Biofilm Formation and Antimicrobial Resistance of Staphylococcus aureus and Streptococcus uberis Isolates from Bovine Mastitis
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Staph. aureus and Strep. uberis Isolates
2.2. Biofilm Formation
2.3. Antimicrobial Susceptibility Testing
2.4. Data Analysis
3. Results
3.1. Biofilm Formation Ability
3.2. Antimicrobial Activity
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Heikkilä, A.M.; Liski, E.; Pyörälä, S.; Taponen, S. Pathogen-Specific Production Losses in Bovine Mastitis. J. Dairy Sci. 2018, 101, 9493–9504. [Google Scholar] [CrossRef] [PubMed]
- Freu, G.; Garcia, B.L.N.; Tomazi, T.; Di Leo, G.S.; Gheller, L.S.; Bronzo, V.; Moroni, P.; Dos Santos, M.V. Association between Mastitis Occurrence in Dairy Cows and Bedding Characteristics of Compost-Bedded Pack Barns. Pathogens 2023, 12, 583. [Google Scholar] [CrossRef] [PubMed]
- Monistero, V.; Barberio, A.; Cremonesi, P.; Castiglioni, B.; Morandi, S.; Lassen, D.C.K.; Astrup, L.B.; Locatelli, C.; Piccinini, R.; Filippa Addis, M.; et al. Genotyping and Antimicrobial Susceptibility Profiling of Streptococcus uberis Isolated from a Clinical Bovine Mastitis Outbreak in a Dairy Farm. Antibiotics 2021, 10, 644. [Google Scholar] [CrossRef] [PubMed]
- Gonçalves, J.L.; Lee, S.H.I.; Camargo, C.H.; Zanella, R.C.; Silva, N.C.C.; Rall, V.L.M.; Cue, R.I.; dos Santos, M.V. Molecular Characterization of Persistent Subclinical Mastitis-Causing Staphylococcus aureus from Dairy Farms. Braz. J. Microbiol. 2023, 54, 1181–1189. [Google Scholar] [CrossRef] [PubMed]
- Keefe, G. Update on Control of Staphylococcus aureus and Streptococcus agalactiae for Management of Mastitis. Vet. Clin. N. Am. Food Anim. Pract. 2012, 28, 203–216. [Google Scholar] [CrossRef] [PubMed]
- Cheng, W.N.; Han, S.G. Bovine Mastitis: Risk Factors, Therapeutic Strategies, and Alternative Treatments—A Review. Asian-Australas. J. Anim. Sci. 2020, 33, 1699–1713. [Google Scholar] [CrossRef]
- Rato, M.G.; Bexiga, R.; Florindo, C.; Cavaco, L.M.; Vilela, C.L.; Santos-Sanches, I. Antimicrobial Resistance and Molecular Epidemiology of Streptococci from Bovine Mastitis. Vet. Microbiol. 2013, 161, 286–294. [Google Scholar] [CrossRef] [PubMed]
- Davies, P.L.; Leigh, J.A.; Bradley, A.J.; Archer, S.C.; Emes, R.D.; Green, M.J. Molecular Epidemiology of Streptococcus uberis Clinical Mastitis in Dairy Herds: Strain Heterogeneity and Transmission. J. Clin. Microbiol. 2016, 54, 68–74. [Google Scholar] [CrossRef]
- Schmenger, A.; Krömker, V. Characterization, Cure Rates and Associated Risks of Clinical Mastitis in Northern Germany. Vet. Sci. 2020, 7, 170. [Google Scholar] [CrossRef] [PubMed]
- Kaczorek, E.; Małaczewska, J.; Wójcik, R.; Siwicki, A.K. Biofilm Production and Other Virulence Factors in Streptococcus spp. Isolated from Clinical Cases of Bovine Mastitis in Poland. BMC Vet. Res. 2017, 13, 398. [Google Scholar] [CrossRef]
