Synthetic and Natural Biomaterials in Veterinary Medicine and Ophthalmology: A Review of Clinical Cases and Experimental Studies
Abstract
:Simple Summary
Abstract
1. Introduction
2. Hard Materials
2.1. Polycaprolactone
2.2. Pluronic
3. Soft Materials
3.1. Silk
3.2. Collagen
3.3. Alginate
3.4. Hyaluronic Acid
4. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gong, C.Y.; Shi, S.; Dong, P.W.; Kan, B.; Gou, M.L.; Wang, X.H.; Li, X.Y.; Luo, F.; Zhao, X.; Wei, Y.Q.; et al. Synthesis and characterization of PEG-PCL-PEG thermosensitive hydrogel. Int. J. Pharm. 2009, 365, 89–99. [Google Scholar] [CrossRef]
- Orlando, I.; Roy, I. Cellulose-Based Hydrogels for Wound Healing. In Cellulase-Based Superabsorbent Hydrogels; Mondal, M.H.H., Ed.; Springer: Berlin/Heidelberg, Germany, 2019; Volume 37, pp. 1131–1148. [Google Scholar]
- Guo, B.; Ma, P.X. Synthetic biodegradable functional polymers for tissue engineering: A brief review. Sci. China Chem. 2014, 57, 490–500. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; LaBarbera, D.V. 3D High-Content Screening of Organoids for Drug Discovery. In Comprehensive Medicinal Chemistry III; Chackalamannil, S., Rotella, D., Ward, S.E., Eds.; Elsevier: Oxford, UK, 2017; Volume 2, pp. 388–415. [Google Scholar]
- Malikmammadov, E.; Tanir, T.E.; Kiziltay, A.; Hasirci, V.; Hasirci, N. PCL and PCL-based materials in biomedical applications. J. Biomater. Sci. Polym. Ed. 2018, 29, 863–893. [Google Scholar] [CrossRef]
- Chuenjitkuntaworn, B.; Osathanon, T.; Nowwarote, N.; Supaphol, P.; Pavasant, P. The efficacy of polycaprolactone/hydroxyapatite scaffold in combination with mesenchymal stem cells for bone tissue engineering. J. Biomed. Mater. Res. Part A 2016, 104, 264–271. [Google Scholar] [CrossRef]
- Xuan, Y.; Tang, H.; Wu, B.; Ding, X.; Lu, Z.; Li, W.; Xu, Z. A specific groove design for individualized healing in a canine partial sternal defect model by a polycaprolactone/hydroxyapatite scaffold coated with bone marrow stromal cells. J. Biomed. Mater. Res. Part A 2014, 102A, 3401–3408. [Google Scholar] [CrossRef]
- Kim, S.J.; Kim, M.R.; Oh, J.S.; Han, I.; Shin, S.W. Effects of polycaprolactone-tricalcium phosphate, recombinant human bone morphogenetic protein-2 and dog mesenchymal stem cells on bone formation: Pilot study in dogs. Yonsei Med. J. 2009, 50, 825–831. [Google Scholar] [CrossRef] [PubMed]
- Rai, B.; Ho, K.Y.; Lei, Y.; Si-Hoe, K.M.; Teoh, C.M.J.; Yacob, K.B.; Chen, F.; Fooi-Chin, N.G.; Teoh, S.H. Polycaprolactone-20% tricalcium phosphate scaffolds in combination with Platelet-Rich plasma for the treatment of critical-sized defects of the mandible: A pilot study. J. Oral Maxillofac. Surg. 2007, 65, 2195–2205. [Google Scholar] [CrossRef]
- Shim, J.H.; Won, J.Y.; Park, J.H.; Bae, J.H.; Ahn, G.; Kim, C.H.; Lim, D.H.; Cho, D.W.; Yun, W.S.; Bae, E.B.; et al. Effects of 3D-printed polycaprolactone/β-tricalcium phosphate membranes on guided bone regeneration. Int. J. Mol. Sci. 2017, 18, 899. [Google Scholar] [CrossRef]
- Bernards, D.A.; Bhisitkul, R.B.; Wynn, P.; Steedman, M.R.; Lee, O.T.; Wong, F.; Thoongsuwan, S.; Desai, T.A. Ocular biocompatibility and structural integrity of micro- and nanostructured poly(caprolactone) films. J. Ocul. Pharmacol. Ther. 2013, 29, 249–257. [Google Scholar] [CrossRef]
- Wang, T.J.; Wang, I.J.; Chen, S.; Chen, J.H.; Young, T.H. The phenotypic response of bovine corneal endothelial cells on chitosan/polycaprolactone blends. Colloids Surf. B 2012, 90, 236–243. [Google Scholar] [CrossRef]
- Young, T.H.; Wang, I.J.; Hub, F.R.; Wang, T.J. Fabrication of a bioengineered corneal endothelial cell sheet using chitosan/polycaprolactone blend membranes. Colloids Surf. B 2014, 116, 403–410. [Google Scholar] [CrossRef]
- Kruse, M.; Walter, P.; Bauer, B.; Rütten, S.; Schaefer, K.; Plange, N.; Gries, T.; Jockenhoevel, S.; Fuest, M. Electrospun membranes as scaffolds for human corneal endothelial cells. Curr. Eye Res. 2018, 43, 1–11. [Google Scholar] [CrossRef]
- Himmler, M.; Garreis, F.; Paulsen, F.; Schubert, D.K.; Fuchsluger, T.A. Optimization of polycaprolactone—Based nanofiber matrices for the cultivation of corneal endothelial cells. Sci. Rep. 2021, 11, 18858. [Google Scholar] [CrossRef]
