Interval from Oestrus to Ovulation in Dairy Cows—A Key Factor for Insemination Time: A Review
Abstract
:Simple Summary
Abstract
1. Introduction
2. Duration of Oestrus and the Interval from Oestrus to Ovulation (OE–OV Interval)
Interval from Oestrus to Ovulation (OE–OV Interval)
3. Relationship between Preovulatory LH Surge and Ovulation (LH–OV Interval)
4. The Timing of AI
4.1. Timing of AI Relative to Ovulation
4.2. AI Timing Relative to Behavioural Oestrus
5. Can Ovulation Be Predicted by Ultrasonography?
6. Seasonal Heat Stress (HS) and the Oestrus-to-Ovulation Interval
- Altered patterns of follicular waves: The average size of the first-wave dominant follicle is similar between heat-stressed and control cows, but it decreases in size more rapidly. Therefore, the second-wave dominant follicle emerges earlier, inducing alterations in follicular development that contribute to the ovulation of an aged follicle, thereby reducing fertility [111].
- Alterations in the activity of numerous inflammatory-like factors that determine ovulation after LH surge. Ovulation is a complex mechanism that can be compared with an inflammatory response, and alterations in the characteristics of certain intrafollicular proteins and cytokines may alter the mechanism leading to ovulation [115,116]. These findings have been confirmed by an in vivo study where an increase in the intraovarian thermal conditions reduced the success of ovulation [117,118].
- A recent study in a tropical country demonstrated that oestradiol concentrations are lower in the hot, dry season (17.6 pg/dL) compared with the cold, rainy seasons (19.5 pg/dL), and this might modify the OE–OV interval [119].
7. Control of Ovulation by GnRH Administration
7.1. Effect of GnRH Administration at Onset of Oestrus
7.2. Effect of GnRH Administration at AI
8. Effect of GnRH on Inducing Ovulation in a Fixed-Time Insemination Program
9. Overall Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hawk, H.W. Transport and fate of spermatozoa after insemination of cattle. J. Dairy Sci. 1987, 70, 1487–1503. [Google Scholar] [CrossRef]
- Hunter, R.H.F.; Greve, T. Could artificial insemination of cattle be more fruitful? Penalties associated with ageing eggs. Reprod. Dom. Anim. 1997, 32, 137–141. [Google Scholar] [CrossRef]
- Madureira, A.M.L.; Silper, B.F.; Burnett, T.A.; Polsky, L.; Cruppe, L.H.; Veira, D.M.; Vasconcelos, J.L.M.; Cerri, R.L.A. Factors affecting expression of estrus measured by activity monitors and conception risk of lactating dairy cows. J. Dairy Sci. 2015, 98, 7003–7014. [Google Scholar] [CrossRef]
- Madureira, A.M.L.; Polsky, L.B.; Burnett, T.A.; Silper, B.F.; Soriano, S.; Sica, A.F.; Pohler, K.G.; Vasconcelos, J.L.M.; Cerri, R.L.A. Intensity of estrus following an estradiol–progesterone–based ovulation synchronization protocol influences fertility outcomes. J. Dairy Sci. 2019, 102, 3598–3608. [Google Scholar] [CrossRef]
- López–Gatius, F.; Santolaria, P.; Mundet, I.; Yániz, J.L. Walking activity at estrus and subsequent fertility in dairy cows. Theriogenology 2005, 63, 1419–1429. [Google Scholar] [CrossRef]
- Burnett, T.A.; Madureira, A.M.L.; Silper, B.F.; Fernandes, A.C.C.; Cerri, R.L.A. Integrating an automated activity monitor into an artificial insemination program and the associated risk factors affecting reproductive performance of dairy cows. J. Dairy Sci. 2017, 100, 5005–5018. [Google Scholar] [CrossRef]
- Burnett, T.A.; Polsky, L.; Kaur, M.; Cerri, R.L.A. Effect of estrous expression on timing and failure of ovulation of Holstein dairy cows using automated activity monitors. J. Dairy Sci. 2018, 101, 11310–11320. [Google Scholar] [CrossRef]
- Silper, B.F.; Madureira, A.M.L.; Polsky, L.B.; Soriano, S.; Sica, A.F.; Vasconcelos, J.L.M.; Cerri, R.L.A. Daily lying behavior of lactating Holstein cows during an estrus synchronization protocol and its associations with fertility. J. Dairy Sci. 2017, 100, 8484–8495. [Google Scholar] [CrossRef]
- Stevenson, J.S.; Hill, S.L.; Nebel, R.L.; DeJarnette, J.M. Ovulation timing and conception risk after automated activity monitoring in lactating dairy cows. J. Dairy Sci. 2014, 97, 4296–4308. [Google Scholar] [CrossRef] [PubMed]
- Burnett, T.A.; Madureira, A.L.; Bauer, J.W.; Cerri, R.L. Impact of gonadotropin–releasing hormone administration at the time of artificial insemination on conception risk and its association with estrous expression. J. Dairy Sci. 2022, 105, 1743–1753. [Google Scholar] [CrossRef] [PubMed]
- Roelofs, J.; López–Gatius, F.; Hunter, R.H.; van Eerdenburg, F.J.; Hanzen, C.H. When is a cow in estrus? Clinical and practical aspects. Theriogenology 2010, 74, 327–344. [Google Scholar] [CrossRef]