- Flemming, H.-C.; van Hullebusch, E.D.; Neu, T.R.; Nielsen, P.H.; Seviour, T.; Stoodley, P.; Wingender, J.; Wuertz, S. The Biofilm Matrix: Multitasking in a Shared Space. Nat. Rev. Microbiol. 2023, 21, 70–86. [Google Scholar] [CrossRef] [PubMed]
- Trubenová, B.; Roizman, D.; Moter, A.; Rolff, J.; Regoes, R.R. Population Genetics, Biofilm Recalcitrance, and Antibiotic Resistance Evolution. Trends Microbiol. 2022, 30, 841–852. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.; Mohler, J.; Mahajan, S.D.; Schwartz, S.A.; Bruggemann, L.; Aalinkeel, R. Microbial Biofilm: A Review on Formation, Infection, Antibiotic Resistance, Control Measures, and Innovative Treatment. Microorganisms 2023, 11, 1614. [Google Scholar] [CrossRef]
- Melchior, M.B.; Vaarkamp, H.; Fink-Gremmels, J. Biofilms: A Role in Recurrent Mastitis Infections? Vet. J. 2006, 171, 398–407. [Google Scholar] [CrossRef] [PubMed]
- Goswami, A.G.; Basu, S.; Banerjee, T.; Shukla, V.K. Biofilm and Wound Healing: From Bench to Bedside. Eur. J. Med. Res. 2023, 28, 157. [Google Scholar] [CrossRef] [PubMed]
- Ou, C.; Shang, D.; Yang, J.; Chen, B.; Chang, J.; Jin, F.; Shi, C. Prevalence of Multidrug-Resistant Staphylococcus aureus Isolates with Strong Biofilm Formation Ability among Animal-Based Food in Shanghai. Food Control 2020, 112, 107106. [Google Scholar] [CrossRef]
- Naranjo-Lucena, A.; Slowey, R. Invited Review: Antimicrobial Resistance in Bovine Mastitis Pathogens: A Review of Genetic Determinants and Prevalence of Resistance in European Countries. J. Dairy Sci. 2023, 106, 1–23. [Google Scholar] [CrossRef] [PubMed]
- Poizat, A.; Bonnet-Beaugrand, F.; Rault, A.; Fourichon, C.; Bareille, N. Antibiotic Use by Farmers to Control Mastitis as Influenced by Health Advice and Dairy Farming Systems. Prev. Vet. Med. 2017, 146, 61–72. [Google Scholar] [CrossRef] [PubMed]
- Lundborg, C.S.; Tamhankar, A.J. Understanding and Changing Human Behaviour-Antibiotic Mainstreaming as an Approach to Facilitate Modification of Provider and Consumer Behaviour. Ups. J. Med. Sci. 2014, 119, 125–133. [Google Scholar] [CrossRef] [PubMed]
- WHO. Antimicrobial Resistance. Bull. World Health Organ. 2014, 61, 383–394. [Google Scholar] [CrossRef]
- Sharifi, A.; Sobhani, K.; Mahmoudi, P. A Systematic Review and Meta-Analysis Revealed a High-Level Antibiotic Resistance of Bovine Mastitis Staphylococcus aureus in Iran. Res. Vet. Sci. 2023, 161, 23–30. [Google Scholar] [CrossRef] [PubMed]
- Miotti, C.; Cicotello, J.; Suarez Archilla, G.; Neder, V.; Alvarado Lucero, W.; Calvinho, L.; Signorini, M.; Camussone, C.; Zbrun, M.V.; Molineri, A.I. Antimicrobial Resistance of Streptococcus uberis Isolated from Bovine Mastitis: Systematic Review and Meta-Analysis. Res. Vet. Sci. 2023, 164, 105032. [Google Scholar] [CrossRef] [PubMed]