- Tayebi, T.; Baradaran-Rafi, A.; Hajifathali, A.; Rahimpour, A.; Zali, H.; Shaabani, A.; Niknejad, H. Biofabrication of chitosan/chitosan nanoparticles/polycaprolactone transparent membrane for corneal endothelial tissue engineering. Sci. Rep. 2021, 11, 7060. [Google Scholar] [CrossRef]
- Sharifi, S.; Sharifi, H. Electrospun-reinforced suturable biodegradable artificial cornea. ACS Appl. Bio Mater. 2022, 5, 5716–5727. [Google Scholar] [CrossRef]
- Irani, Y.D.; Tian, Y.; Wang, M.; Klebe, S.; McInnes, S.J.; Voelcker, N.H.; Coffer, J.L.; Williams, K.A. A novel pressed porous silicon-polycaprolactone composite as a dual purpose implant for the delivery of cells and drugs to the eye. Exp. Eye Res. 2015, 139, 123–131. [Google Scholar] [CrossRef]
- Kim, J.; Kudisch, M.; Mudumba, S.; Asada, H.; Aya-Shibuya, E.; Bhisitkul, R.B.; Desai, T.A. Biocompatibility and pharmacokinetic analysis of an intracameral polycaprolactone drug delivery implant for glaucoma. Investig. Ophthalmol. Vis. Sci. 2016, 57, 4342–4346. [Google Scholar] [CrossRef]
- Bi, X.Z.; Pan, W.H.; Yu, X.P.; Song, Z.M.; Ren, Z.J.; Sun, M.; Li, C.H.; Nan, K.A. Application of 5-fluorouracilpolycaprolactone sustained-release film in ahmed glaucoma valve implantation inhibits postoperative bleb scarring in rabbit eyes. PLoS ONE 2015, 18, e0141467. [Google Scholar]
- Park, S.Y.; An, J.H.; Kwon, H.; Choi, S.Y.; Lim, K.Y.; Kwak, H.H.; Hussein, K.Y.; Woo, H.M.; Park, K.M. Custom-made artificial eyes using 3D printing for dogs: A preliminary study. PLoS ONE 2020, 15, e0242274. [Google Scholar] [CrossRef]
- Klouda, L.; Mikos, A.G. Thermoresponsive hydrogels in biomedical applications. Eur. J. Pharm. Biopharm. 2008, 68, 34–45. [Google Scholar] [CrossRef]
- Cortiella, J.; Nichols, J.E.; Kojima, K.; Bonassar, L.J.; Dargon, P.; Roy, A.K.; Vacant, M.P.; Niles, J.A.; Vacanti, C.A. Tissue-engineered lung: An in vivo and in vitro comparison of polyglycolic acid and pluronic F-127 hydrogel/somatic lung progenitor cell constructs to support tissue growth. Tissue Eng. 2006, 12, 1213–1225. [Google Scholar] [CrossRef]
- Hao, J.; Tong, T.; Jin, K.; Zhuang, Q.; Han, T.; Bi, Y.; Wang, J.; Wang, X. Folic acid-functionalized drug delivery platform of resveratrol based on Pluronic 127/D-α-tocopheryl polyethylene glycol 1000 succinate mixed micelles. Int. J. Nanomed. 2017, 12, 2279–2292. [Google Scholar] [CrossRef]
- Khan, S.; Minhas, M.U.; Ahmad, M.; Sohail, M. Self-assembled supramolecular thermoreversible β-cyclodextrin/ethylene glycol injectable hydrogels with difunctional Pluronic® 127 as controlled delivery depot of curcumin. Development, characterization and in vitro evaluation. J. Biomater. Sci. Polym. Ed. 2018, 29, 1–34. [Google Scholar] [CrossRef]
- Song, Z.; Sun, J.; Deng, P.; Zhou, F.; Xu, H.; Wen, Y.; Teng, F.; Ge, D.; Feng, R. Oligochitosan-pluronic 127 conjugate for delivery of honokiol. Artif. Cells Nanomed. Biotechnol. 2018, 46, S740–S750. [Google Scholar] [CrossRef]
- Arafa, M.G.; Girgis, G.N.S.; El-Dahan, M.S. Chitosan-Coated PLGA Nanoparticles for Enhanced Ocular Anti-Inflammatory Efficacy of Atorvastatin Calcium. Int. J. Nanomed. 2020, 15, 1335–1347. [Google Scholar] [CrossRef]
- Ganguly, R.; Verma, G.; Ingle, A.; Kumar, S.; Sarma, H.D.; Dutta, D.; Dutta, B.; Kunwar, A.; Ajish, K.; Bhainsa, K.C.; et al. Structural, rheological and therapeutic properties of pluronic F127 hydrogel and beeswax based lavender oil ointment formulations. J. Mol. Liq. 2022, 365, 120157. [Google Scholar] [CrossRef]
- Schmolka, I.R. Artificial skin. I. Preparation and properties of pluronic F-127 gels for treatment of burns. J. Biomed. Mater. Res. 1972, 6, 571–582. [Google Scholar] [CrossRef]
- Huang, J.W.; Chen, W.J.; Liao, S.K.; Yang, C.Y.; Lin, S.S.; Wu, C.C. Osteoblastic differentiation of rabbit mesenchymal stem cells loaded in a carrier system of Pluronic F127 and interpore. Chang. Gung. Med. J. 2006, 29, 363–372. [Google Scholar]
- Chen, W.J.; Huang, J.W.; Niu, C.C.; Chen, L.H.; Yuan, L.J.; Lai, P.L.; Yang, C.Y.; Lin, S.S. Use of fluorescence labeled mesenchymal stem cells in pluronic F127 and porous hydroxyapatite as a bone substitute for posterolateral spinal fusion. J. Orthop. Res. 2009, 27, 1631–1636. [Google Scholar] [CrossRef]
