Strategies for Transboundary Swine Disease Management in Asian Islands: Foot and Mouth Disease, Classical Swine Fever, and African Swine Fever in Taiwan, Japan, and the Philippines
Abstract
:Simple Summary
Abstract
1. Introduction
2. Commonalities and Disparities
2.1. Commonalities in Geography, Climate, and Swine Industries
2.2. Commonalities in Data Transparency
2.3. Disparities in Socio-Economic Status and Transboundary Animal Disease Dynamics
3. Strategies
3.1. FMD Eradication
3.1.1. FMD in Taiwan
- (1)
- Consistently achieving high swine vaccination coverage, exceeding the targeted annual rate of 90%. In 2015 and 2016, the pig vaccination rate reached 111.09%, the herbivorous animal vaccination rate was 106.39%, and the overall vaccination rate stood at 110.89%, according to government data [15].
- (2)
- Utilizing NSP ELISA tests for sero-surveillance post-2009 FMD recurrence struck a balance between sensitivity and specificity. This ongoing testing aims to substantiate the absence of the FMD virus and guide decisions on lifting compulsory vaccination mandates.
- (3)
- Dedicated personnel overseeing immunization certificates in meat markets, along with routine veterinary inspections, reinforced swine immunization certificate collection, environmental disinfection, pig movement management, and timely epidemic reporting.
3.1.2. Eradication of FMD in Japan and Ongoing Prevention Initiatives
3.1.3. Philippines: FMD Eradication through Zoning Strategy
3.1.4. FMD as a Regional Threat
3.2. Re-Emergence of CSF in Japan
CSF in Wild Boar Re-Emergence in Japan
3.3. Five Years of ASF Experience in the Philippines and Ongoing Threats
4. Discussion and Lessons Learned
4.1. FMD
4.2. CSF in Wild Boar Control
4.3. Smallholder Pig Raising Still Poses a Potential Risk
4.4. Potential CSF Risk and ASF Prevention
4.5. ASF Vaccine Practicality: Lessons from FMD and CSF, Managing Expectations, and Prioritizing Prevention
4.6. A Vaccination Trade-Off
4.7. GF-TADs
4.8. Unified Measures for Transboundary Animal Disease Control
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Pig Population (Million) | Number of Pig Farms | |||||
---|---|---|---|---|---|---|
Year | Taiwan | Japan | Philippines | Taiwan | Japan | Philippines |
2012 | 5.98 | 9.735 | 11.86 | 9167 | 5840 | - |
2013 | 5.79 | 9.685 | 11.84 | 8457 | 5570 | - |
2014 | 5.53 | 9.537 | 11.79 | 7889 | 5270 | - |
2015 | 5.48 | - | 11.99 | 7751 | - | - |
2016 | 5.43 | 9.313 | 12.46 | 7523 | 4830 | - |
2017 | 5.42 | 9.346 | 12.42 | 7329 | 4670 | - |
2018 | 5.43 | 9.189 | 12.6 | 7169 | 4470 | - |
2019 | 5.5 | 9.156 | 12.7 | 6697 | 4320 | - |
2020 | 5.5 | - | 12.79 | 6440 | - | - |
2021 | 5.46 | 9.29 | 9.72 | 6254 | 3850 | - |
2022 | 5.3 | 8.949 | 9.93 | 5943 | 3590 | - |
Appendix B
Japan | Philippines | Taiwan | |
---|---|---|---|
Population (million) | 125.7 | 117.3 | 23.9 |
Area (km2) | 377,973 | 300,001 | 36,197 |
Density (people per km2) | 338 | 394 | 649 |
Swine Farm Households | 3370 | N.A. * | 5991 |
Hog population (million) | 9–10 | 10–12 | 5–6 |