- National Mastitis Council. NMC Laboratory Handbook on Bovine Mastitis; National Mastitis Council: Madison, WI, USA, 2017; p. 148. [Google Scholar]
- Nonnemann, B.; Lyhs, U.; Svennesen, L.; Kristensen, K.A.; Klaas, I.C.; Pedersen, K. Bovine Mastitis Bacteria Resolved by MALDI-TOF Mass Spectrometry. J. Dairy Sci. 2019, 102, 2515–2524. [Google Scholar] [CrossRef] [PubMed]
- Stepanović, S.; Vuković, D.; Dakić, I.; Savić, B.; Švabić-Vlahović, M. A Modified Microtiter-Plate Test for Quantification of Staphylococcal Biofilm Formation. J. Microbiol. Methods 2000, 40, 175–179. [Google Scholar] [CrossRef] [PubMed]
- CLSI. Performance Standards for Antimicrobial Disk and Dilution Susceptibility Tests for Bacteria Isolated from Animals, 3rd ed.; CLSI Document M100-S25; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2021. [Google Scholar]
- Schwarz, S.; Silley, P.; Simjee, S.; Woodford, N.; van Duijkeren, E.; Johnson, A.P.; Gaastra, W. Assessing the Antimicrobial Susceptibility of Bacteria Obtained from Animals. Vet. Microbiol. 2010, 141, 601–604. [Google Scholar] [CrossRef] [PubMed]
- Aslantaş, Ö.; Demir, C. Investigation of the Antibiotic Resistance and Biofilm-Forming Ability of Staphylococcus aureus from Subclinical Bovine Mastitis Cases. J. Dairy Sci. 2016, 99, 8607–8613. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.H.I.; Mangolin, B.L.C.; Gonçalves, J.L.; Neeff, D.V.; Silva, M.P.; Cruz, A.G.; Oliveira, C.A.F. Biofilm-Producing Ability of Staphylococcus aureus Isolates from Brazilian Dairy Farms. J. Dairy Sci. 2014, 97, 1812–1816. [Google Scholar] [CrossRef] [PubMed]
- Toyofuku, M.; Inaba, T.; Kiyokawa, T.; Obana, N.; Yawata, Y.; Nomura, N. Environmental Factors That Shape Biofilm Formation. Biosci. Biotechnol. Biochem. 2016, 80, 7–12. [Google Scholar] [CrossRef] [PubMed]
- Rychshanova, R.; Mendybayeva, A.; Miciński, B.; Mamiyev, N.; Shevchenko, P.; Bermukhametov, Z.; Orzechowski, B.; Miciński, J. Antibiotic Resistance and Biofilm Formation in Staphylococcus aureus Isolated from Dairy Cows at the Stage of Subclinical Mastitis in Northern Kazakhstan. Arch. Anim. Breed. 2022, 65, 439–448. [Google Scholar] [CrossRef] [PubMed]
- Pedersen, R.R.; Krömker, V.; Bjarnsholt, T.; Dahl-Pedersen, K.; Buhl, R.; Jørgensen, E. Biofilm Research in Bovine Mastitis. Front. Vet. Sci. 2021, 8, 656810. [Google Scholar] [CrossRef] [PubMed]
- Dieser, S.A.; Fessia, A.S.; Ferrari, M.P.; Raspanti, C.G.; Odierno, L.M. Streptococcus uberis: In Vitro Biofilm Production in Response to Carbohydrates and Skim Milk. Rev. Argent. Microbiol. 2017, 49, 305–310. [Google Scholar] [CrossRef] [PubMed]
- Magagula, S.; Famuyide, I.M.; Karzis, J.; Petzer, I.-M. Biofilm Expression and Antimicrobial Resistance Patterns of Streptococcus uberis Isolated from Milk Samples of Dairy Cows in South Africa. J. Dairy Res. 2023, 90, 42–46. [Google Scholar] [CrossRef] [PubMed]