- Dobson, H.; Williams, J.; Routly, J.E.; Jones, D.N.; Cameron, J.; Holman–Coates, A.; Smith, R.F. Short communication: Chronology of different sexual behaviours and motion activity during estrus in dairy cows. J. Dairy Sci. 2018, 101, 8291–8295. [Google Scholar] [CrossRef]
- Orihuela, A. Some factors affecting the behavioural manifestation of oestrus in cattle: A review. Appl. Anim. Behav. Sci. 2000, 70, 1–16. [Google Scholar] [CrossRef]
- Heres, L.; Dieleman, S.J.; Van Eerdenburg, F.J. Validation of a new method of visual oestrus detection on the farm. Vet. Quart. 2000, 22, 50–55. [Google Scholar] [CrossRef]
- Lyimo, Z.C.; Nielen, M.; Ouweltjes, W.; Kruip, T.A.; van Eerdenburg, F.J. Relationship among estradiol, cortisol and intensity of estrous behavior in dairy cattle. Theriogenology 2000, 53, 1783–1795. [Google Scholar] [CrossRef]
- Roelofs, J.B.; Krijnen, C.; van Erpvan der Kooij, E. The effect of housing condition on the performance of two types of activity meters to detect estrus in dairy cows. Theriogenology 2017, 93, 12–15. [Google Scholar] [CrossRef]
- Roelofs, J.B.; Bouwman, E.G.; Dieleman, S.J.; Van Eerdenburg, F.J.; Kaal–Lansbergen, L.M.; Soede, N.M.; Kemp, B. Influence of repeated rectal ultrasound examinations on hormone profiles and behaviour around oestrus and ovulation in dairy cattle. Theriogenology 2004, 62, 1337–1352. [Google Scholar] [CrossRef]
- Roelofs, J.B.; van Eerdenburg, F.J.; Soede, N.M.; Kemp, B. Various behavioral signs of estrus and their relationship with time of ovulation in dairy cattle. Theriogenology 2005, 63, 1366–1377. [Google Scholar] [CrossRef]
- Sveber, G.; Refsdal, A.O.; Erhard, H.W.; Kommisrud, E.; Aldrin, M.; Tvete, I.F.; Buckley, F.; Waldmann, A.; Ropstad, E. Behavior of lactating Holstein–Friesian cows during spontaneous cycles of estrus. J. Dairy Sci. 2011, 94, 1289–1301. [Google Scholar] [CrossRef] [PubMed]
- Saint–Dizier, M.; Chastant–Maillard, S. Towards an automated detection of oestrus in dairy cattle. Reprod. Domest. Anim. 2012, 47, 1056–1061. [Google Scholar] [CrossRef] [PubMed]
- Holtz, W.; Meinhardt, H. Oestrus detection in cattle. Reprod. Domest. Anim. 1993, 28, 315–341. [Google Scholar] [CrossRef]
- Van Vliet, J.H.; Van Eerdenburg, F.J. Sexual activities and oestrus detection in lactating Holstein cows. Appl. Anim. Behav. Sci. 1996, 50, 57–69. [Google Scholar] [CrossRef]
- Dransfield, M.B.G.; Nebel, R.L.; Pearson, R.E.; Warnick, L.D. Timing of insemination for dairy cows identified in estrus by a radiotelemetric estrus detection system. J. Dairy Sci. 1998, 81, 1874–1882. [Google Scholar] [CrossRef] [PubMed]
- Valenza, A.; Giordano, G.O.; Lopes, G., Jr.; Vincenti, L.; Amundson, M.C.; Fricke, P.M. Assessment of an accelerometer system for detection of estrus and treatment with gonadotropin–releasing hormone at the time of insemination in lactating dairy cows. J. Dairy Sci. 2012, 95, 7115–7127. [Google Scholar] [CrossRef] [PubMed]
- Aungier, S.P.; Roche, J.F.; Sheehy, M.; Crowe, M.A. Effects of management and health on the use of activity monitoring for estrus detection in dairy cows. J. Dairy Sci. 2012, 95, 2452–2466. [Google Scholar] [CrossRef] [PubMed]
- Furukawa, E.; Kanno, C.; Yanagawa, Y.; Katagiri, S.; Nagano, M. Relationship between the timing of insemination based on estrus detected by the automatic activity monitoring system and conception rates using sex–sorted semen in Holstein dairy cattle. J. Reprod. Dev. 2022, 68, 295–298. [Google Scholar] [CrossRef] [PubMed]
- Tippenhauer, C.M.; Plenio, J.L.; Madureira, A.M.L.; Cerri, R.L.A.; Heuwieser, W.; Borchardt, S.F. Factors associated with estrous expression and subsequent fertility in lactating dairy cows using automated activity monitoring. Clin. Anim. Reprod. Dairy Sci. 2001, 104, 6267–6282. [Google Scholar] [CrossRef] [PubMed]
- Aungier, S.P.; Roche, J.F.; Duffy, P.; Scully, S.; Crowe, M.A. The relationship between activity clusters detected by an automatic activity monitor and endocrine changes during the periestrous period in lactating dairy cows. J. Dairy Sci. 2015, 98, 1666–1684. [Google Scholar] [CrossRef] [PubMed]
- Britt, J.H.; Scott, R.G.; Armstrong, J.D.; Whitacre, M.D. Determinants of estrous behavior in lactating Holstein cows. J. Dairy Sci. 1986, 69, 2195–2202. [Google Scholar] [CrossRef]
- Rivera, F.; Narciso, C.; Oliveira, R.; Cerri, R.L.A.; Correa–Calderón, A.; Chebel, R.C.; Santos, J.E.P. Effect of bovine somatotropin (500 mg) administered at ten–day intervals on ovulatory responses, expression of estrus, and fertility in dairy cows. J. Dairy Sci. 2010, 93, 1500–1510. [Google Scholar] [CrossRef]
