Variation in Interleukin-4, -6, and -10 in Mastitis Milk: Associations with Infections, Pathogens, Somatic Cell Counts, and Oxidative Stress
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethics Approval
2.2. Farms and Animals
2.3. Bacterial Identification
2.4. SCC Analysis
2.5. Cytokines Analysis
2.6. MDA Analysis
2.7. Statistical Analysis
3. Results
3.1. Bacterial Isolates
3.2. The Concentrations of IL-4, IL-6, IL-10, SCC, and MDA
3.3. Relationship between Interleukin, SCC, and Infection Type
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nair, N.; Biswas, R.; Götz, F.; Biswas, L. Impact of Staphylococcus aureus on Pathogenesis in Polymicrobial Infections. Infect. Immun. 2014, 82, 2162–2169. [Google Scholar] [CrossRef] [PubMed]
- Vakkamäki, J.; Taponen, S.; Heikkilä, A.-M.; Pyörälä, S. Bacteriological Etiology and Treatment of Mastitis in Finnish Dairy Herds. Acta Vet. Scand. 2017, 59, 33. [Google Scholar] [CrossRef] [PubMed]
- Stubbendieck, R.M.; Straight, P.D. Escape from Lethal Bacterial Competition through Coupled Activation of Antibiotic Resistance and a Mobilized Subpopulation. PLoS Genet. 2015, 11, e1005722. [Google Scholar] [CrossRef] [PubMed]
- Leelahapongsathon, K.; Schukken, Y.H.; Srithanasuwan, A.; Suriyasathaporn, W. Molecular Epidemiology of Streptococcus uberis Intramammary Infections: Persistent and Transient Patterns of Infection in a Dairy Herd. J. Dairy Sci. 2020, 103, 3565–3576. [Google Scholar] [CrossRef] [PubMed]
- Keane, O.M.; Budd, K.E.; Flynn, J.; McCoy, F. Increased Detection of Mastitis Pathogens by Real-time PCR Compared to Bacterial Culture. Vet. Rec. 2013, 173, 268. [Google Scholar] [CrossRef] [PubMed]
- Srithanasuwan, A.; Schukken, Y.H.; Pangprasit, N.; Chuammitri, P.; Suriyasathaporn, W. Different Cellular and Molecular Responses of Bovine Milk Phagocytes to Persistent and Transient Strains of Streptococcus uberis Causing Mastitis. PLoS ONE 2024, 19, e0295547. [Google Scholar] [CrossRef] [PubMed]
- Dinarello, C.A. Overview of the IL-1 Family in Innate Inflammation and Acquired Immunity. Immunol. Rev. 2018, 281, 8–27. [Google Scholar] [CrossRef]
- Vitenberga-Verza, Z.; Pilmane, M.; Šerstņova, K.; Melderis, I.; Gontar, Ł.; Kochański, M.; Drutowska, A.; Maróti, G.; Prieto-Simón, B. Identification of Inflammatory and Regulatory Cytokines IL-1α-, IL-4-, IL-6-, IL-12-, IL-13-, IL-17A-, TNF-α-, and IFN-γ-Producing Cells in the Milk of Dairy Cows with Subclinical and Clinical Mastitis. Pathogens 2022, 11, 372. [Google Scholar] [CrossRef] [PubMed]
- Bochniarz, M.; Ziomek, M.; Szczubiał, M.; Dąbrowski, R.; Wochnik, M.; Kurek, Ł.; Kosior-Korzecka, U.; Nowakiewicz, A. Interleukin-6 as a Milk Marker of Clinical and Subclinical Intramammary Infections (IMI) in Cows Caused by Streptococcus spp. Animals 2024, 14, 1100. [Google Scholar] [CrossRef]
- Suriyasathaporn, W.; Vinitketkumnuen, U.; Chewonarin, T. Relationships among Malondialdehyde, Milk Compositions, and Somatic Cell Count in Milk from Bulk Tank. Songklanakarin J. Sci. Technol. 2010, 32, 23–26. [Google Scholar]