- Fowler, E.B.; Cuenin, M.F.; Hokett, S.D.; Peacock, M.E.; McPherson, J.C., 3rd; Dirksen, T.R.; Sharawi, M.; Billman, M.A. Evaluation of pluronic polyols as carriers for grafting materials: Study in rat calvaria defects. J. Periodontol. 2002, 73, 191–197. [Google Scholar] [CrossRef]
- Bensaid, W.; Triffitt, J.T.; Blanchat, C.; Oudina, K.; Sedel, L.; Petite, H. A biodegradable fibrin scaffold for mesenchymal stem cell transplantation. Biomaterials 2003, 24, 2497–2502. [Google Scholar] [CrossRef]
- Diniz, I.M.A.; Chen, C.; Xu, X.; Ansari, S.; Zadeh, H.H.; Marques, M.M.; Shi, S.; Moshaverinia, A. Pluronic F-127 hydrogel as a promising scaffold for encapsulation of dental-derived mesenchymal stem cells. J. Mater. Sci. Mater. Med. 2015, 26, 153. [Google Scholar] [CrossRef]
- Saim, A.B.; Cao, Y.; Weng, Y.; Chang, C.N.; Vacanti, M.A.; Vacanti, C.A.; Eavey, R.D. Engineering autogenous cartilage in the shape of a helix using an injectable hydrogel scaffold. Laryngoscope 2000, 110, 1694–1697. [Google Scholar] [CrossRef]
- Pelegrino, M.T.; de Araujo Lima, B.; do Nascimento, M.H.M.; Lombello, C.B.; Brocchi, M.; Seabra, A.B. Biocompatible and antibacterial nitric oxide-releasing Pluronic F-127/Chitosan hydrogel for topical applications. Polymers 2018, 10, 452. [Google Scholar] [CrossRef]
- Wang, C.; Xia, K.; Zhang, Y.; Kaplan, D.L. Silk-based advanced materials for soft electronics. Acc. Chem. Res. 2019, 52, 2916–2927. [Google Scholar] [CrossRef]
- Holland, C.; Numata, K.; Rnjak-Kovacina, J.; Seib, F.P. The biomedical use of silk: Past, present, future. Adv. Healthc. Mater. 2019, 8, 1800465. [Google Scholar] [CrossRef]
- Kumar, J.P.; Alam, S.; Jain, A.K.; Ansari, K.M.; Mandal, B.B. Protective activity of silk sericin against UV radiation-induced skin damage by downregulating oxidative stress. ACS Appl. Bio Mater. 2018, 1, 2120–2132. [Google Scholar] [CrossRef]
- Badawy, I.M.; Ali, B.A.; Abbas, W.A.; Allam, N.K. Natural silk for energy and sensing applications: A review. Environ. Chem. Lett. 2021, 19, 2141–2155. [Google Scholar] [CrossRef]
- Meinel, L.; Karageorgiou, V.; Hofmann, S.; Fajardo, R.; Snyder, B.; Li, C.; Zichner, L.; Langer, R.; Vunjak-Novakovic, G.; Kaplan, D.L. Engineering bone-like tissue in vitro using human bone marrow stem cells and silk scaffolds. J. Biomed. Mater. Res. Part A 2004, 71, 25–34. [Google Scholar] [CrossRef]
- Milazzo, M.; Contessi Negrini, N.; Scialla, S.; Marelli, B.; Farè, S.; Danti, S.; Buehler, M.J. Additive manufacturing approaches for hydroxyapatite reinforced composites. Adv. Funct. Mater. 2019, 29, 1903055. [Google Scholar] [CrossRef]
- Ghezzi, C.E.; Marelli, B.; Donelli, I.; Alessandrino, A.; Freddi, G.; Nazhat, S.N. Multilayered dense collagen-silk fibroin hybrid: A platform for mesenchymal stem cell differentiation towards chondrogenic and osteogenic lineages. J. Tissue Eng. Regen. Med. 2017, 11, 2046–2059. [Google Scholar] [CrossRef]
- Koh, L.D.; Cheng, Y.; Teng, C.P.; Khin, Y.W.; Loh, X.J.; Tee, S.Y.; Low, M.; Ye, E.; Yu, H.D.; Zhang, Y.W.; et al. Structures, mechanical properties and applications of silk fibroin materials. Prog. Polym. Sci. 2015, 46, 86–110. [Google Scholar] [CrossRef]
- Ribeiro, V.P.; Silva-Correia, J.; Gonçalves, C.; Pina, S.; Radhouani, H.; Montonen, T.; Hyttinen, J.; Roy, A.; Oliveira, A.L.; Reis, R.L.; et al. Rapidly responsive silk fibroin hydrogels as an artificial matrix for the programmed tumor cells death. PLoS ONE 2018, 13, e0194441. [Google Scholar] [CrossRef]
- Mauney, J.R.; Nguyen, T.; Gillen, K.; Kirker-Head, C.; Gimble, J.M.; Kaplan, D.L. Engineering adipose-like tissue in vitro and in vivo utilizing human bone marrow and adipose-derived mesenchymal stem cells with silk fibroin 3D scaffolds. Biomaterials 2007, 28, 5280–5290. [Google Scholar] [CrossRef] [PubMed]
- Chouhan, D.; Mandal, B.B. Silk biomaterials in wound healing and skin regeneration therapeutics: From bench to bedside. Acta Biomater. 2020, 103, 24–51. [Google Scholar] [CrossRef]