- Moliva, M.V.; Campra, N.; Ibañez, M.; Cristofolini, A.L.; Merkis, C.I.; Reinoso, E.B. Capacity of Adherence, Invasion and Intracellular Survival of Streptococcus uberis Biofilm-forming Strains. J. Appl. Microbiol. 2022, 132, 1751–1759. [Google Scholar] [CrossRef] [PubMed]
- Greeshma, A.J.; Pushpa, R.N.R.; Kavitha, K.L.; Rao, T.S. luxS Gene and Biofilm Formation in Streptococcus uberis Isolated from Bovine Mastitis Cases. Asian J. Dairy Food Res. 2021, 40, 273–278. [Google Scholar] [CrossRef]
- Nader Filho, A.; Ferreira, L.M.; do Amaral, L.A.; Rossi Junior, O.D.; Oliveira, R.P. Sensibilidade Antimicrobiana Dos Staphylococcus aureus Isolados No Leite de Vacas Com Mastite. Arq. Inst. Biol. 2007, 74, 1–4. [Google Scholar] [CrossRef]
- Kaczorek-Łukowska, E.; Małaczewska, J.; Sowińska, P.; Szymańska, M.; Wójcik, E.A.; Siwicki, A.K. Staphylococcus aureus from Subclinical Cases of Mastitis in Dairy Cattle in Poland, What Are They Hiding? Antibiotic Resistance and Virulence Profile. Pathogens 2022, 11, 1404. [Google Scholar] [CrossRef] [PubMed]
- Freu, G.; Tomazi, T.; Filho, A.F.S.; Heinemann, M.B.; Dos Santos, M.V. Antimicrobial Resistance and Molecular Characterization of Staphylococcus aureus Recovered from Cows with Clinical Mastitis in Dairy Herds from Southeastern Brazil. Antibiotics 2022, 11, 424. [Google Scholar] [CrossRef] [PubMed]
- Neelam; Jain, V.K.; Singh, M.; Joshi, V.G.; Chhabra, R.; Singh, K.; Rana, Y.S. Virulence and Antimicrobial Resistance Gene Profiles of Staphylococcus aureus Associated with Clinical Mastitis in Cattle. PLoS ONE 2022, 17, e0264762. [Google Scholar] [CrossRef] [PubMed]
- McDougall, S.; Clausen, L.; Ha, H.J.; Gibson, I.; Bryan, M.; Hadjirin, N.; Lay, E.; Raisen, C.; Ba, X.; Restif, O.; et al. Mechanisms of β-Lactam Resistance of Streptococcus uberis Isolated from Bovine Mastitis Cases. Vet. Microbiol. 2020, 242, 108592. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Tao, L.; Boonyayatra, S.; Niu, G. Antimicrobial Resistance of Streptococcus uberis Isolated from Bovine Mastitis: A Review. Indian. J. Anim. Res. 2022, 56, 1435–1441. [Google Scholar] [CrossRef]
- Tomazi, T.; Freu, G.; Alves, B.G.; de Souza Filho, A.F.; Heinemann, M.B.; dos Santos, M.V. Genotyping and Antimicrobial Resistance of Streptococcus uberis Isolated from Bovine Clinical Mastitis. PLoS ONE 2019, 14, e0223719. [Google Scholar] [CrossRef] [PubMed]
- Pitkälä, A.; Koort, J.; Björkroth, J. Identification and Antimicrobial Resistance of Streptococcus uberis and Streptococcus parauberis Isolated from Bovine Milk Samples. J. Dairy Sci. 2008, 91, 4075–4081. [Google Scholar] [CrossRef] [PubMed]
- Supré, K.; Lommelen, K.; De Meulemeester, L. Antimicrobial Susceptibility and Distribution of Inhibition Zone Diameters of Bovine Mastitis Pathogens in Flanders, Belgium. Vet. Microbiol. 2014, 171, 374–381. [Google Scholar] [CrossRef] [PubMed]