- Pereira, M.H.C.; Wiltbank, M.C.; Vasconcelos, J.L.M. Expression of estrus improves fertility and decreases pregnancy losses in lactating dairy cows that receive artificial insemination or embryo transfer. J. Dairy Sci. 2016, 99, 2237–2247. [Google Scholar] [CrossRef] [PubMed]
- Polsky, L.B.; Madureira, A.M.L.; Filho, E.L.D.; Soriano, S.; Sica, A.F.; Vasconcelos, J.L.M.; Cerri, R.L.A. Association between ambient temperature and humidity, vaginal temperature, and automatic activity monitoring on induced estrus in lactating cows. J. Dairy Sci. 2017, 100, 8590–8601. [Google Scholar] [CrossRef] [PubMed]
- Sangsritavong, S.D.K.; Sartori, R.; Armentano, L.E.; Wiltbank, M.C. High feed intake increases liver blood flow and metabolism of progesterone and estradiol–17β in dairy cattle. J. Dairy Sci. 2002, 85, 2831–2842. [Google Scholar] [CrossRef] [PubMed]
- Shipka, M.P. A note on silent ovulation identified by using radiotelemetry for estrous detection. Appl. Anim. Behav. Sci. 2000, 66, 153–159. [Google Scholar] [CrossRef]
- Ranasinghe, R.M.; Nakao, T.; Yamada, K.; Koike, K. Silent ovulation, based on walking activity and milk progesterone concentrations, in Holstein cows housed in a free–stall barn. Theriogenology 2010, 73, 942–949. [Google Scholar] [CrossRef] [PubMed]
- Hunter, R.H.F. Physiology of the Graafian Follicle and Ovulation, 1st ed.; Cambridge University Press: Cambridge, UK, 2003. [Google Scholar]
- López–Gatius, F.; López–Béjar, M.; Fenech, M.; Hunter, R.H.F. Ovulation failure and double ovulation in dairy cattle: Risk factors and effects. Theriogenology 2005, 63, 1298–1307. [Google Scholar] [CrossRef] [PubMed]
- Diskin, M.G.; Sreenan, J.M. Expression and detection of oestrus in cattle. Reprod. Nutr. Dev. 2000, 40, 481–491. [Google Scholar] [CrossRef] [PubMed]
- Hockey, C.D.; Morton, J.M.; Norman, S.T.; McGowan, M.R. Evaluation of a neck mounted 2–hourly activity meter system for detecting cows about to ovulate in two paddock–based Australian dairy herds. Reprod. Domest. Anim. 2010, 45, 107–117. [Google Scholar] [CrossRef]
- Walker, W.L.; Nebel, R.L.; McGilliard, M.L. Time of ovulation relative to mounting activity in dairy cattle. J. Dairy Sci. 1996, 79, 1555–1561. [Google Scholar] [CrossRef]
- Christenson, R.K.; Echternkamp, S.E.; Laster, D.B.; Oestrus, L.H. Ovulation and fertility in beef heifers. J. Reprod. Fertil. 1975, 43, 543–546. [Google Scholar] [CrossRef]
- Yoshioka, H.; Ito, M.; Tanimoto, Y. Effectiveness of real–time radiotelemetric pedometer for estrus detection and insemination in Japanese Black cows. J. Reprod. Dev. 2010, 56, 351–355. [Google Scholar] [CrossRef] [PubMed]
- Bloch, A.; Folman, Y.; Kaim, M.; Roth, Z.; Braw–Tal, R.; Wolfenson, D. Endocrine alterations associated with extended time interval between estrus and ovulation in high–yield dairy cows. J. Dairy Sci. 2006, 89, 4694–4702. [Google Scholar] [CrossRef] [PubMed]
- Koyama, K.; Kubo, T.; Koyama, T.; Takahashi, Y. Parity affects the relationship between the insemination-ovulation interval and the conception rate in lactating dairy cows. Reprod. Domest. Anim. 2023, 58, 895–902. [Google Scholar] [CrossRef] [PubMed]
- Dalton, J.C.; Robinson, J.Q.; Price, W.J.; DeJarnette, J.M.; Chapwanya, A. Artificial insemination of cattle: Description and assessment of a training program for veterinary students. J. Dairy Sci. 2021, 104, 6295–6303. [Google Scholar] [CrossRef] [PubMed]
- Saumande, J.; Humblot, P. The variability in the interval between estrus and ovulation in cattle and its determinants. Anim. Reprod. Sci. 2005, 85, 171–182. [Google Scholar] [CrossRef] [PubMed]
- Suthar, V.S.; Burfeind, O.; Patel, J.S.; Dhami, A.J.; Heuwieser, W. Body temperature around induced estrus in dairy cows. J. Dairy Sci. 2011, 94, 2368–2373. [Google Scholar] [CrossRef] [PubMed]
- Roelofs, J.B.; van Eerdenburg, F.J.; Soede, N.M.; Kemp, B. Pedometer readings for estrous detection and as predictor for time of ovulation in dairy cattle. Theriogenology 2005, 64, 1690–1703. [Google Scholar] [CrossRef] [PubMed]
- Lopez, H.; Bunch, T.D.; Shipka, M.P. Estrogen concentrations in milk at estrus and ovulation in dairy cows. Anim. Reprod. Sci. 2002, 72, 37–46. [Google Scholar] [CrossRef] [PubMed]
- Gindri, P.; de Ávila Castro, N.; Mion, B.; Garziera Gasperin, B.; Catarelli Pegoraro, L.M.; Alveiro Alvarado Rincón, J.; Diniz Vieira, A.; Pradieé, J.; Machado Pfeifer, L.F.; Corrêa, M.N.; et al. Intrafollicular lipopolysaccharide injection delays ovulation in cows. Anim. Reprod. Sci. 2019, 211, 106–126. [Google Scholar] [CrossRef]
- Magata, F.J. Lipopolysaccharide-induced mechanisms of ovarian dysfunction in cows with uterine inflammatory diseases. Reprod. Dev. 2020, 66, 311–317. [Google Scholar] [CrossRef]
