Effects of L. reuteri NBF 2 DSM 32264 Consumption on the Body Weight, Body Condition Score, Fecal Parameters, and Intestinal Microbiota of Healthy Persian Cats
Abstract
:Simple Summary
Abstract
1. Introduction
2. Material and Methods
2.1. Ethical Statement
2.2. Animals and Study Design
2.3. Feed Supplement and Diet
2.4. Data Collection
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yang, Q.; Wu, Z. Gut Probiotics and Health of Dogs and Cats: Benefits, Applications, and Underlying Mechanisms. Microorganisms 2023, 11, 2452. [Google Scholar] [CrossRef]
- Manos, J. The human microbiome in disease and pathology. APMIS 2022, 130, 690–705. [Google Scholar] [CrossRef]
- Hou, K.; Wu, Z.X.; Chen, X.Y.; Wang, J.Q.; Zhang, D.; Xiao, C.; Zhu, D.; Koya, J.B.; Wei, L.; Li, J.; et al. Microbiota in health and diseases. Signal Transduct. Target. Ther. 2022, 7, 135. [Google Scholar]
- Chen, Y.; Zhou, J.; Wang, L. Role and Mechanism of Gut Microbiota in Human Disease. Front. Cell. Infect. Microbiol. 2021, 11, 625913. [Google Scholar] [CrossRef]
- Honneffer, J.B.; Minamoto, Y.; Suchodolski, J.S. Microbiota alterations in acute and chronic gastrointestinal inflammation of cats and dogs. World J. Gastroenterol. 2014, 20, 16489–16497. [Google Scholar] [CrossRef]
- Queen, E.V.; Marks, S.L.; Farver, T.B. Prevalence of selected bacterial and parasitic agents in feces from diarrheic and healthy control cats from Northern California. J. Vet. Intern. Med. 2012, 26, 54–60. [Google Scholar] [CrossRef]
- Rossi, G.; Cerquetella, M.; Gavazza, A.; Galosi, L.; Berardi, S.; Mangiaterra, S.; Mari, S.; Suchodolski, J.S.; Lidbury, J.A.; Steiner, J.M.; et al. Rapid Resolution of Large Bowel Diarrhea after the Administration of a Combination of a High-Fiber Diet and a Probiotic Mixture in 30 Dogs. Vet. Sci. 2020, 7, 21. [Google Scholar] [CrossRef]
- White, R.; Atherly, T.; Guard, B.; Rossi, G.; Wang, C.; Mosher, C.; Webb, C.; Hill, S.; Ackermann, M.; Sciabarra, P.; et al. Randomized, controlled trial evaluating the effect of multi-strain probiotic on the mucosal microbiota in canine idiopathic inflammatory bowel disease. Gut Microbes 2017, 8, 451–466. [Google Scholar] [CrossRef]
- Packey, C.D.; Sartor, R.B. Commensal bacteria, traditional and opportunistic pathogens, dysbiosis and bacterial killing in inflammatory bowel diseases. Curr. Opin. Infect. Dis. 2009, 22, 292–301. [Google Scholar] [CrossRef]
- McMahon, L.A.; House, A.K.; Catchpole, B.; Elson-Riggins, J.; Riddle, A.; Smith, K.; Werling, D.; Burgener, I.A.; Allenspach, K. Expression of Toll-like receptor 2 in duodenal biopsies from dogs with inflammatory bowel disease is associated with severity of disease. Vet. Immunol. Immunopathol. 2010, 135, 158–163. [Google Scholar] [CrossRef]
- Kathrani, A.; Holder, A.; Catchpole, B.; Alvarez, L.; Simpson, K.; Werling, D.; Allenspach, K. TLR5 risk-associated haplotype for canine inflammatory bowel disease confers hyperresponsiveness to flagellin. PLoS ONE 2012, 7, e30117. [Google Scholar] [CrossRef]