- Tomazi, T.; dos Santos, M.V. Antimicrobial Use for Treatment of Clinical Mastitis in Dairy Herds from Brazil and Its Association with Herd-Level Descriptors. Prev. Vet. Med. 2020, 176, 104937. [Google Scholar] [CrossRef]
- Martins, L.; Gonçalves, J.L.; Leite, R.F.; Tomazi, T.; Rall, V.L.M.; Santos, M.V. Association between Antimicrobial Use and Antimicrobial Resistance of Streptococcus uberis Causing Clinical Mastitis. J. Dairy Sci. 2021, 104, 12030–12041. [Google Scholar] [CrossRef] [PubMed]
Biofilm Production | Mastitis | Staph. aureus (n = 197) | Strep. uberis (n = 119) | ||||
---|---|---|---|---|---|---|---|
OD 1 | n | % | OD | n | % | ||
NP 2 | SCM 3 + CM 4 | 0.020 (0.001–0.096) | 84 | 42.6 | 0.008 (0.001–0.103) | 55 | 46.2 |
SCM | 0.019 (0.001–0.071) | 45 | 22.8 | 0.014 (0.001–0.103) | 14 | 11.7 | |
CM | 0.031 (0.001–0.096) | 39 | 19.8 | 0.006 (0.001–0.038) | 41 | 34.4 | |
Weak | SCM + CM | 0.029 (0.001–0.146) | 33 | 16.7 | 0.035 (0.008–0.294) | 13 | 10.9 |
SCM | 0.024 (0.008–0.146) | 21 | 10.6 | - | - | - | |
CM | 0.038 (0.001–0.121) | 12 | 6.1 | 0.035 (0.008–0.294) | 13 | 10.9 | |
Moderate | SCM + CM | 0.031 (0.004–0.163) | 37 | 18.8 | 0.025 (0.001–0.173) | 30 | 25.2 |
SCM | 0.028 (0.004–0.061) | 26 | 13.9 | - | - | - | |
CM | 0.037 (0.014–0.163) | 11 | 5.58 | 0.025 (0.001–0.173) | 30 | 25.2 | |
Strong | SCM + CM | 0.057 (0.004–0.275) | 43 | 21.8 | 0.021 (0.001–0.185) | 21 | 17.6 |
SCM | 0.044 (0.004–0.090) | 19 | 9.6 | 0.005 | 1 | 0.8 | |
CM | 0.062 (0.007–0.275) | 24 | 12.2 | 0.030 (0.001–0.185) | 20 | 16.8 |
Antimicrobial | Antimicrobial Class | Staph. aureus (n = 197) | Strep. uberis (n = 119) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
S 1 | R 2 | NA 3 | S | R | NA | ||||||||
n | % | n | % | n | % | n | (%) | n | % | n | % | ||
Ampicillin | Beta-lactam | 97 | 49.2 | 100 | 50.8 | - | - | 101 | 84.9 | 11 | 9.2 | 7 | 5.9 |
Amoxicillin/clavulanic acid | Beta-lactam | 194 | 98.5 | 3 | 1.5 | - | - | 112 | 94.1 | 1 | 0.8 | 6 | 5.0 |
Oxacillin | Beta-lactam | 194 | 98.5 | 2 | 1.0 | 1 | 0.5 | 16 | 13.4 | 96 | 80.7 | 7 | 5.9 |
Penicillin | Beta-lactam | 14 | 7.5 | 183 | 92.9 | - | - | 15 | 12.6 | 96 | 80.7 | 8 | 6.7 |
Cephalotin | Cephalosporin | 192 | 97.5 | 4 | 2.0 | 1 | 0.5 | 112 | 94.1 | 1 | 0.8 | 6 | 5.0 |
Ceftiofur | Cephalosporin | 157 | 79.7 | 40 | 20.3 | - | - | 108 | 90.8 | 4 | 3.4 | 7 | 5.9 |
Gentamicin | Aminoglycoside | 194 | 98.5 | 1 | 0.5 | 2 | 1.0 | 111 | 93.3 | 2 | 1.7 | 6 | 5.0 |
Tetracycline | Tetracycline | 93 | 47.2 | 104 | 52.8 | - | - | 67 | 56.3 | 45 | 37.8 | 7 | 5.9 |
Enrofloxacin | Fluoroquinolone | 183 | 92.9 | 14 | 7.1 | - | - | 101 | 84.9 | 11 | 9.2 | 7 | 5.9 |
Pirlimycin | Lincosamide | 196 | 99.5 | 1 | 0.5 | - | - | 95 | 79.8 | 17 | 14.3 | 7 | 5.9 |