- Wu, M.; Huang, S.; Ye, X.; Ruan, J.; Zhao, S.; Ye, J.; Zhong, B. Human epidermal growth factor functionalized cocoon silk with improved cell proliferation activity for the fabrication of wound dressings. J. Biomater. Appl. 2021, 36, 722–730. [Google Scholar] [CrossRef]
- Farokhi, M.; Mottaghitalabb, F.; Fatahi, Y.; Reza Saeb, M.; Zarrintaj, P.; Kundu, S.C.; Khademhosseini, A. Silk fibroin scaffolds for common cartilage injuries: Possibilities for future clinical applications. Eur. Polym. J. 2019, 115, 251–267. [Google Scholar] [CrossRef]
- Zhao, J.; Zhang, Z.; Wang, S.; Sun, X.; Zhang, X.; Chen, J.; Kaplan, D.L.; Jiang, X. Apatite-coated silk fibroin scaffolds to healing mandibular border defects in canines. Bone 2009, 45, 517–527. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, T.; Tanaka, R.; Ogawa, Y.; Takagi, Y.; Sata, M.; Asakura, T. Evaluation of small-diameter silk vascular grafts implanted in dogs. JTCVS Open 2021, 4, 148–156. [Google Scholar] [CrossRef]
- Yamamoto, S.; Okamoto, H.; Haga, M.; Shigematsu, K.; Miyata, T.; Watanabe, T.; Ogawa, Y.; Takagi, Y.; Asakura, T. Rapid endothelialization and thin luminal layers in vascular grafts using silk fibroin. J. Mater. Chem. B 2016, 7, 938–946. [Google Scholar] [CrossRef]
- Cen, L.; Liu, W.; Zhang, W.; Cao, Y. Collagen tissue engineering: Development of novel biomaterials and applications. Pediatr. Res. 2008, 63, 492–496. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Overmass, M.; Fan, J.; Hodge, C.; Sutton, G.; Lovicu, F.J.; You, J. Application of collagen I and IV in bioengineering transparent ocular tissues. Front. Surg. 2021, 8, 639500. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; You, J.; Liu, X.; Cooper, S.; Hodge, C.; Sutton, G.; Crook, J.M.; Wallace, G.G. Biomaterials for corneal bioengineering. Biomed. Mater. 2018, 13, 032002. [Google Scholar] [CrossRef] [PubMed]
- Dupont, D.; Gravagna, P.; Albinet, P.; Tayot, J.L.; Romanet, J.P.; Mouillon, M.; Eloy, R. Biocompatibility of human collagen type IV intracorneal implants. Cornea 1989, 8, 251–258. [Google Scholar] [CrossRef] [PubMed]
- Simşek, N.A.; Ay, G.M.; Tugal-Tutkun, I.; Başar, D.; Bilgin, L.K. An experimental study on the effect of collagen shields and therapeutic contact lenses on corneal wound healing. Cornea 1996, 15, 612–616. [Google Scholar] [PubMed]
- Unterman, S.R.; Rootman, D.S.; Hill, J.M.; Parelman, J.J.; Thompson, H.W.; Kaufman, H.E. Collagen shield drug delivery: Therapeutic concentrations of tobramycin III the rabbit cornea and aqueous humor. J. Cataract Refract. Surg. 1988, 14, 500–504. [Google Scholar] [CrossRef] [PubMed]
- Milani, J.K.; Verbukh, I.; Pleyer, U.; Sumner, H.; Adamu, S.A.; Halabi, H.P.; Chou, H.J.; Lee, D.A.; Mondino, B.J. Collagen shields impregnated with gentamicin-dexamethasone as a potential drug delivery device. Am. J. Ophthalmol. 1993, 116, 622–627. [Google Scholar] [CrossRef] [PubMed]
- Gebhardt, B.M.; Kaufman, H.E. Collagen as a delivery system for hydrophobic drugs: Studies with cyclosporine. J. Ocul. Pharmacol. Ther. 1995, 11, 319–327. [Google Scholar] [CrossRef] [PubMed]
- Kleinmann, G.; Larson, S.; Hunter, B.; Stevens, S.; Mamalis, N.; Olson, R.J. Collagen shields as a drug delivery system for the fourth-generation fluoroquinolones. Ophthalmologica 2007, 221, 51–56. [Google Scholar] [CrossRef]
- Abdelhakeem, E.; El-nabarawi, M.; Shamma, R. Effective ocular delivery of eplerenone using nanoengineered lipid carriers in rabbit model. Int. J. Nanomed. 2021, 16, 4985–5002. [Google Scholar] [CrossRef]
- Willey, D.E.; Williams, I.; Faucett, C.; Openshaw, H. Ocular acyclovir delivery by collagen discs: A mouse model to screen anti-viral agents. Curr. Eye Res. 1991, 10, 167–169. [Google Scholar] [CrossRef]
- Wollensak, G.; Sporl, E.; Herbst, H. Biomechanical efficacy of contact lens-assisted collagen cross-linking in porcine eyes. Acta Ophthalmol. 2019, 97, e84–e90. [Google Scholar] [CrossRef]
- Shi, R.; Wang, W.; Che, Y.; Linghu, S.; Liu, T. Effects of corneal stromal lens collagen cross-linking regraft on corneal biomechanics. J. Ophthalmol. 2022, 2022, 8372156. [Google Scholar] [CrossRef]