- Kathrani, A.; Werling, D.; Allenspach, K. Canine breeds at high risk of developing inflammatory bowel disease in the southeastern UK. Vet. Rec. 2011, 169, 635. [Google Scholar] [CrossRef]
- Wu, H.; Xie, S.; Miao, J.; Li, Y.; Wang, Z.; Wang, M.; Yu, Q. Lactobacillus reuteri maintains intestinal epithelial regeneration and repairs damaged intestinal mucosa. Gut Microbes 2020, 11, 997–1014. [Google Scholar] [CrossRef] [PubMed]
- Peng, Y.; Ma, Y.; Luo, Z.; Jiang, Y.; Xu, Z.; Yu, R. Lactobacillus reuteri in digestive system diseases: Focus on clinical trials and mechanisms. Front. Cell. Infect. Microbiol. 2023, 13, 1254198. [Google Scholar] [CrossRef]
- Yu, Z.; Chen, J.; Liu, Y.; Meng, Q.; Liu, H.; Yao, Q.; Song, W.; Ren, X.; Chen, X. The role of potential probiotic strains Lactobacillus reuteri in various intestinal diseases: New roles for an old player. Front. Microbiol. 2023, 14, 1095555. [Google Scholar]
- Wang, G.; Huang, S.; Cai, S.; Yu, H.; Wang, Y.; Zeng, X.; Qiao, S. Lactobacillus reuteri Ameliorates Intestinal Inflammation and Modulates Gut Microbiota and Metabolic Disorders in Dextran Sulfate Sodium-Induced Colitis in Mice. Nutrients 2020, 12, 2298. [Google Scholar] [CrossRef]
- FEDIAF. Nutritional Guidelines for Complete and Complementary Pet Food for Cats and Dogs; FEDIAF: Brussels, Belgium, 2020. [Google Scholar]
- Baldwin, K.; Bartges, J.; Buffington, T. AAHA nutritional assessment guidelines for dogs and cats. J. Am. Anim. Hosp. Assoc. 2010, 46, 285–296. [Google Scholar] [CrossRef] [PubMed]
- Freeman, L.; Becvarova, I.; Cave, N.; MacKay, C.; Nguyen, P.; Rama, B.; Takashima, G.; Tiffin, R.; Tsjimoto, H.; van Beukelen, P. Practice Guideline WSAVA Nutritional Assessment Guidelines. J. Feline Med. Surg. 2011, 52, 385–396. [Google Scholar]
- Fusi, E.; Rizzi, R.; Polli, M. Effects of Lactobacillus acidophilus D2/CSL (CECT 4529) supplementation on healthy cat performance. Vet. Rec. Open 2019, 6, e000368. [Google Scholar] [CrossRef] [PubMed]
- R Core Team. R Core Team R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2020. [Google Scholar]
- Pinheiro, J.; Bates, D.; DebRoy, S.; Sarkar, D.; R Core Team. Linear and Nonlinear Mixed Effects Models, R Package Version 3.1-137; R Foundation for Statistical Computing: Vienna, Austria, 2018.
- Lenth, R.V. Least-Squares Means: The R Package lsmeans. J. Stat. Softw. 2016, 69, 1–33. [Google Scholar] [CrossRef]
- Nakagawa, S.; Schielzeth, H. A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods Ecol. Evol. 2013, 4, 133–142. [Google Scholar] [CrossRef]
- Stokes, J.E.; Price, J.M.; Whittemore, J.C. Randomized, controlled, crossover trial of prevention of clindamycin-induced gastrointestinal signs using a synbiotic in healthy research cats. J. Vet. Intern. Med. 2017, 31, 1406–1413. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, B.M.; Olivo, P.M.; Osmari, M.P.; Vasconcellos, R.S.; Ribeiro, L.B.; Bankuti, F.I.; Pozza, M.S.S. Microencapsulation of probiotic strains by lyophilization is efficient in maintaining the viability of microorganisms and modulation of fecal microbiota in cats. Int. J. Microbiol. 2020, 2020, 1293481. [Google Scholar] [CrossRef]