Farm type statistics | 1–99: 9.0% 100–299: 8.3% 300–499: 8.6% 500–999: 19.4% 1000–2999: 18.6% >2000: 30.0% | Smallholder (<20): 67.5% Semi-commercial: 3.3% Commercial (>20): 29.2% | <200: 33.3% 200–1000: 39.8% >1000: 26.9% |
Number of animals kept per household (heads) | 2657 | <20 * | 916 |
per capita pork consumption (kg) | 21.33 | 14.51 | 38.35 |
Nominal GDP | USD 5150 billion | USD 362.7 billion | USD 590 billion |
Percentage % of GDP from agriculture, forestry, and fishing | 1.0 | 9.5 | 1.4 |
References
- Marsh, T.L.; Pendell, D.; Knippenberg, R. Animal health economics: An aid to decisionmaking on animal health interventions-case studies in the United States of America. Rev. Sci. Et Tech. (Int. Off. Epizoot.) 2017, 36, 137–145. [Google Scholar] [CrossRef]
- Zhao, D.; Sun, E.; Huang, L.; Ding, L.; Zhu, Y.; Zhang, J.; Shen, D.; Zhang, X.; Zhang, Z.; Ren, T.; et al. Highly lethal genotype I and II recombinant African swine fever viruses detected in pigs. Nat. Commun. 2023, 14, 3096. [Google Scholar] [CrossRef] [PubMed]
- FAO; OIE. Global Control of African Swine Fever: A GF-TADs Initiative. 2020–2025; FAO: Paris, France, 2020. [Google Scholar]
- Andretta, I.; Hickmann, F.M.W.; Remus, A.; Franceschi, C.H.; Mariani, A.B.; Orso, C.; Kipper, M.; Létourneau-Montminy, M.-P.; Pomar, C. Environmental impacts of pig and poultry production: Insights from a systematic review. Front. Vet. Sci. 2021, 8, 750733. [Google Scholar] [CrossRef]
- Economic Research Service/USDA. Taiwan’s Hog Industry—3 Years after Disease Outbreak. Agoutlook, 275. October 2000. Available online: https://wayback.archive-it.org/5923/20110915003117/http://ers.usda.gov/publications/agoutlook/oct2000/ao275h.pdf (accessed on 14 January 2024).
- Ito, S.; Kawaguchi, N.; Bosch, J.; Aguilar-Vega, C.; Sánchez-Vizcaíno, J.M. What can we learn from the five-year African swine fever epidemic in Asia? Front. Vet. Sci. 2023, 10, 1273417. [Google Scholar] [CrossRef] [PubMed]
- Blacksell, S.D.; Siengsanan-Lamont, J.; Kamolsiripichaiporn, S.; Gleeson, L.J.; Windsor, P.A. A history of FMD research and control programmes in Southeast Asia: Lessons from the past informing the future. Epidemiol. Infect. 2019, 147, e171. [Google Scholar] [CrossRef] [PubMed]
- Chung, W.B.; Liao, P.C.; Yang, P.C.; Chen, S.P.; Jong, M.H.; Sheu, T.W. Surveillance of FMD virus non-structural protein antibodies in pig populations involved in an eradication programme. Vet. Rec. 2003, 152, 595–597. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.J.; Sung, W.H.; Shieh, H.K. Managing an animal health emergency in Taipei China: Foot and mouth disease. Rev. Sci. Et Tech. (Int. Off. Epizoot.) 1999, 18, 186–192. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.C.; Jong, M.H.; Lin, S.Y. Characteristics of foot and mouth disease virus in Taiwan. J. Vet. Med. Sci. 2000, 62, 677–679. [Google Scholar] [CrossRef]
- Ministry of Agriculture, Taiwan. Current Status of Foot-and-Mouth Disease Eradication Measures; [Press Release] Executive Yuan: Taipei, Taiwan, 2002.