- Unas Daza, J.H.; Marinho Righetto, G.; Chaud, M.V.; da Conceicao Amaro Martins, V.; Lopes Baratella da Cunha Camargo, I.; de Guzzi Plepis, A.M. PVA/anionic collagen membranes as drug carriers of ciprofloxacin hydrochloride with sustained antibacterial activity and potential use in the treatment of ulcerative keratitis. J. Biomater. Appl. 2020, 35, 301–312. [Google Scholar] [CrossRef] [PubMed]
- Tsai, I.L.; Hsu, C.C.; Hung, K.H.; Chang, C.W.; Cheng, Y.H. Applications of biomaterials in corneal wound healing. J. Chin. Med. Assoc. 2015, 78, 212–217. [Google Scholar] [CrossRef]
- Samarawickrama, C.; Samanta, A.; Liszka, A.; Fagerholm, P.; Buznyk, O.; Griffith, M.; Allan, B. Collagen-based fillers as alternatives to cyanoacrylate glue for the sealing of large corneal perforations. Cornea 2018, 37, 609–616. [Google Scholar] [CrossRef]
- Chen, F.; Le, P.; Lai, K.; Fernandes-Cunha, G.M.; Myung, D. Simultaneous interpenetrating polymer network of collagen and hyaluronic acid as an in situ forming corneal defect filler. Chem. Mater. 2020, 32, 5208–5216. [Google Scholar] [CrossRef]
- Xeroudaki, M.; Thangavelu, M.; Lennikov, A.; Ratnayake, A.; Bisevac, J.; Petrovski, G.; Fagerholm, P.; Rafat, M.; Lagali, N. A porous collagen-based hydrogel and implantation method for corneal stromal regeneration and sustained local drug delivery. Sci. Rep. 2020, 10, 16936. [Google Scholar] [CrossRef]
- Hackett, J.M.; Lagali, N.; Merrett, K.; Edelhauser, H.; Sun, Y.; Gan, L.; Griffith, M.; Fagerholm, P. Biosynthetic corneal implants for replacement of pathologic corneal tissue: Performance in a controlled rabbit alkali burn model. Investig. Ophthalmol. Vis. Sci. 2011, 52, 651–657. [Google Scholar] [CrossRef]
- Zhang, X.; Wei, D.; Xu, Y.; Zhu, Q. Hyaluronic acid in ocular drug delivery. Carbohydr. Polym. 2021, 264, 118006. [Google Scholar] [CrossRef]
- Nagayasu, A.; Hosaka, Y.; Yamasaki, A.; Tsuzuki, K. A preliminary study of direct application of atelocollagen into a wound lesion in the dog cornea. Curr. Eye Res. 2008, 33, 727–735. [Google Scholar] [CrossRef]
- Kostenko, A.; Swioklo, S.; Connon, C.J. Alginate in corneal tissue engineering. Biomed. Mater. 2022, 17, 022004. [Google Scholar] [CrossRef]
- Dong, Q.; Wu, D.; Li, M.; Dong, W. Polysaccharides, as biological macromolecule-based scaffolding biomaterials in cornea tissue engineering: A review. Tissue Cell 2022, 76, 1017822022. [Google Scholar] [CrossRef]
- Zhao, L.; Weir, M.D.; Xu, H.H. An injectable calcium phosphate-alginate hydrogel-umbilical cord mesenchymal stem cell paste for bone tissue engineering. Biomaterials 2010, 31, 6502–6510. [Google Scholar] [CrossRef]
- Shams, E.; Barzad, M.S.; Mohamadnia, S.; Tavakoli, O.; Mehrdadfar, S. A review on alginate-based bioinks, combination with other natural biomaterials and characteristics. J. Biomater. Appl. 2022, 37, 355–372. [Google Scholar] [CrossRef]
- Xu, W.; Liu, K.; Li, T.; Zhang, W.; Dong, Y.; Lv, J.; Wang, W.; Sun, J.; Li, M.; Wang, M.; et al. An in situ hydrogel based on carboxymethyl chitosan and sodium alginate dialdehyde for corneal wound healing after alkali burn. J. Biomed. Mater. Res. Part A 2019, 4, 742–754. [Google Scholar] [CrossRef]
- Liang, Y.; Liu, W.; Han, B.; Yang, C.; Ma, Q.; Song, F.; Bi, Q. An in situ formed biodegradable hydrogel for reconstruction of the corneal endothelium. Colloids Surf. B Biointerfaces 2011, 82, 1–7. [Google Scholar] [CrossRef]
- Zhao, L.; Shi, Z.; Sun, X.; Yu, Y.; Wang, X.; Wang, H.; Li, T.; Zhang, H.; Zhang, X.; Wang, F.; et al. Natural dual-crosslinking bioadhesive hydrogel for corneal regeneration in large-size defects. Adv. Healthc. Mater 2022, 11, 2201576. [Google Scholar] [CrossRef]
- Silva, D.; Pinto, L.F.V.; Bozukova, D.; Santos, L.F.; Serro, A.P.; Saramago, B. Chitosan/alginate based multilayers to control drug release from ophthalmic lens. Colloids Surf. B 2016, 147, 81–89. [Google Scholar] [CrossRef]
- Silva, D.; de Sousa, H.C.; Gil, M.H.; Alvarez-Lorenzo, C.; Saramago, B.; Serro, A.P. Layer-by-layer coated silicone-based soft contact lens hydrogel for diclofenac sustained release. Ann. Med. 2020, 53, S22–S23. [Google Scholar] [CrossRef]