- Mateus, L.; Lopes da Costa, L.; Diniz, P.; Ziecik, A.J. Relationship between endotoxin and prostaglandin (PGE2 and PGFM) concentrations and ovarian function in dairy cows with puerperal endometritis. Anim. Reprod. Sci. 2003, 76, 143–154. [Google Scholar] [CrossRef] [PubMed]
- Lavon, Y.; Leitner, G.; Goshen, T.; Braw–Tal, R.; Jacoby, S.; Wolfenson, D. Exposure to endotoxin during estrus alters the timing of ovulation and hormonal concentrations in cows. Theriogenology 2008, 70, 956–967. [Google Scholar] [CrossRef] [PubMed]
- Lavon, Y.; Leitner, G.; Voet, H.; Wolfenson, D. Naturally occurring mastitis effects on timing of ovulation, steroid and gonadotrophic hormone concentrations, and follicular and luteal growth in cows. J. Dairy Sci. 2010, 93, 911–921. [Google Scholar] [CrossRef] [PubMed]
- Trimberger, G.W. Conception rate in dairy cattle by insemination at various intervals before and after ovulation. J. Dairy Sci. 1944, 27, 656–660. [Google Scholar]
- Wishart, D.F. Observations on the oestrous cycle of the Friesian heifer. Vet. Rec. 1972, 90, 595–597. [Google Scholar] [CrossRef] [PubMed]
- López–Gatius, F.; Llobera–Balcells, M.; Palacín–Chauri, R.J.; Garcia–Ispierto, I.; Hunter, R.H.F. Follicular Size Threshold for Ovulation Reassessed. Insights from Multiple Ovulating Dairy Cows. Animals 2022, 12, 1140. [Google Scholar] [CrossRef] [PubMed]
- Adams, G.P.; Ratto, M. Ovulation–inducing factor in seminal plasma: A review. Anim. Reprod. Sci. 2013, 136, 148–156. [Google Scholar] [CrossRef] [PubMed]
- Rajamahendran, R.; Robinson, J.; Desbottes, S. Temporal relationships among estrus, body temperature, milk yield, progesterone and luteinizing hormone levels, and ovulation in dairy cows. Theriogenology 1989, 31, 1173–1182. [Google Scholar] [CrossRef] [PubMed]
- Bage, R.; Gustafsson, H.; Larsson, B.; Forsberg, M.; Rodriguez Martinez, H. Repeat breeding in dairy heifers: Follicular dynamics and estrous cycle characteristics in relation to sexual hormone patterns. Theriogenology 2002, 57, 2257–2269. [Google Scholar] [CrossRef]
- Kaim, M.; Bloch, A.; Wolfenson, D.; Braw–Tal, R.; Rosenberg, M.; Voet, H.; Folman, Y. Effects of GnRH administered to cows at the onset of estrus on timing of ovulation, endocrine responses, and conception. J. Dairy Sci. 2003, 86, 2012–2021. [Google Scholar] [CrossRef]
- Roelofs, J.B. Prediction of ovulation and optimal insemination interval. Vet. Quart. 2008, 30, 58–77. [Google Scholar]
- Hockey, C.D.; Morton, J.M.; Norman, S.T.; McGowan, M.R. Improved prediction of ovulation time may increase pregnancy rates to artificial insemination in lactating dairy cattle. Reprod. Domest. Anim. 2010, 45, 239–248. [Google Scholar] [CrossRef] [PubMed]
- Hunter, R.H.F.; Wilmut, I. The rate of functional sperm transport into the oviducts of mated cows. Anim. Reprod. Sci. 1983, 5, 167–173. [Google Scholar] [CrossRef]
- Trimberger, G.W.; Davis, H.P. Breeding efficiency in dairy cattle bred at various stages of estrus by artificial insemination. J. Dairy Sci. 1943, 26, 757–759. [Google Scholar]
- Saacke, R.G.; Dalton, J.C.; Nadir, S.; Nebel, R.L.; Bame, J.H. Relationship of seminal traits and insemination time to fertilization rate and embryo quality. Anim. Reprod. Sci. 2000, 60–61, 663–677. [Google Scholar] [CrossRef]
- Brackett, B.G.; Oh, Y.K.; Evans, J.F.; Donawick, W.J. Fertilization and early development of cow ova. Biol. Reprod. 1980, 23, 189–205. [Google Scholar] [CrossRef] [PubMed]
- López–Gatius, F. Feeling the ovaries prior to insemination. Clinical implications for improving the fertility of the dairy cow. Theriogenology 2011, 76, 177–183. [Google Scholar] [CrossRef] [PubMed]
- Rutllant, J.; López–Béjar, M.; López–Gatius, F. Ultrastructural and rheological properties of bovine vaginal fluid and its relation to sperm motility and fertilization: A review. Reprod. Domest. Anim. 2005, 40, 79–86. [Google Scholar] [CrossRef] [PubMed]
- Stevenson, J.S.; Kobayashi, Y.; Thompson, K.E. Reproductive performance of dairy cows in various programmed breeding systems including OvSynch and combinations of gonadotropin–releasing hormone and prostaglandin F2 alpha. J. Dairy Sci. 1999, 82, 506–515. [Google Scholar] [CrossRef]
- Roelofs, J.B.; Graat, E.A.M.; Mullaart, E.; Soede, N.M.; Voskamp–Harkema, W.; Kemp, B. Effects of insemination–ovulation interval on fertilization rates and embryo characteristics in dairy cattle. Theriogenology 2006, 66, 2173–2181. [Google Scholar] [CrossRef]
- Dalton, J.C.; Nadir, S.; Bame, J.H.; Noftsinger, M.; Nebel, R.L.; Saacke, R.G. Effect of time of insemination on number of accessory sperm, fertilization rate, and embryo quality in nonlactating dairy cattle. J. Dairy Sci. 2001, 84, 2413–2418. [Google Scholar] [CrossRef]
