0.24 | 48.07 c ± 0.28 | 0.017 |
Traits | Genotypes (Mean ± SE) | p Values | ||
---|---|---|---|---|
Ref | Ref/Mut | Mut | ||
body height (cm) | 53.42 ± 0.82 | 51.05 ± 1.47 | 52.08 ± 1.32 | 0.558 |
chest depth (cm) | 26.31 ± 0.93 | 25.71 ± 1.27 | 25.44 ± 1.03 | 0.762 |
chest width (cm) | 15.82 ± 0.71 | 14.99 ± 0.86 | 16.04 ± 1.20 | 0.33 |
body length (cm) | 66.32 ± 2.07 | 64.98 ± 1.15 | 64.93 ± 1.72 | 0.702 |
chest circumference (cm) | 73.81 a ± 1.24 | 69.93 b ± 0.91 | 70.30 b ± 1.29 | 0.042 |
withers height (cm) | 55.62 ± 1.04 | 54.33 ± 0.90 | 54.85 ± 0.62 | 0.084 |
hip width (cm) | 18.03 ± 1.02 | 17.36 ± 0.61 | 17.01 ± 0.72 | 0.062 |
body weight (kg) | 27.48 a ± 0.67 | 27.35 a ± 0.46 | 26.42 b ± 0.41 | 0.028 |
Carcass weight (kg) | 9.68 a ± 0.16 | 9.42 b ± 0.21 | 9.39 b ± 0.23 | 0.039 |
cross-section area of longissimus dorsi lumboismuscle (cm2) | 7.54 ± 0.13 | 7.51 ± 0.10 | 7.49 ± 0.14 | 0.216 |
water loss rate (%) | 4.63 ± 0.23 | 4.62 ± 0.08 | 4.78 ± 0.17 | 0.068 |
water holding capacity (%) | 4.72 a ± 0.15 | 4.63 b ± 0.08 | 4.58 b ± 0.12 | 0.047 |
shear force (N) | 49.03 a ± 0.41 | 47.97 b ± 0.28 | 47.38 b ± 0.14 | 0.008 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, M.; Huang, J.; Wang, K.; Zhang, Y.; Zhou, H.; Wang, F.; Han, J. Functional Mutations in the VRTN Gene Influence Growth Traits and Meat Quality in Hainan Black Goats. Vet. Sci. 2025, 12, 936. https://doi.org/10.3390/vetsci12100936
Xu M, Huang J, Wang K, Zhang Y, Zhou H, Wang F, Han J. Functional Mutations in the VRTN Gene Influence Growth Traits and Meat Quality in Hainan Black Goats. Veterinary Sciences. 2025; 12(10):936. https://doi.org/10.3390/vetsci12100936
Chicago/Turabian StyleXu, Mengning, Jing Huang, Ke Wang, Yuelang Zhang, Hanlin Zhou, Feng Wang, and Jiancheng Han. 2025. "Functional Mutations in the VRTN Gene Influence Growth Traits and Meat Quality in Hainan Black Goats" Veterinary Sciences 12, no. 10: 936. https://doi.org/10.3390/vetsci12100936
APA StyleXu, M., Huang, J., Wang, K., Zhang, Y., Zhou, H., Wang, F., & Han, J. (2025). Functional Mutations in the VRTN Gene Influence Growth Traits and Meat Quality in Hainan Black Goats. Veterinary Sciences, 12(10), 936. https://doi.org/10.3390/vetsci12100936