- Zhu, X.; Su, M.; Tang, S.; Wang, L.; Liang, X.; Meng, F.; Hong, Y.; Xu, Z. Synthesis of thiolated chitosan and preparation nanoparticles with sodium alginate for ocular drug delivery. Mol. Vis. 2012, 18, 1973–1982. [Google Scholar]
- Maccarone, R.; Tisi, A.; Passacantando, M.; Ciancaglini, M. Ophthalmic applications of cerium oxide nanoparticles. J. Ocul. Pharmacol. Ther. 2020, 36, 376–383. [Google Scholar] [CrossRef]
- Wafa, H.G.; Essa, E.A.; El-Sisi, A.E.; El Maghraby, G.M. Ocular films versus film-forming liquid systems for enhanced ocular drug delivery. Drug Deliv. Transl. Res. 2021, 11, 1084–1095. [Google Scholar] [CrossRef]
- Mandal, S.; Thimmasetty, M.; Prabhushankar, G.L.; Geetha, M.S. Formulation and evaluation of an in situ gel-forming ophthalmic formulation of moxifloxacin hydrochloride. Int. J. Pharm. Investig. 2012, 2, 78–82. [Google Scholar] [CrossRef]
- Noreen, S.; Ghumman, S.A.; Batool, F.; Ijaz, B.; Basharat, M.; Noureen, S.; Kausar, T.; Iqbal, S. Terminalia arjuna gum/ alginate in situ gel system with prolonged retention time for ophthalmic drug delivery. Int. J. Biol. Macromol. 2020, 152, 1056–1067. [Google Scholar] [CrossRef]
- Nair, A.B.; Shah, J.; Jacob, S.; Al-Dhubiab, B.E.; Sreeharsha, N.; Morsy, M.A.; Gupta, S.; Attimarad, M.; Shinu, P.; Venugopala, K.N. Experimental design, formulation and in vivo evaluation of a novel topical in situ gel system to treat ocular infections. PLoS ONE 2021, 16, e0248857. [Google Scholar] [CrossRef]
- Wang, F.; Song, Y.; Huang, J.; Wu, B.; Wang, Y.; Pang, Y.; Zhang, W.; Zhu, Z.; Ma, F.; Wang, X.; et al. Lollipop-inspired multilayered drug delivery hydrogel for dual effective, long-term, and NIR-defined glaucoma. Treat. Macromol. Biosci. 2021, 21, 2100202. [Google Scholar]
- Polat, H.K.; Pehlivan, S.B.; Özkul, C.; Çalamak, S.; Öztürk, N.; Aytekin, E.; Fırat, A.; Ulubayram, K.; Kocabeyoğlu, S.; İrkeç, M.; et al. Development of besifloxacin HCl loaded nanofibrous ocular inserts for the treatment of bacterial keratitis: In vitro, ex vivo and in vivo evaluation. Int. J. Pharm. 2020, 585, 119552. [Google Scholar] [CrossRef]
- Feng, W.; Yang, X.; Feng, M.; Pan, H.; Liu, J.; Hu, Y.; Wang, S.; Zhang, D.; Ma, F.; Mao, Y. Alginate oligosaccharide prevents against D-galactose-mediated cataract in C57BL/6J mice via regulating oxidative stress and antioxidant system. Curr. Eye Res. 2020, 46, 802–810. [Google Scholar] [CrossRef]
- Wright, B.; Cave, R.A.; Cook, J.P.; Khutoryanskiy, V.V.; Mi, S.; Chen, B.; Leyland, M.; Connon, C.J. Enhanced viability of corneal epithelial cells for efficient transport/storage using a structurally modified calcium alginate hydrogel. Regen. Med. 2012, 7, 295–307. [Google Scholar] [CrossRef]
- Lee, J.H.; Kim, W.G.; Kim, S.S.; Lee, J.H.; Lee, H.B. Development and characterization of an alginate impregnated polyester vascular graft. J. Biomed. Mater. Res. 1997, 36, 200–208. [Google Scholar] [CrossRef]
- Hashemibeni, B.; Esfandiari, E.; Sadeghi, F.; Heidary, F.; Roshankhah, S.; Mardani, M.; Goharian, V. An animal model study for bone repair with encapsulated differentiated osteoblasts from adipose-derived stem cells in alginate. Iran J. Basic Med. Sci. 2014, 17, 854–859. [Google Scholar]
- Chu, J.; Zeng, S.; Gao, L.; Groth, T.; Li, Z.; Kong, J.; Zhao, M.; Li, L. Poly (L-Lactic Acid) Porous scaffold-supported alginate hydrogel with improved mechanical properties and biocompatibility. Int. J. Artif. Organs 2016, 39, 435–443. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.K.; Ham, D.S.; Park, H.S.; Rhee, M.; You, Y.H.; Kim, M.J.; Shin, J.; Kim, O.Y.; Khang, G.; Hong, T.H.; et al. Long-term efficacy and biocompatibility of encapsulated islet transplantation with chitosan-coated alginate capsules in mice and canine models of diabetes. Transplantation 2016, 100, 334–343. [Google Scholar] [CrossRef] [PubMed]
- Battistini, F.D.; Tártara, L.I.; Boiero, C.; Guzmán, M.L.; Luciani-Giaccobbe, L.C.; Palma, S.D.; Allemandi, D.A.; Manzo, R.H.; Olivera, M.E. The role of hyaluronan as a drug carrier to enhance the bioavailability of extended release ophthalmic formulations. Hyaluronan-timolol ionic complexes as a model case. Eur. J. Pharm. Sci. 2017, 105, 188–194. [Google Scholar] [CrossRef] [PubMed]