- Chen, S.P.; Lee, M.C.; Sun, Y.F.; Yang, P.C. Application of non-structural protein ELISA kits in nationwide FMD surveillance in pigs to demonstrate virus circulation in Taiwan. Vet. Microbiol. 2011, 152, 266–269. [Google Scholar] [CrossRef]
- Brito, B.P.; Rodriguez, L.L.; Hammond, J.M.; Pinto, J.; Perez, A.M. Review of the global distribution of foot-and-mouth disease virus from 2007 to 2014. Transbound. Emerg. Dis. 2017, 64, 316–332. [Google Scholar] [CrossRef]
- USDA Foreign Agricultural Service. Taiwan: Taiwan Eradicates Foot and Mouth Disease But Challenges Remain for Returning to Pork Export Market. Global Agricultural Information Network (GAIN). 21 September 2020. Available online: https://www.fas.usda.gov/data/taiwan-taiwan-eradicates-foot-and-mouth-disease-challenges-remain-returning-pork-export-market (accessed on 14 January 2024).
- Ministry of Agricultural. Agricultural Publications Livestock Management 2015 Annual Report. Available online: https://eng.moa.gov.tw/ (accessed on 14 January 2024).
- Sugiura, K.; Ogura, H.; Ito, K.; Ishikawa, K.; Hoshino, K.; Sakamoto, K. Eradication of foot and mouth disease in Japan. Rev. Sci. Et Tech.-Off. Int. Des Epizoot. 2001, 20, 701–714. [Google Scholar] [CrossRef] [PubMed]
- Muroga, N.; Hayama, Y.; Yamamoto, T.; Kurogi, A.; Tsuda, T.; Tsutsui, T. The 2010 Foot-and-Mouth Disease Epidemic in Japan. J. Vet. Med. Sci. 2012, 74, 399–404. [Google Scholar] [CrossRef] [PubMed]
- Ministry of Agriculture, Forestry, and Fisheries (MAFF). Information about Foot and Mouth Disease. 10 November 2023. Available online: https://www.maff.go.jp/j/syouan/douei/katiku_yobo/k_fmd/ (accessed on 14 January 2024).
- Windsor, P.A.; Freeman, P.G.; Abila, R.; Benigno, C.; Verin, B.; Nim, V.; Cameron, A. Foot-and-Mouth Disease Control and Eradication in the Bicol Surveillance Buffer Zone of the Philippines. Transbound. Emerg. Dis. 2011, 58, 421–433. [Google Scholar] [CrossRef] [PubMed]
- Morales, R.; Umandal, A.; Magcales, J. Eradication of FMD in the Philippines (II). Available online: https://www.pig333.com/articles/eradication-of-fmd-in-the-philippines-ii_4633/ (accessed on 14 January 2024).
- WOAH-WAHIS (World Animal Health Information System). Foot & Mouth Disease—South Korea: (North Chungcheong) Cattle, Serotype O, South Korea (Immediate Notification); WOAH: Paris, France, 12 May 2023. [Google Scholar]
- WOAH-WAHIS (World Animal Health Information System). China (People’s Rep. of)—Foot and Mouth Disease Virus (Inf. with) (Immediate Notification); WOAH: Paris, France, 10 April 2023. [Google Scholar]
- OIE. Resolutions Adopted by the World Assembly of the OIE Delegates during Their 83rd General Session. 2015. Available online: https://www.oie.int/fileadmin/Home/eng/About_us/docs/pdf/Session/A_RESO_2015_public.pdf (accessed on 14 January 2024).
- Shimizu, Y.; Hayama, Y.; Murato, Y.; Sawai, K.; Yamaguchi, E.; Yamamoto, T. Epidemiology of Classical Swine Fever in Japan—A Descriptive Analysis of the Outbreaks in 2018–2019. Front. Vet. Sci. 2020, 7, 573480. [Google Scholar] [CrossRef] [PubMed]
- Postel, A.; Nishi, T.; Kameyama, K.; Meyer, D.; Suckstorff, O.; Fukai, K.; Becher, P. Reemergence of Classical Swine Fever, Japan, 2018. Emerg. Infect. Dis. 2019, 25, 1228–1231. [Google Scholar] [CrossRef] [PubMed]
- Ministry of Agriculture, Forestry, and Fisheries (MAFF) Japan. Livestock Statistical Survey. 2023. Available online: https://www.maff.go.jp/e/index.html (accessed on 14 January 2024).