- Rose, C.; Parker, A.; Jefferson, B.; Cartmell, E. The characterization of feces and urine: A review of the literature to inform advanced treatment technology. Crit. Rev. Environ. Sci. Technol. 2015, 45, 1827–1879. [Google Scholar] [CrossRef]
- Biagi, G.; Cipollini, I.; Bonaldo, A.; Grandi, M.; Pompei, A.; Stefanelli, C.; Zaghini, G. Effect of feeding a selected combination of galacto-oligosaccharides and a strain of Bifidobacterium pseudocatenulatum on the intestinal microbiota of cats. Am. J. Vet. Res. 2013, 74, 90–95. [Google Scholar] [CrossRef]
- Belà, B.; Pignataro, G.; Di Prinzio, R.; Di Simone, D.; Crisi, P.E.; Gramenzi, G. Effects of Lactobacillus reuteri NBF 1 DSM 32203 supplementation on healthy dog performance. J. Sci. Tech. Res. 2021, 37, 29149–29163. [Google Scholar] [CrossRef]
- Cazorla, S.I.; Maldonado-Galdeano, C.; Weill, R.; De Paula, J.; Perdigon, G.D.V. Oral administration of probiotics increases Paneth cells and intestinal antimicrobial activity. Front. Microbiol. 2018, 9, 736. [Google Scholar] [CrossRef] [PubMed]
- Conway, T.; Cohen, P.S. Commensal and pathogenic Escherichia coli metabolism in the gut. Microbiol. Spectr. 2015, 3, 343–362. [Google Scholar] [CrossRef] [PubMed]
Cats (CTR Group) | Age (Months) | Sex | Body Weight (Kg) |
---|---|---|---|
1 | 42.40 | M | 4.14 |
2 | 42.50 | M | 4.19 |
3 | 43.10 | M | 3.96 |
4 | 43.10 | F | 3.82 |
5 | 43.00 | F | 3.66 |
6 | 42.70 | F | 3.58 |
Cats (LACTO Group) | Age (Months) | Sex | Body Weight |
7 | 43.60 | M | 4.21 |
8 | 43.70 | F | 3.56 |
9 | 43.40 | F | 3.68 |
10 | 43.50 | F | 3.58 |
11 | 42.90 | F | 3.49 |
12 | 43.30 | F | 3.62 |
Parameter | Amount (%) |
---|---|
Crude protein | 44.00 |
Crude fats | 20.00 |
Humidity | 8.00 |
Raw ash | 8.50 |
Calcium | 1.10 |
Phosphorus | 0.90 |
Magnesium | 0.08 |
Omega 6 | 3.30 |
Omega 3 | 0.90 |
DHA | 0.50 |
EPA | 0.30 |
(A) Effect of Lactobacillus reuteri on Body Weight (BW) (LS Mean ± SE). | ||||
---|---|---|---|---|
Time | CTR Group | LACTO Group | p-Value | Power |
Overall | 3.89 ± 0.11 | 3.85 ± 0.13 | 0.56 | 0.25 |
T0 | 3.89 ± 0.16 | 3.85 ± 0.18 | 0.99 | 0.25 |
T1 | 3.90 ± 0.16 | 3.85 ± 0.18 | 0.99 | 0.33 |
T2 | 3.89 ± 0.16 | 3.86 ± 0.18 | 0.99 | 0.19 |
T3 | 3.89 ± 0.16 | 3.85 ± 0.18 | 0.99 | 0.22 |
T4 | 3.88 ± 0.16 | 3.85 ± 0.18 | 0.99 | 0.23 |
T5 | 3.89 ± 0.16 | 3.85 ± 0.18 | 0.99 | 0.26 |
(B) Effect of Lactobacillus reuteri on Body Condition Score (BCS) (LS Mean ± SE). | ||||
Time | CTR Group | LACTO Group | p-Value | Power |
Overall | 4.78 ± 0.20 | 4.68 ± 0.21 | 0.41 | 0.39 |
T0 | 4.67 ± 0.47 | 4.64 ± 0.50 | 1.00 | 0.08 |
T1 | 4.92 ± 0.47 | 4.72 ± 0.50 | 0.98 | 0.54 |