- Mero, A.; Campisi, M. Hyaluronic acid bioconjugates for the delivery of bioactive molecules. Polymers 2014, 6, 346–369. [Google Scholar] [CrossRef]
- Singh, A.; Li, P.; Beachley, V.; McDonnell, P.; Elisseeff, J.H. A hyaluronic acid-binding contact lens with enhanced water retention. Cont. Lens Anterior Eye 2015, 38, 79–84. [Google Scholar] [CrossRef]
- An, C.; Li, H.; Zhao, Y.; Zhang, S.; Zhao, Y.; Zhang, Y.; Yang, J.; Zhang, L.; Ren, C.; Zhang, Y.; et al. Hyaluronic acid-based multifunctional carriers for applications in regenerative medicine: A review. Int. J. Biol. Macromol. 2023, 231, 123307. [Google Scholar] [CrossRef]
- Stiebel-Kalish, H.; Gaton, D.D.; Weinberger, D.; Loya, N.; Schwartz-Ventik, M.; Solomon, A. A comparison of the effect of hyaluronic acid versus gentamicin on corneal epithelial healing. Eye 1998, 12, 829–833. [Google Scholar] [CrossRef]
- Yang, G.; Espandar, L.; Mamalis, N.; Prestwich, G.D. A cross-linked hyaluronan gel accelerates healing of corneal epithelial abrasion and alkali burn injuries in rabbits. Vet. Ophthalmol. 2010, 13, 144–150. [Google Scholar] [CrossRef]
- Williams, D.L.; Mann, B.K. A crosslinked HA-based hydrogel ameliorates dry eye symptoms in dogs. Int. J. Biomater. 2013, 2013, 460437. [Google Scholar] [CrossRef] [PubMed]
- Williams, D.L.; Mann, B.K. Efficacy of a crosslinked hyaluronic acid-based hydrogel as a tear film supplement: A masked controlled study. PLoS ONE 2014, 9, e99766. [Google Scholar] [CrossRef] [PubMed]
- Durrie, D.S.; Wolsey, D.; Thompson, V.; Assang, C.; Mann, B.; Wirostko, B. Ability of a new crosslinked polymer ocular bandage gel to accelerate reepithelialization after photorefractive keratectomy. J. Cataract Refract. Surg. 2018, 44, 369–375. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.; Wang, Z.; Liu, Y.; Wang, L.; Jiang, Z.; Li, T.; Zhang, W.; Liang, Y. Carboxymethyl chitosan/gelatin/hyaluronic acid blended-membranes as epithelia transplanting scaffold for corneal wound healing. Carbohydr. Polym. 2018, 192, 240–250. [Google Scholar] [CrossRef] [PubMed]
- Okumura, N.; Kinoshita, S.; Koizumi, N. Cell-based approach for treatment of corneal endothelial dysfunction. Cornea 2014, 33, S37–S41. [Google Scholar] [CrossRef] [PubMed]
- Salwowska, N.M.; Bebenek, K.A.; Zazdło, D.A.; Wcisło-Dziadecka, D.L. Physiochemical properties and application of hyaluronic acid: A systematic review. J. Cosmet. Dermatol. 2016, 15, 520–526. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, D.D.; Yao, C.H.; Luo, L.Y.; Chen, H.C.; Hsueh, Y.J.; Ma, D.H.K.; Lai, J.Y. Oxidation-mediated scaffold engineering of hyaluronic acid-based microcarriers enhances corneal stromal regeneration. Carbohydr. Polym. 2022, 292, 119668. [Google Scholar] [CrossRef] [PubMed]
- Koivusalo, L.; Kauppila, M.; Samanta, S.; Parihar, V.S.; Ilmarinen, T.; Miettinen, S.; Oommen, O.P.; Skottman, H. Tissue adhesive hyaluronic acid hydrogels for sutureless stem cell delivery and regeneration of corneal epithelium and stroma. Biomaterials 2019, 225, 119516. [Google Scholar] [CrossRef] [PubMed]
- Kompella, U.B.; Hartman, R.R.; Patil, M.A. Extraocular, periocular, and intraocular routes for sustained drug delivery for glaucoma. Prog. Retin. Eye Res. 2021, 82, 100901. [Google Scholar] [CrossRef]
- Maulvi, F.A.; Shaikh, A.A.; Lakdawala, D.H.; Desai, A.R.; Pandya, M.M.; Singhania, S.S.; Vaidya, R.J.; Ranch, K.M.; Vyas, B.A.; Shah, D.O. Design and optimization of a novel implantation technology in contact lenses for the treatment of dry eye syndrome: In vitro and in vivo Evaluation. Acta Biomater. 2017, 53, 211–221. [Google Scholar] [CrossRef]
- Li, R.; Guan, X.; Lin, X.; Guan, P.; Zhang, X.; Rao, Z.; Du, L.; Zhao, J.; Rong, J.; Zhao, J. Poly(2-hydroxyethyl methacrylate)/ β-cyclodextrin-hyaluronan contact lens with tear protein adsorption resistance and sustained drug delivery for ophthalmic diseases. Acta Biomater. 2020, 110, 105–118. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, D.; Hui, A.; Weeks, A.; Heynen, M.; Joyce, E.; Sheardown, H.; Jones, L. Release of ciprofloxacin-HCl and dexamethasone phosphate by hyaluronic acid containing silicone polymers. Materials 2012, 5, 684–698. [Google Scholar] [CrossRef]