- Isoda, N.; Baba, K.; Ito, S.; Ito, M.; Sakoda, Y.; Makita, K. Dynamics of Classical Swine Fever Spread in Wild Boar in 2018–2019, Japan. Pathogens 2020, 9, 119. [Google Scholar] [CrossRef]
- Ito, S.; Jurado, C.; Bosch, J.; Ito, M.; Sánchez-Vizcaíno, J.M.; Isoda, N.; Sakoda, Y. Role of Wild Boar in the Spread of Classical Swine Fever in Japan. Pathogens 2019, 8, 206. [Google Scholar] [CrossRef]
- Yang, Y.; Nishiura, H. Assessing the geographic range of classical swine fever vaccinations by spatiotemporal modelling in Japan. Transbound. Emerg. Dis. 2022, 69, 1880–1889. [Google Scholar] [CrossRef]
- Ito, S.; Bosch, J.; Aguilar-Vega, C.; Isoda, N.; Martínez-Avilés, M.; Sánchez-Vizcaíno, J.M. Development of an Effective Oral Vaccine Dissemination Strategy against Classical Swine Fever for Wild Boar in Gifu Prefecture, Japan. Transbound. Emerg. Dis. 2023, 2023, 9484441. [Google Scholar] [CrossRef]
- Matsuyama, R.; Yamamoto, T.; Hayama, Y.; Omori, R. Measuring impact of vaccination among wildlife: The case of bait vaccine campaigns for classical swine fever epidemic among wild boar in Japan. PLoS Comput. Biol. 2022, 18, e1010510. [Google Scholar] [CrossRef] [PubMed]
- Hayama, Y.; Sawai, K.; Murato, Y.; Yamaguchi, E.; Kondo, S.; Yamamoto, T. Analysis of effective spatial range of oral vaccination against classical swine fever for wild boar. Prev. Vet. Med. 2023, 221, 106080. [Google Scholar] [CrossRef] [PubMed]
- Eisaku Kikuchi. CSF Control and ASF Preparedness in Wild Boar in Japan; Animal Health Division, Ministry of Agriculture, Forestry and Fisheries: Tokyo, Japan, 2022.
- Shimizu, Y.; Hayama, Y.; Murato, Y.; Sawai, K.; Yamaguchi, E.; Yamamoto, T. Epidemiological analysis of classical swine fever in wild boars in Japan. BMC Vet. Res. 2021, 17, 188. [Google Scholar] [CrossRef] [PubMed]
- Hayama, Y.; Sawai, K.; Yoshinori, M.; Yamaguchi, E.; Shimizu, Y.; Yamamoto, T. Pig farm vaccination against classical swine fever reduces the risk of transmission from wild boar. Prev. Vet. Med. 2022, 198, 105554. [Google Scholar] [CrossRef] [PubMed]
- Hsu, C.H.; Schambow, R.; Montenegro, M.; Miclat-Sonaco, R.; Perez, A. Factors Affecting the Spread, Diagnosis, and Control of African Swine Fever in the Philippines. Pathogens 2023, 12, 1068. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.J.; Lee, M.J.; Lee, S.K.; Kim, D.Y.; Seo, S.J.; Kang, H.E.; Nam, H.M. African swine fever virus in pork brought into South Korea by travelers from China, August 2018. Emerg. Infect. Dis. 2019, 25, 1231. [Google Scholar] [CrossRef] [PubMed]
- Ito, S.; Bosch, J.; Jurado, C.; Sánchez-Vizcaíno, J.M.; Isoda, N. Risk assessment of african swine fever virus exposure to Sus scrofa in Japan via pork products brought in air passengers’ luggage. Pathogens 2020, 9, 302. [Google Scholar] [CrossRef] [PubMed]
- Teng KT, Y.; Chang, C.C.; Tsai, Y.L.; Chiu, C.Y.; Yang, C.Y.; Chou, C.C. A stochastic assessment to quantify the risk of introduction of African swine fever virus to Taiwan via illegal pork products carried by international travellers. Transbound. Emerg. Dis. 2022, 69, e592–e604. [Google Scholar] [CrossRef]