- Sumiyoshi, T.; Tanaka, T.; Kamomae, H. An investigation of the time period within which frozen-thawed semen delivers a high conception rate in lactating dairy cows. J. Reprod. Dev. 2020, 66, 277–280. [Google Scholar] [CrossRef]
- Maatje, K.; Loeffler, S.H.; Engel, B. Predicting optimal time of insemination in cows that show visual signs of estrus by estimating onset of estrus with pedometers. J. Dairy Sci. 1997, 80, 1098–1105. [Google Scholar] [CrossRef] [PubMed]
- Talukder, S.; Thomson, P.C.; Kerrisk, K.L.; Clark, C.E.; Celi, P. Evaluation of infrared thermography body temperature and collar–mounted accelerometer and acoustic technology for predicting time of ovulation of cows in a pasture–based system. Theriogenology 2015, 83, 739–748. [Google Scholar] [CrossRef]
- Nebel, R.L.; Walker, W.L.; McGilliard, M.L.; Allen, C.H.; Heckman, G.S. Timing of artificial insemination of dairy cows: Fixed time once daily versus morning and afternoon. J. Dairy Sci. 1994, 77, 3185–3191. [Google Scholar] [CrossRef] [PubMed]
- Van Eerdenburg, F.; Karthaus, D.; Taverne, M.A.M.; Merics, I.; Szenci, O. The relationship between estrous behavioral score and time of ovulation in dairy cattle. J. Dairy Sci. 2002, 85, 1150–1156. [Google Scholar] [CrossRef]
- Foote, R.H.; Oltenacu, E.A.; Mellinger, J.; Scott, N.R.; Marshall, R.A. Pregnancy rate in dairy cows inseminated on the basis of electronic probe measurements. J. Dairy Sci. 1979, 62, 69–73. [Google Scholar] [CrossRef] [PubMed]
- Roche, J.R.; Friggens, N.C.; Kay, J.K.; Fisher, M.W.; Stafford, K.J.; Berry, D.P. Invited review: Body condition score and its association with dairy cow productivity, health, and welfare. J. Dairy Sci. 2009, 92, 5769–5801. [Google Scholar] [CrossRef]
- Mossa, F.; Walsh, S.W.; Butler, S.T.; Berry, D.P.; Carter, F.; Lonergan, P.; Smith, G.W.; Ireland, J.J.; Evans, A.C. Low numbers of ovarian follicles ≥3 mm in diameter are associated with low fertility in dairy cows. J. Dairy Sci. 2012, 95, 2355–2361. [Google Scholar] [CrossRef]
- Baez, G.M.; Barletta, R.V.; Guenther, J.N.; Gaska, J.M.; Wiltbank, M.C. Effect of uterine size on fertility of lactating dairy cows. Theriogenology 2016, 85, 1357–1366. [Google Scholar] [CrossRef]
- LeRoy, C.N.S.; Walton, J.S.; LeBlanc, S.J. Estrous detection intensity and accuracy and optimal timing of insemination with automated activity monitors for dairy cows. J. Dairy Sci. 2018, 101, 1638–1647. [Google Scholar] [CrossRef] [PubMed]
- Snijders, S.E.M.; Dillon, P.; O’Callaghan, D.; Boland, M.P. Effect of genetic merit, milk yield, body condition and lactation number on in vitro oocyte development in dairy cows. Theriogenology 2000, 53, 981–989. [Google Scholar] [CrossRef] [PubMed]
- Wilcox, C.I.; Pfau, O.I. Effect of two services during estrus on the conception rate of dairy cows. J. Dairy Sci. 1958, 41, 997. [Google Scholar] [CrossRef]
- O’Farrell, K.J.; Langley, O.H.; Hartigan, P.J.; Sreenan, J.M. Fertilisation and embryonic survival rates in dairy cows culled as repeat breeders. Vet. Rec. 1983, 112, 95–97. [Google Scholar] [CrossRef] [PubMed]
- Walker, S.L.; Smith, R.F.; Jones, D.N.; Routly, J.E.; Dobson, H. Chronic stress, hormone profiles and estrus intensity in dairy cattle. Horm. Behav. 2008, 53, 493–501. [Google Scholar] [CrossRef]
- Bedere, N.; Cutullic, E.; Delaby, L.; Garcia-Launay, F.; Disenhaus, C. Meta-analysis of the relationships between reproduction, milk yield and body condition score in dairy cows. Livest. Sci. 2018, 210, 73–84. [Google Scholar] [CrossRef]
- Roth, Z. Reproductive physiology and endocrinology responses of cows exposed to environmental heat stress—Experiences from the past and lessons for the present. Theriogenology 2020, 155, 150–156. [Google Scholar] [CrossRef] [PubMed]
- De Rensis, F.; Garcia-Ispierto, I.; López-Gatius, F. Seasonal heat stress: Clinical implications and hormone treatments for the fertility of dairy cows. Theriogenology 2015, 84, 659–666. [Google Scholar] [CrossRef] [PubMed]
- Foote, R.H. Time of artificial insemination and fertility in dairy cattle. J. Dairy Sci. 1979, 62, 355. [Google Scholar] [CrossRef]
- Graden, A.P.; Olds, D.; Mochow, C.R.; Matter, L.R. Causes of fertilization failure in repeat-breeding cattle. J. Dairy Sci. 1968, 51, 778. [Google Scholar] [CrossRef]
- Graves, W.M.; Dowlen, H.H.; Lamar, K.C.; Johnson, D.L.; Saxton, A.M.; Montgomery, M.J. The Effect of Artificial Insemination Once Versus Twice per Day. J. Dairy Sci. 1997, 80, 3068–3071. [Google Scholar] [CrossRef] [PubMed]
- Morton, J.M. The InCalf Project–Identifying risk factors for reproductive performance in Australian dairy herds. Cattle Pract. 2003, 11, 201–208. [Google Scholar]
- Moore, S.G.; Hasler, J.F. A 100–Year Review: Reproductive technologies in dairy science. J. Dairy Sci. 2017, 100, 10314–10331. [Google Scholar] [CrossRef] [PubMed]