- Maulvi, F.A.; Soni, T.G.; Shah, D.O. Extended release of hyaluronic acid from hydrogel contact lenses for dry eye syndrome. J. Biomater. Sci. Polym. Ed. 2015, 26, 1035–1050. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Ziaei, M.; McKelvie, J.; McGhee, C.N.J.; Patel, D.V. Integration and remodelling of a collagen anterior lamellar keratoplasty graft in an animal model—A preliminary report. Exp. Eye Res. 2021, 209, 108661. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Suner, S.S.; Blake, D.A.; Ayyala, R.S.; Sahiner, N. Antimicrobial activity and biocompatibility of slow-release hyaluronic acid-antibiotic conjugated particles. Int. J. Pharm. 2020, 576, 119024. [Google Scholar] [CrossRef]
- Fiorica, C.; Palumbo, F.S.; Pitarresi, G.; Bongiovì, F.; Giammona, G. Hyaluronic acid and beta cyclodextrins films for the release of corneal epithelial cells and dexamethasone. Carbohydr. Polym. 2017, 166, 281–290. [Google Scholar] [CrossRef] [PubMed]
- Apaolaza, P.S.; Busch, M.; Asin-Prieto, E.; Peynshaert, K.; Rathod, R.; Remaut, K.; Dünker, N.; Gopferich, A. Hyaluronic acid coating of gold nanoparticles for intraocular drug delivery: Evaluation of the surface properties and effect on their distribution. Exp. Eye Res. 2020, 198, 108151. [Google Scholar] [CrossRef] [PubMed]
- Than, A.; Liu, C.; Chang, H.; Duong, P.K.; Cheung, C.M.G.; Xu, C.; Wang, X.; Chen, P. Self-implantable double-layered micro-drug-reservoirs for efficient and controlled ocular drug delivery. Nat. Commun. 2018, 9, 4433. [Google Scholar] [CrossRef]
- Zheng, K.; Chen, Y.; Huang, W.; Lin, Y.; Kaplan, D.L.; Fan, Y. Chemically functionalized silk for human bone marrow-derived mesenchymal stem cells proliferation and differentiation. ACS Appl. Mater. Interfaces 2016, 8, 14406. [Google Scholar] [CrossRef]
- Melke, J.; Midha, S.; Ghosh, S.; Ito, K.; Hofmann, S. Silk fibroin as biomaterial for bone tissue engineering. Acta Biomater. 2016, 31, 1–16. [Google Scholar] [CrossRef]
- Woodruff, M.A.; Hutmacher, D.W. The return of a forgotten polymer—Polycaprolactone in the 21st century. Prog. Polym. Sci. 2010, 35, 1217–1256. [Google Scholar] [CrossRef]
- Kant, V.; Gopal, A.; Kumar, D.; Gopalkrishnana, A.; Pathaka, N.N.; Kurade, N.P.; Tandana, S.K.; Kumar, D. Topical pluronic F-127 gel application enhances cutaneous wound healing in rats. Acta Histochem. 2014, 116, 5–13. [Google Scholar] [CrossRef]
- Foresti, R.; Ghezzi, B.; Vettori, M.; Bergonzi, L.; Attolino, S.; Rossi, S.; Tarabella, G.; Vurro, D.; von Zeppelin, D.; Iannotta, S.; et al. 3D printed masks for powders and viruses safety protection using food grade polymers: Empirical tests. Polymers 2021, 13, 617. [Google Scholar] [CrossRef]
- Gourishanker, J.; Kumar, A. Drug delivery through soft contact lenses: An introduction. Chron. Young Sci. 2011, 2, 3–6. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Leonardi, F.; Simonazzi, B.; Martini, F.M.; D’Angelo, P.; Foresti, R.; Botti, M. Synthetic and Natural Biomaterials in Veterinary Medicine and Ophthalmology: A Review of Clinical Cases and Experimental Studies. Vet. Sci. 2024, 11, 368. https://doi.org/10.3390/vetsci11080368
Leonardi F, Simonazzi B, Martini FM, D’Angelo P, Foresti R, Botti M. Synthetic and Natural Biomaterials in Veterinary Medicine and Ophthalmology: A Review of Clinical Cases and Experimental Studies. Veterinary Sciences. 2024; 11(8):368. https://doi.org/10.3390/vetsci11080368
Chicago/Turabian StyleLeonardi, Fabio, Barbara Simonazzi, Filippo Maria Martini, Pasquale D’Angelo, Ruben Foresti, and Maddalena Botti. 2024. "Synthetic and Natural Biomaterials in Veterinary Medicine and Ophthalmology: A Review of Clinical Cases and Experimental Studies" Veterinary Sciences 11, no. 8: 368. https://doi.org/10.3390/vetsci11080368
APA StyleLeonardi, F., Simonazzi, B., Martini, F. M., D’Angelo, P., Foresti, R., & Botti, M. (2024). Synthetic and Natural Biomaterials in Veterinary Medicine and Ophthalmology: A Review of Clinical Cases and Experimental Studies. Veterinary Sciences, 11(8), 368. https://doi.org/10.3390/vetsci11080368