- Ezzat Alnakip, M.; Quintela-Baluja, M.; Böhme, K.; Fernández-No, I.; Caamaño-Antelo, S.; Calo-Mata, P.; Barros-Velázquez, J. The Immunology of Mammary Gland of Dairy Ruminants between Healthy and Inflammatory Conditions. J. Vet. Med. 2014, 2014, 1–31. [Google Scholar] [CrossRef] [PubMed]
- Leelahapongsathon, K.; Schukken, Y.H.; Pinyopummintr, T.; Suriyasathaporn, W. Comparison of Transmission Dynamics between Streptococcus uberis and Streptococcus agalactiae Intramammary Infections. J. Dairy Sci. 2016, 99, 1418–1426. [Google Scholar] [CrossRef] [PubMed]
- Srithanasuwan, A.; Pangprasit, N.; Intanon, M.; Suriyasathaporn, W. Ultra-short spontaneous cure rates of intramammary infection among mastitis pathogens in dairy cattle. J. Dairy. Sci. 2018, 101 (Suppl. S2), M33. [Google Scholar]
- Fenaille, F.; Mottier, P.; Turesky, R.J.; Ali, S.; Guy, P.A. Comparison of Analytical Techniques to Quantify Malondialdehyde in Milk Powders. J. Chromatogr. A 2001, 921, 237–245. [Google Scholar] [CrossRef] [PubMed]
- Panacek, E.A.; Kaul, M. IL-6 as a Marker of Excessive TNF-α Activity in Sepsis. Sepsis 1999, 3, 65–73. [Google Scholar] [CrossRef]
- Hagiwara, K.; Yamanaka, H.; Hisaeda, K.; Taharaguchi, S.; Kirisawa, R.; Iwai, H. Concentrations of IL-6 in Serum and Whey from Healthy and Mastitic Cows. Vet. Res. Commun. 2001, 25, 99–108. [Google Scholar] [CrossRef] [PubMed]
- Sabat, R.; Grütz, G.; Warszawska, K.; Kirsch, S.; Witte, E.; Wolk, K.; Geginat, J. Biology of Interleukin-10. Cytokine Growth Factor Rev. 2010, 21, 331–344. [Google Scholar] [CrossRef] [PubMed]
- Minshall, C.; Arkins, S.; Straza, J.; Conners, J.; Dantzer, R.; Freund, G.G.; Kelley, K.W. IL-4 and Insulin-like Growth Factor-I Inhibit the Decline in Bcl-2 and Promote the Survival of IL-3-Deprived Myeloid Progenitors. J. Immunol. 1997, 159, 1225–1232. [Google Scholar] [CrossRef] [PubMed]
- Bochniarz, M.; Zdzisińska, B.; Wawron, W.; Szczubiał, M.; Dąbrowski, R. Milk and Serum IL-4, IL-6, IL-10, and Amyloid A Concentrations in Cows with Subclinical Mastitis Caused by Coagulase-Negative Staphylococci. J. Dairy Sci. 2017, 100, 9674–9680. [Google Scholar] [CrossRef]
- Fabian, E.; Pölöskey, P.; Kósa, L.; Elmadfa, I.; Attila Réthy, L. Th17–Related Interleukins and Parameters of Oxidative/Nitrosative Events in Childhood Asthma. AMB 2021, 4, 24–33. [Google Scholar]
- Voufo, R.A.; Kouotou, A.E.; Tatah, N.J.; TeTo, G.; Gueguim, C.; Ngondé, C.M.E.; Njiguet Tepa, A.G.; Gabin, A.; Amazia, F.; Yembeau, N.L.; et al. Relation between Interleukin-6 Concentrations and Oxidative Status of HIV Infected Patients with/or at Risk of Kaposi Disease in Yaounde. Virol. J. 2023, 20, 165. [Google Scholar] [CrossRef]
- Faaz, R.A.; Abdullah, F.A. Expressions of IL4, IL10, and IFNγ Cytokines Genes during Bacterial Mastitis. J. Adv. Vet. Anim. Res. 2022, 9, 42–52. [Google Scholar] [CrossRef] [PubMed]