- López–Gatius, F.; Camón–Urgel, J. Confirmation of estrus rates by palpation per rectum of genital organs in normal repeat dairy cows. Zentralbl Vet. A 1991, 38, 553–556. [Google Scholar] [CrossRef] [PubMed]
- Savio, J.D.; Keenan, L.; Boland, M.P.; Roche, J.F. Pattern of growth of dominant follicles during the oestrous cycle of heifers. J. Reprod. Fert. 1988, 83, 663–671. [Google Scholar] [CrossRef] [PubMed]
- Perry, G.; Smith, M.F.; Lucy, M.C.; Green, J.A.; Parks, T.E.; MacNeil, M.D.; Roberts, A.J.; Geary, T.W. Relationship between follicle size at insemination and pregnancy success. Proc. Natl. Acad. Sci. USA 2005, 102, 5268–5273. [Google Scholar] [CrossRef] [PubMed]
- Perry, G.; Smith, M.F.; Roberts, A.J.; MacNeil, M.D.; Geary, T.W. Relationship between size of the ovulatory follicle and pregnancy success in beef heifers. J. Anim. Sci. 2007, 85, 684–689. [Google Scholar] [CrossRef] [PubMed]
- Sá Filho, M.F.; Crespilho, A.M.; Santos, J.E.P.; Perry, G.A.; Baruselli, P.S. Ovarian follicle diameter at timed insemination and estrous response influence likelihood of ovulation and pregnancy after estrous synchronization with progesterone or progestin–based protocols in suckled Bos indicus cows. Anim. Reprod. Sci. 2010, 120, 23–30. [Google Scholar] [CrossRef] [PubMed]
- Acosta, T.J.; Hayashi, K.G.; Ohtani, M.; Miyamoto, A. Local changes in blood flow within the preovulatory follicle wall and early corpus luteum in cows. Reproduction 2003, 125, 759–767. [Google Scholar] [CrossRef]
- Acosta, T.J.; Miyamoto, A. Vascular control of ovarian function: Ovulation, corpus luteum formation and regression. Anim. Reprod. Sci. 2004, 82–83, 127–140. [Google Scholar] [CrossRef]
- Miyamoto, A.; Shirasuna, K.; Hayashi, K.G.; Kamada, D.; Awashima, C.; Kaneko, E.; Acosta, T.J.; Matsui, M.J. A potential use of color ultrasound as a tool for reproductive management: New observations using color ultrasound scanning that were not possible with imaging only in black and white. Reprod. Dev. 2006, 52, 153–160. [Google Scholar] [CrossRef] [PubMed]
- De Rensis, F.; Scaramuzzi, R.J. Heat stress and seasonal effects on reproduction in the dairy cow—A review. Theriogenology 2003, 60, 1139–1151. [Google Scholar] [CrossRef] [PubMed]
- Wolfenson, D.; Roth, Z.; Meidan, R. Impaired reproduction in heat–stressed cattle: Basic and applied aspects. Anim. Reprod. Sci. 2000, 60–61, 535–547. [Google Scholar] [CrossRef] [PubMed]
- Wolfenson, D.; Roth, Z. Impact of heat stress on cow reproduction and fertility. Anim. Front. 2018, 10, 32–38. [Google Scholar] [CrossRef] [PubMed]
- De Rensis, F.; Saleri, R.; Garcia–Ispierto, I.; Scaramuzzi, R.J.; López–Gatius, F. Effects of Heat Stress on Follicular Physiology in Dairy Cows. Animals 2021, 11, 3406. [Google Scholar] [CrossRef]
- Her, E.; Wolfenson, D.; Flamenbaum, I.; Folman, Y.; Kaim, M.; Berman, A. Thermal, productive, and reproductive responses of high yielding cows exposed to short–term cooling in summer. J. Dairy Sci. 1988, 71, 1085–1092. [Google Scholar] [CrossRef] [PubMed]
- Roth, Z.; Meidan, R.; Braw–Tal, R.; Wolfenson, D. Immediate and delayed effects of heat stress on follicular development and its association with plasma FSH and Inhibin concentration in cows. J. Reprod. Fertil. 2000, 120, 83–90. [Google Scholar] [CrossRef]
- Schüller, L.K.; Michaelis, I.; Heuwieser, W. Impact of heat stress on estrus expression and follicle size in estrus under field conditions in dairy cows. Theriogenology 2017, 102, 48–53. [Google Scholar] [CrossRef] [PubMed]
- Gilad, E.; Meidan, R.; Berman, A.; Graber, Y.; Wolfenson, D. Effect of heat stress on tonic and GnRH–induced gonadotrophin secretion in relation to concentration of oestradiol in plasma of cyclic cows. J. Reprod. Fertil. 1993, 99, 315–321. [Google Scholar] [CrossRef]
- Wolfenson, D.; Thatcher, W.W.; Badinga, L.; Savio, J.D.; Meidan, R.; Lew, B.J. Effect of heat stress on follicular development during the estrous cycle in lactating dairy cattle. Biol. Reprod. 1995, 52, 1106–1113. [Google Scholar] [CrossRef]
- Giordano, J.; Edwards, J.; Di Croce, F.; Roper, D.; Rohrbach, N.; Saxton, A.; Schuenemann, G.M.; Prado, T.M.; Schrick, F.N. Ovulatory follicle dysfunction in lactating dairy cows after treatment with Folltropin–V at the onset of luteolysis. Theriogenology 2013, 79, 1210–1217. [Google Scholar] [CrossRef]
- Rispoli, L.A.; Payton, R.R.; Gondro, C.; Saxton, A.M.; Nagle, K.A.; Jenkins, B.W.; Schrick, F.N.; Edwards, J.L. Heat stress effects on the cumulus cells surrounding the bovine oocyte during maturation: Altered matrix metallopeptidase 9 and progesterone production. Reproduction 2013, 146, 193–207. [Google Scholar] [CrossRef] [PubMed]