Erythromycin | Macrolide | 190 | 96.4 | 5 | 2.5 | 2 | 1.0 | 101 | 84.9 | 5 | 4.2 | 13 | 11.0 |
Penicillin/novobiocin | Penicillin/Novobiocin | 197 | 100.0 | 0 | 0.0 | - | - | 111 | 93.3 | 2 | 1.7 | 6 | 5.0 |
p-Value | |||||
---|---|---|---|---|---|
Multiresistance | Biofilm 1 | Mastitis 2 | Bacteria 3 | Bac*Bio 4 | Mastitis*Bio 5 |
0.817 | 0.923 | 0.016 | 0.162 | 0.345 | |
Resistance | |||||
Ampicillin | 0.1050 | 0.0005 | 0.001 | 0.8611 | 0.5992 |
Amoxicillin/clavulanic acid | 0.9913 | 0.3272 | 0.7557 | 0.7016 | 0.9425 |
Oxacillin | 0.1686 | 0.0001 | 0.0001 | 0.4979 | 0.7898 |
Penicillin | 0.9620 | 0.0137 | 0.2346 | 0.6844 | 0.7331 |
Cephalotin | 0.4050 | 0.7397 | 0.3024 | 0.2738 | 0.2579 |
Ceftiofur | 0.5474 | 0.9243 | 0.0002 | 0.6789 | 0.6829 |
Gentamicin | 0.9828 | 0.9979 | 0.9694 | 0.9987 | 0.0001 |
Tetracycline | 0.1731 | 0.0025 | 0.0001 | 0.2252 | 0.4063 |
Enrofloxacin | 0.8468 | 0.3553 | 0.3942 | 0.9390 | 0.7553 |
Pirlimycin | 0.9620 | 0.234 | 0.0137 | 0.6844 | 0.7331 |
Erythromycin | 0.4611 | 0.9148 | 0.3243 | 0.9096 | 0.6133 |
Penicillin/novobiocin | 0.8427 | 0.8971 | 0.9051 | 0.9662 | 0.9479 |
Biofilm Categories | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Antimicrobial Classes 1 | Strong | Moderate | Weak | NP 2 | ||||||
Bacteria | Mastitis | n | % | n | % | n | % | n | % | |
1 | Staph. aureus | CM 3 | 18 | 9.1 | 8 | 4.1 | 7 | 3.5 | 33 | 16.7 |
SCM 4 | 12 | 6.1 | 19 | 9.6 | 14 | 7.1 | 35 | 17.7 | ||
Strep. uberis | CM | 9 | 9.3 | 18 | 18.6 | 9 | 9.3 | 12 | 12.4 | |
SCM | - | - | - | - | - | - | - | - | ||
2 | Staph. aureus | CM | 5 | 2.5 | - | - | 5 | 2.5 | 5 | 2.5 |
SCM | 5 | 2.5 | 7 | 3.5 | 6 | 3.0 | 5 | 2.5 | ||
Strep. uberis | CM | 7 | 7.2 | 8 | 8.2 | 1 | 1 | 11 | 11.3 | |
SCM | - | - | - | - | - | - | - | - | ||
3+ | Staph. aureus | CM | - | - | - | - | - | - | - | - |
SCM | 5 | 2.5 | - | - | - | - | 1 | 0.5 | ||
Strep. uberis | CM | 3 | 3.1 | 3 | 3.1 | - | - | 12 | 12.4 | |
SCM | - | - | - | - | - | - | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fidelis, C.E.; Orsi, A.M.; Freu, G.; Gonçalves, J.L.; Santos, M.V.d. Biofilm Formation and Antimicrobial Resistance of Staphylococcus aureus and Streptococcus uberis Isolates from Bovine Mastitis. Vet. Sci. 2024, 11, 170. https://doi.org/10.3390/vetsci11040170
Fidelis CE, Orsi AM, Freu G, Gonçalves JL, Santos MVd. Biofilm Formation and Antimicrobial Resistance of Staphylococcus aureus and Streptococcus uberis Isolates from Bovine Mastitis. Veterinary Sciences. 2024; 11(4):170. https://doi.org/10.3390/vetsci11040170
Chicago/Turabian StyleFidelis, Carlos E., Alessandra M. Orsi, Gustavo Freu, Juliano L. Gonçalves, and Marcos V. dos Santos. 2024. "Biofilm Formation and Antimicrobial Resistance of Staphylococcus aureus and Streptococcus uberis Isolates from Bovine Mastitis" Veterinary Sciences 11, no. 4: 170. https://doi.org/10.3390/vetsci11040170