T2 | 4.75 ± 0.47 | 4.81 ± 0.50 | 0.99 | 0.13 |
T3 | 4.75 ± 0.47 | 4.56 ± 0.50 | 0.98 | 0.54 |
T4 | 4.83 ± 0.47 | 4.81 ± 0.50 | 1.00 | 0.08 |
T5 | 4.75 ± 0.47 | 4.56 ± 0.50 | 0.98 | 0.55 |
Time | CTR Group | LACTO Group | p-Value | Power |
---|---|---|---|---|
Overall | 0.45 ± 0.01 | 0.42 ± 0.01 | 0.002 | 0.99 |
T0 | 0.45 ± 0.02 | 0.46 ± 0.02 | 1.00 | 0.27 |
T1 | 0.45 ± 0.01 | 0.45 ± 0.01 | 1.00 | 0.11 |
T2 | 0.45 ± 0.01 | 0.44 ± 0.01 | 0.875 | 0.84 |
T3 | 0.45 ± 0.01 | 0.41 ± 0.01 | 0.057 | 0.99 |
T4 | 0.45 ± 0.01 | 0.39 ± 0.01 | 0.001 | 1.00 |
T5 | 0.44 ± 0.02 | 0.38 ± 0.02 | 0.001 | 1.00 |
Time | CTR Group | LACTO Group | p-Value | Power |
---|---|---|---|---|
Overall | 3.47 ± 0.15 | 3.17 ± 0.17 | 0.0068 | 0.99 |
T0 | 3.42 ± 0.42 | 3.53 ± 0.43 | 1.00 | 0.3 |
T1 | 3.50 ± 0.42 | 3.45 ± 0.43 | 1.00 | 0.23 |
T2 | 3.42 ± 0.42 | 3.20 ± 0.43 | 0.941 | 0.72 |
T3 | 3.42 ± 0.42 | 3.03 ± 0.43 | 0.465 | 0.98 |
T4 | 3.58 ± 0.42 | 2.95 ± 0.43 | 0.067 | 0.99 |
T5 | 3.50 ± 0.42 | 2.86 ± 0.43 | 0.067 | 1.00 |
Time | CTR Group | LACTO Group | p-Value | Power |
---|---|---|---|---|
Overall | 4.71 ± 0.05 | 4.91 ± 0.05 | >0.001 | 1.00 |
T0 | 4.72 ± 0.10 | 4.75 ± 0.10 | 0.977 | 0.43 |
T1 | 4.72 ± 0.10 | 4.83 ± 0.10 | 0.241 | 0.99 |
T3 | 4.70 ± 0.10 | 5.01 ± 0.10 | >0.001 | 1.00 |
T5 | 4.72 ± 0.10 | 5.04 ± 0.10 | >0.001 | 1.00 |
Time | CTR Group | LACTO Group | p-Value | Power |
---|---|---|---|---|
Overall | 4.64 ± 0.05 | 4.53 ± 0.05 | 0.011 | 0.99 |
T0 | 4.43 ± 0.15 | 4.37 ± 0.15 | 0.981 | 0.41 |
T1 | 4.64 ± 0.15 | 4.69 ± 0.15 | 0.992 | 0.33 |
T3 | 4.72 ± 0.15 | 4.51 ± 0.15 | 0.106 | 0.99 |
T5 | 4.76 ± 0.15 | 4.55 ± 0.15 | 0.095 | 0.99 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Belà, B.; Di Simone, D.; Pignataro, G.; Fusaro, I.; Gramenzi, A. Effects of L. reuteri NBF 2 DSM 32264 Consumption on the Body Weight, Body Condition Score, Fecal Parameters, and Intestinal Microbiota of Healthy Persian Cats. Vet. Sci. 2024, 11, 61. https://doi.org/10.3390/vetsci11020061
Belà B, Di Simone D, Pignataro G, Fusaro I, Gramenzi A. Effects of L. reuteri NBF 2 DSM 32264 Consumption on the Body Weight, Body Condition Score, Fecal Parameters, and Intestinal Microbiota of Healthy Persian Cats. Veterinary Sciences. 2024; 11(2):61. https://doi.org/10.3390/vetsci11020061
Chicago/Turabian StyleBelà, Benedetta, Daniele Di Simone, Giulia Pignataro, Isa Fusaro, and Alessandro Gramenzi. 2024. "Effects of L. reuteri NBF 2 DSM 32264 Consumption on the Body Weight, Body Condition Score, Fecal Parameters, and Intestinal Microbiota of Healthy Persian Cats" Veterinary Sciences 11, no. 2: 61. https://doi.org/10.3390/vetsci11020061
APA StyleBelà, B., Di Simone, D., Pignataro, G., Fusaro, I., & Gramenzi, A. (2024). Effects of L. reuteri NBF 2 DSM 32264 Consumption on the Body Weight, Body Condition Score, Fecal Parameters, and Intestinal Microbiota of Healthy Persian Cats. Veterinary Sciences, 11(2), 61. https://doi.org/10.3390/vetsci11020061