- Wang, W.H.; Lin, C.Y.; Chang Ishcol, M.R.; Urbina, A.N.; Assavalapsakul, W.; Thitithanyanont, A.; .Lu, P.-L.; Chen, Y.-H.; Wang, S.F. Detection of African swine fever virus in pork products brought to Taiwan by travellers. Emerg. Microbes Infect. 2019, 8, 1000–1002. [Google Scholar] [CrossRef]
- Veterinary Research Institute [Press Release]. The Newly Identified African Swine Fever Virus Was Detected for the First Time in Chinese Pork Products Brought by Travelers Domestically; Veterinary Research Institute, Executive Yuan: Taipei, Taiwan, 2023. Available online: https://www.nvri.gov.tw/Module/DisplayNewsContent.aspx?nid=9VcCYZw4doQ%3d (accessed on 14 January 2024).
- Central Emergency Operation Center Taiwan. Inbound Passengers Who Illegally Carry or Import Pork Products by Express Mail Will Be Subject to Heavy Fines. 2023. Available online: https://asf.aphia.gov.tw/theme_data.php?theme=NewInfoListWS&sub_theme=asf&id=21216 (accessed on 14 January 2024).
- Luskin, M.S.; Meijaard, E.; Surya, S.; Sheherazade Walzer, C.; Linkie, M. African swine fever threatens Southeast Asia’s 11 endemic wild pig species. Conserv. Lett. 2021, 14, e12784. [Google Scholar] [CrossRef]
- Casal, J.; Tago, D.; Pineda, P.; Tabakovski, B.; Santos, I.; Benigno, C.; Huynh, T.; Ciaravino, G.; Beltran-Alcrudo, D. Evaluation of the economic impact of classical and African swine fever epidemics using OutCosT, a new spreadsheet-based tool. Transbound. Emerg. Dis. 2022, 69, e2474–e2484. [Google Scholar] [CrossRef]
- Hsu, C.H.; Montenegro, M.; Perez, A. Space–Time Dynamics of African Swine Fever Spread in the Philippines. Microorganisms 2023, 11, 1492. [Google Scholar] [CrossRef]
- Tran, X.H.; Le TT, P.; Nguyen, Q.H.; Do, T.T.; Nguyen, V.D.; Gay, C.G.; Borca, M.V.; Gladue, D.P. African swine fever virus vaccine candidate ASFV-G-ΔI177L efficiently protects European and native pig breeds against circulating Vietnamese field strain. Transbound. Emerg. Dis. 2022, 69, e497–e504. [Google Scholar] [CrossRef]
- Zhang, H.; Zhao, S.; Zhang, H.; Qin, Z.; Shan, H.; Cai, X. Vaccines for African swine fever: An update. Front. Microbiol. 2023, 14, 1139494. [Google Scholar] [CrossRef] [PubMed]
- Sun, E.; Huang, L.; Zhang, X.; Zhang, J.; Shen, D.; Zhang, Z.; Wang, Z.; Huo, H.; Wang, W.; Huangfu, H.; et al. Genotype I African swine fever viruses emerged in domestic pigs in China and caused chronic infection. Emerg. Microbes Infect. 2021, 10, 2183–2193. [Google Scholar] [CrossRef] [PubMed]
- Ito, S.; Bosch, J.; Martínez-Avilés, M.; Sánchez-Vizcaíno, J.M. The evolution of African swine fever in China: A global threat? Front. Vet. Sci. 2022, 9, 828498. [Google Scholar] [CrossRef] [PubMed]
- FAO; OIE. GF-TADs Strategy for 2021–2025 Enhancing Control of Transboundary Animal Diseases for Global Health; FAO: Rome, Italy, 2022. [Google Scholar]
- Department of Information Services, Executive Yuan. Taiwan Moves Closer to Eradicating Major Animal Diseases [Press Release]; Executive Yuan: Taipei, Taiwan, 2023. Available online: https://www.ey.gov.tw/Page/5A8A0CB5B41DA11E/234e5f9f-186c-4afa-9317-0d9c3a359512 (accessed on 14 January 2024).