- Goodwin, M.R.; Rispoli, L.A.; Payton, R.R.; Saxton, A.M.; Edwards, J.L. Developmental consequences of supplementing with matrix metallopeptidase–9 during in vitro maturation of heat–stressed bovine oocytes. J. Reprod. Dev. 2016, 62, 553–560. [Google Scholar] [CrossRef] [PubMed]
- Nivet, A.L.; Vigneault, C.; Blondin, P.; Sirard, M.A. Changes in granulosa cells’ gene expression associated with increased oocyte competence in bovine. Reproduction 2013, 145, 555–565. [Google Scholar] [CrossRef] [PubMed]
- Ferrazza, R.A.; Garcia, H.D.M.; Schmidt, E.; Mihm Carmichael, M.; Souza, F.F.; Burchmore, R.; Sartori, R.; Pinheiro Ferreira, J.C. Quantitative proteomic profiling of bovine follicular fluid during follicle development. Biol. Reprod. 2017, 97, 835–849. [Google Scholar] [CrossRef] [PubMed]
- López–Gatius, F.; Hunter, R.H.F. Clinical relevance of pre–ovulatory follicular temperature in heat–stressed lactating dairy cows. Reprod. Domest. Anim. 2017, 52, 366–370. [Google Scholar] [CrossRef] [PubMed]
- Morita, Y.; Ozaki, R.; Mukaiyama, A.; Sasaki, T.; Tatebayashi, R.; Morishima, A.; Kitagawa, Y.; Suzumura, R.; Abe, R.; Tsukamura, H.; et al. Establishment of long–term chronic recording technique of in vivo Ovarian parenchymal temperature in Japanese Black cows. J. Reprod. Dev. 2020, 66, 271–275. [Google Scholar] [CrossRef]
- Wachida, N.; Dawuda, P.; Ate, I.U.; Rekwot, P.I. Impact of environmental heat stress on ovarian function of Zebu cows. J. Anim. Health Prod. 2022, 10, 412–419. [Google Scholar] [CrossRef]
- Arechiga, C.F.; Staples, C.R.; McDowell, L.R.; Hansen, P.J. Effects of timed insemination and supplemental β–carotene on reproduction and milk yield of dairy cows under heat stress. J. Dairy Sci. 1998, 81, 390–402. [Google Scholar] [CrossRef]
- De La Sota, R.L.; Burke, J.M.; Risco, C.A.; Moreira, F.; DeLorenzo, M.A.; Thatcher, W.W. Evaluation of timed insemination during summer heat stress in lactating dairy cattle. Theriogenology 1998, 49, 761–770. [Google Scholar] [CrossRef]
- Ullah, G.; Fuquay, J.W.; Keawkhong, T.; Clark, B.L.; Pogue, D.E.; Murphey, E.J. Effect of gonadotropin–releasing hormone at estrus on subsequent luteal function and fertility in lactating holsteins during heat stress. J. Dairy Sci. 1996, 79, 1950–1953. [Google Scholar] [CrossRef]
- Coulson, A.; Noakes, D.E.; Hamer, J.; Cockrill, T. Effect of gonadotrophin releasing hormone on levels of luteinising hormone in cattle synchronised with dinoprost. Vet. Rec. 1980, 107, 108–109. [Google Scholar] [CrossRef]
- Lucy, M.C.; Stevenson, J.S. Gonadotrophin–releasing hormone at estrus: Luteinizing hormone, estradiol and progesterone during the periestrual and postinsemination periods in dairy cattle. Biol. Reprod. 1986, 35, 300–311. [Google Scholar] [CrossRef]
- Morgan, W.F.; Lean, I.J. Gonadotrophin–releasing hormone treatment in cattle: A meta–analysis of the effects on conception at the time of insemination. Aust. Vet. J. 1993, 70, 205–209. [Google Scholar] [CrossRef] [PubMed]
- Mee, M.O.; Stevenson, J.S.; Scoby, R.K.; Foman, Y. Influence of GnRH and timing of insemination in relation to oestrus and pregnancy rates of dairy cattle at first service. J. Dairy Sci. 1990, 75, 1500–1507. [Google Scholar] [CrossRef] [PubMed]
- Pursley, J.R.; Mee, M.O.; Wiltbank, M.C. Synchronization of ovulation in dairy cows using PGF2a and GnRH. Theriogenology 1995, 44, 915–923. [Google Scholar] [CrossRef]
- Kasimanickam, R.; Cornwell, J.M.; Nebel, R.L. Fertility following fixed–time AI or insemination at observed estrus in Ovsynch and Heatsynch programs in lactating dairy cows. Theriogenology 2005, 63, 2550–2559. [Google Scholar] [CrossRef]
- Rosenberg, M.; Chun, S.Y.; Kaim, M.; Herz, Z.; Folman, Y. The effect of GnRH administered to dairy cows during oestrus on plasma LH and conception in relation to the time of treatment and insemination. Anim. Reprod. Sci. 1991, 24, 13–24. [Google Scholar] [CrossRef]
- Stevenson, J.S.; Pulley, S.L. Feedback effects of estradiol and progesterone on ovulation and fertility of dairy cows after gonadotropin–releasing hormone–induced release of luteinizing hormone. J. Dairy Sci. 2016, 99, 3003–3015. [Google Scholar] [CrossRef]
- Pulley, S.L.; Keisler, D.H.; Stevenson, J.S. Concentrations of luteinizing hormone and ovulatory responses in dairy cows before timed artificial insemination. J. Dairy Sci. 2015, 98, 6188–6201. [Google Scholar] [CrossRef]
- Geary, T.W.; Whittier, J.C.; Downing, E.R.; LeFever, D.G.; Silcox, R.W.; Holland, M.D.; Nett, T.M.; Niswender, G.D. Pregnancy rates of postpartum beef cows that were synchronized using Syncro–Mate–B or the Ovsynch protocol. J. Anim. Sci. 1998, 76, 1523–1527. [Google Scholar] [CrossRef] [PubMed]