- Safak, T.; Risvanli, A. Udder Defense System: Effect of Milk SCC Level on Th1/Th2 Cytokine Balance. J. Hell. Vet. Med. Soc. 2022, 73, 4135–4140. [Google Scholar] [CrossRef]
- Allen, J.E. IL-4 and IL-13: Regulators and Effectors of Wound Repair. Annu. Rev. Immunol. 2023, 41, 229–254. [Google Scholar] [CrossRef]
- Luzina, I.G.; Keegan, A.D.; Heller, N.M.; Rook, G.A.; Shea-Donohue, T.; Atamas, S.P. Regulation of Inflammation by Interleukin-4: A Review of “Alternatives”. J. Leukoc. Biol. 2012, 92, 753–764. [Google Scholar] [CrossRef] [PubMed]
- Cox, F.E. Concomitant Infections, Parasites and Immune Responses. Parasitology 2001, 122 (Suppl. S1), S23–S38. [Google Scholar] [CrossRef]
- Hassan, A.; Blanchard, N. Microbial (Co)Infections: Powerful Immune Influencers. PLoS Pathog. 2022, 18, e1010212. [Google Scholar] [CrossRef]
- Mukherjee, J.; Varshney, N.; Chaudhury, M.; Mohanty, A.K.; Dang, A.K. Immune Response of the Mammary Gland during Different Stages of Lactation Cycle in High versus Low Yielding Karan Fries Crossbred Cows. Livest. Sci. 2013, 154, 215–223. [Google Scholar] [CrossRef]
- Chen, R.; Wang, H.; Zhao, Y.; Nan, X.; Wei, W.; Du, C.; Zhang, F.; Luo, Q.; Yang, L.; Xiong, B. Quantitative Detection of Mastitis Factor IL-6 in Dairy Cow Using the SERS Improved Immunofiltration Assay. Nanomaterials 2022, 12, 1091. [Google Scholar] [CrossRef]
IL-4 (pg/mL) | IL-6 (pg/mL) | IL-10 (pg/mL) | SCC (Cells/mL) | MDA (nmol/mL) | |
---|---|---|---|---|---|
Range | 230–7068 | 764.9–114.3 | 41.31–60.87 | 7–6728 × 103 | 16–27 |
Mean | 3111 | 937.7 | 43.53 | 1403 × 103 | 20.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chaisri, W.; Intanon, M.; Saipinta, D.; Srithanasuwan, A.; Pangprasit, N.; Jaraja, W.; Chuasakhonwilai, A.; Suriyasathaporn, W. Variation in Interleukin-4, -6, and -10 in Mastitis Milk: Associations with Infections, Pathogens, Somatic Cell Counts, and Oxidative Stress. Vet. Sci. 2024, 11, 350. https://doi.org/10.3390/vetsci11080350
Chaisri W, Intanon M, Saipinta D, Srithanasuwan A, Pangprasit N, Jaraja W, Chuasakhonwilai A, Suriyasathaporn W. Variation in Interleukin-4, -6, and -10 in Mastitis Milk: Associations with Infections, Pathogens, Somatic Cell Counts, and Oxidative Stress. Veterinary Sciences. 2024; 11(8):350. https://doi.org/10.3390/vetsci11080350
Chicago/Turabian StyleChaisri, Wasana, Montira Intanon, Duanghathai Saipinta, Anyaphat Srithanasuwan, Noppason Pangprasit, Weerin Jaraja, Areerat Chuasakhonwilai, and Witaya Suriyasathaporn. 2024. "Variation in Interleukin-4, -6, and -10 in Mastitis Milk: Associations with Infections, Pathogens, Somatic Cell Counts, and Oxidative Stress" Veterinary Sciences 11, no. 8: 350. https://doi.org/10.3390/vetsci11080350
APA StyleChaisri, W., Intanon, M., Saipinta, D., Srithanasuwan, A., Pangprasit, N., Jaraja, W., Chuasakhonwilai, A., & Suriyasathaporn, W. (2024). Variation in Interleukin-4, -6, and -10 in Mastitis Milk: Associations with Infections, Pathogens, Somatic Cell Counts, and Oxidative Stress. Veterinary Sciences, 11(8), 350. https://doi.org/10.3390/vetsci11080350