Territories | FMD (Historically Focused Strategy) | CSF (Current Focus) | ASF (Current Focus) |
---|---|---|---|
Japan | Stamping-out policy and intensive surveillance, adhering to a non-vaccination strategy. | Larger-scale bait vaccination in wild boar. | Strengthen inspections at border control. |
Philippines | Multiple collaborative strategies, including zoning and strategic vaccination in high-risk areas. | Conduct routine surveillance and differentiate between ASF and CSF. | Implement National African Swine Fever Prevention and Control Program. |
Taiwan | High swine vaccination coverage and regular sero-surveillance. | Cease CSF vaccination with sentinel animal monitoring. | Strengthen inspections at border control. |
Date | Event |
---|---|
July 2019 | The first ASF outbreak in a swine backyard farm was reported in the Philippines. |
September 2019 | The Department of Agriculture (DA) confirmed ASF presence in Rizal and Bulacan provinces on Luzon island. |
December 2019 | The DA issued Administrative Circular 12 (National Zoning and Movement Plan for the Prevention and Control of African Swine Fever), formally ordering the establishment of zones across the country depending on the level of risks of regions in relation to ASF. |
January 2020 | The first recorded ASF outbreak in Mindanao island. |
August 2020 | ASF cases peaked with 1773 positive reports. |
January 2021 | First ASF case confirmed in Leyte province, Eastern Visayas. |
Feb 2021 | The Bantay ASF sa Barangay Program (BABay ASF) was launched. |
May 2021 | President Duterte declared a state of calamity in relation to the ASF epidemic. |
March 2023 | ASF outbreak in Cebu (Central Visayas, Region VII), after three years of being an ASF-free region, posed a threat to one of the largest hog industries in the Visayas. |
July 2023 | Initial local trials for an ASF vaccine in the Philippines. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hsu, C.-H.; Chang, C.-Y.; Otake, S.; Molitor, T.W.; Perez, A. Strategies for Transboundary Swine Disease Management in Asian Islands: Foot and Mouth Disease, Classical Swine Fever, and African Swine Fever in Taiwan, Japan, and the Philippines. Vet. Sci. 2024, 11, 130. https://doi.org/10.3390/vetsci11030130
Hsu C-H, Chang C-Y, Otake S, Molitor TW, Perez A. Strategies for Transboundary Swine Disease Management in Asian Islands: Foot and Mouth Disease, Classical Swine Fever, and African Swine Fever in Taiwan, Japan, and the Philippines. Veterinary Sciences. 2024; 11(3):130. https://doi.org/10.3390/vetsci11030130
Chicago/Turabian StyleHsu, Chia-Hui, Chia-Yi Chang, Satoshi Otake, Thomas W. Molitor, and Andres Perez. 2024. "Strategies for Transboundary Swine Disease Management in Asian Islands: Foot and Mouth Disease, Classical Swine Fever, and African Swine Fever in Taiwan, Japan, and the Philippines" Veterinary Sciences 11, no. 3: 130. https://doi.org/10.3390/vetsci11030130
APA StyleHsu, C. -H., Chang, C. -Y., Otake, S., Molitor, T. W., & Perez, A. (2024). Strategies for Transboundary Swine Disease Management in Asian Islands: Foot and Mouth Disease, Classical Swine Fever, and African Swine Fever in Taiwan, Japan, and the Philippines. Veterinary Sciences, 11(3), 130. https://doi.org/10.3390/vetsci11030130