- Rajamahendran, R.; Sianangama, P.C. Effect of human chorionic gonadotrophin on dominant follicles in cows: Formation of accessory corpora lutea, progesterone production and pregnancy rates. J. Reprod. Fertil. 1992, 95, 577–584. [Google Scholar] [CrossRef] [PubMed]
- Schmitt, E.J.P.; Diaz, T.; Barros, C.M.; de la Sota, R.L.; Drost, M.; Fredriksson, E.W.; Staples, C.R.; Thorner, R.; Thatcher, W.W. Differential response of the luteal phase and fertility in cattle following ovulation of the first–wave follicle with human chorionic gonadotropin or an agonist of gonado– tropin–releasing hormone. J. Anim. Sci. 1996, 74, 1074–1083. [Google Scholar] [CrossRef] [PubMed]
- Stevenson, J.S.; Portaluppi, M.A.; Tenhouse, D.E.; Lloyd, A.; Eborn, D.R.; Kacuba, S.; DeJarnette, J.M. Interventions after artificial insemination: Conception rates, pregnancy survival, and ovarian responses to gonadotropin–releasing hormone, human chorionic gonadotropin, and progesterone. J. Dairy Sci. 2007, 90, 331–340. [Google Scholar] [CrossRef] [PubMed]
- De Rensis, F.; Bottarelli, E.; Battioni, F.; Capelli, T.; Techakumphu, M.; García–Ispierto, I.; López–Gatius, F. Reproductive performance of dairy cows with ovarian cysts after synchronizing ovulation using GnRH or hCG during the warm or cool period of the year. Theriogenology 2008, 69, 481–484. [Google Scholar] [CrossRef] [PubMed]
- Cabrera, E.M.; Lauber, M.R.; Peralta, E.M.; Bilby, T.R.; Fricke, P.M. Human chorionic gonadotropin dose response for induction of ovulation 7 days after a synchronized ovulation in lactating Holstein cows. JDS Commun. 2020, 2, 35–40. [Google Scholar] [CrossRef]
- Cabrera, E.M.; Lauber, M.R.; Valdes–Arciniega, T.; El Azzi, M.S.; Martins, J.P.N.; Bilby, T.R.; Fricke, P.M. Replacing the first gonadotropin–releasing hormone treatment in an Ovsynch protocol with human chorionic gonadotropin decreased pregnancies per artificial insemination in lactating dairy cows. J. Dairy Sci. 2021, 104, 8290–8300. [Google Scholar] [CrossRef] [PubMed]
- De Rensis, F.; Valentini, R.; Gorrieri, F.; Bottareli, E.; Lopez–Gatius, F. Inducing ovulation with hCG improves the fertility of dairy cows during the warm season. Theriogenology 2008, 69, 1077–1082. [Google Scholar] [CrossRef] [PubMed]
- Garcia–Ispierto, I.; De Rensis, F.; Casas, X.; Caballero, F.; Serrano–Pérez, B.; López–Gatius, F. Inducing ovulation with hCG in a five–day progesterone–based fixed–time AI protocol improves the fertility of anestrous dairy cows under heat stress conditions. Theriogenology 2019, 124, 65–68. [Google Scholar] [CrossRef]
- Geary, T.W.; Salverson, R.R.; Whittier, J.C. Synchronization of ovulation using GnRH or hCG with the CO-Synch protocol in suckled beef cows. J. Anim. Sci. 2001, 79, 2536–2541. [Google Scholar] [CrossRef]
Interval from Oestrus Onset to Ovulation | References |
---|---|
25.7 ± 0.4 h | [9] |
26.4 ± 0.7 h | [9] |
26.4 ± 1.5 h | [18] |
27.6 ± 5.4 h | [40] |
28.6 ± 6.0 h | [43] |
28.7 ± 8.1 h | [24] |
29.0 ± 0.6 h | [42] |
30 ± 1.1 h | [28] |
30.2 ± 0.6 h | [42] |
30.6 ± 4.4 h | [18] |
range 24–33 h | |
Interval from the End of Oestrus to Ovulation | |
15.3 ± 0.9 h | [9] |
16.7 ± 1.1 h | [17] |
17.3 ± 12.8 h | [39] |
21.0 ± 0.9 h | [9] |
Mean range 15–21 h |
Hours from Onset of Oestrus | |
---|---|
Ovulation | Insemination |
Onset of oestrus to ovulation: ~24–33 h End of oestrus to ovulation: ~15–22 h | Onset of oestrus to insemination: ~4–18 h End of oestrus to insemination: ~6–8 h |
Oestrus length: ~8–20 h | |
Insemination should occur ~7–17 h before ovulation |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
De Rensis, F.; Dall’Olio, E.; Gnemmi, G.M.; Tummaruk, P.; Andrani, M.; Saleri, R. Interval from Oestrus to Ovulation in Dairy Cows—A Key Factor for Insemination Time: A Review. Vet. Sci. 2024, 11, 152. https://doi.org/10.3390/vetsci11040152
De Rensis F, Dall’Olio E, Gnemmi GM, Tummaruk P, Andrani M, Saleri R. Interval from Oestrus to Ovulation in Dairy Cows—A Key Factor for Insemination Time: A Review. Veterinary Sciences. 2024; 11(4):152. https://doi.org/10.3390/vetsci11040152
Chicago/Turabian StyleDe Rensis, Fabio, Eleonora Dall’Olio, Giovanni Maria Gnemmi, Padet Tummaruk, Melania Andrani, and Roberta Saleri. 2024. "Interval from Oestrus to Ovulation in Dairy Cows—A Key Factor for Insemination Time: A Review" Veterinary Sciences 11, no. 4: 152. https://doi.org/10.3390/vetsci11040152
APA StyleDe Rensis, F., Dall’Olio, E., Gnemmi, G. M., Tummaruk, P., Andrani, M., & Saleri, R. (2024). Interval from Oestrus to Ovulation in Dairy Cows—A Key Factor for Insemination Time: A Review. Veterinary Sciences, 11(4), 152. https://doi.org/10.3390/vetsci11040152