Syndecan-1 and E-Cadherin Expression in Canine Cutaneous Squamous Cell Carcinoma
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Clinical and Histopathological Evaluation
2.2. Immunohistochemical Evaluation for SDC1 and E-Cadherin
2.3. Quantification of the Immunoreactivity
2.3.1. Syndecan-1
2.3.2. E-Cadherin
2.4. Statistical Analysis
3. Results
3.1. Histopathological Evaluation
3.2. Immunohistochemical Evaluation
3.2.1. Syndecan-1 Immunoexpression
3.2.2. E-Cadherin Immunoexpression
3.3. Regression Analysis
3.4. Association Between Syndecan-1 and E-Cadherin
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ito, T.; Tsuji, G.; Ohno, F.; Nakahara, T.; Uchi, H.; Furue, M. Potential Role of the OVOL1–OVOL2 Axis and c-Myc in the Progression of Cutaneous Squamous Cell Carcinoma. Mod. Pathol. 2017, 30, 919–927. [Google Scholar] [CrossRef] [PubMed]
- Jorgenson, E.; Choquet, H.; Yin, J.; Asgari, M.M. Common Mitochondrial Haplogroups and Cutaneous Squamous Cell Carcinoma Risk. Cancer Epidemiol. Biomark. Prev. 2018, 27, 838–841. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Zhong, A.; Chen, J. Immune Checkpoint Inhibitors in Advanced Cutaneous Squamous Cell Carcinoma: A Systemic Review and Meta-analysis. Skin Res. Technol. 2023, 29, e13229. [Google Scholar] [CrossRef]
- Brougham, N.D.L.; Tan, S.T. The Incidence and Risk Factors of Metastasis for Cutaneous Squamous Cell Carcinoma-Implications on the T-Classification System: Skin Squamous Cell Carcinoma Metastasis. J. Surg. Oncol. 2014, 110, 876–882. [Google Scholar] [CrossRef] [PubMed]
- Lascelles, B.D.X.; Parry, A.T.; Stidworthy, M.F.; Dobson, J.M.; White, R.A.S. Squamous Cell Carcinoma of the Nasal Planum in 17 Dogs. Vet. Rec. 2000, 147, 473–476. [Google Scholar] [CrossRef] [PubMed]
- Fundyler, O.; Khanna, M.; Smoller, B.R. Metalloproteinase-2 Expression Correlates with Aggressiveness of Cutaneous Squamous Cell Carcinomas. Mod. Pathol. 2004, 17, 496–502. [Google Scholar] [CrossRef] [PubMed]
- Guscetti, F.; Nassiri, S.; Beebe, E.; Rito Brandao, I.; Graf, R.; Markkanen, E. Molecular Homology between Canine Spontaneous Oral Squamous Cell Carcinomas and Human Head-and-Neck Squamous Cell Carcinomas Reveals Disease Drivers and Therapeutic Vulnerabilities. Neoplasia 2020, 22, 778–788. [Google Scholar] [CrossRef]
- Pickering, C.R.; Zhou, J.H.; Lee, J.J.; Drummond, J.A.; Peng, S.A.; Saade, R.E.; Tsai, K.Y.; Curry, J.L.; Tetzlaff, M.T.; Lai, S.Y.; et al. Mutational Landscape of Aggressive Cutaneous Squamous Cell Carcinoma. Clin. Cancer Res. 2014, 20, 6582–6592. [Google Scholar] [CrossRef]
- Sanz Ressel, B.L.; Massone, A.R.; Barbeito, C.G. Expression of the Epidermal Stem Cell Marker P63/CK5 in Cutaneous Papillomas and Cutaneous Squamous Cell Carcinomas of Dogs. Res. Vet. Sci. 2021, 135, 366–370. [Google Scholar] [CrossRef]
- De Almeida, E.M.P.; Piché, C.; Sirois, J.; Doré, M. Expression of Cyclo-Oxygenase-2 in Naturally Occurring Squamous Cell Carcinomas in Dogs. J. Histochem. Cytochem. 2001, 49, 867–875. [Google Scholar] [CrossRef] [PubMed]
- Dos Anjos, D.; Bueno, C.; Mattos-Junior, E.; De Nardi, A.B.; Fonseca-Alves, C.E. VEGF Expression, Cellular Infiltration, and Intratumoral Collagen Levels after Electroporation-Based Treatment of Dogs with Cutaneous Squamous Cell Carcinoma. Life 2021, 11, 1321. [Google Scholar] [CrossRef] [PubMed]
- Salasche, S.J. Epidemiology of Actinic Keratoses and Squamous Cell Carcinoma. J. Am. Acad. Dermatol. 2000, 42, S4–S7. [Google Scholar] [CrossRef] [PubMed]
- Ortloff, A.; Bustamante, F.A.; Molina, L.; Ojeda, J.; Figueroa, C.D.; Ehrenfeld, P. Kallikrein-Related Peptidase 5 (KLK5) Expression and Distribution in Canine Cutaneous Squamous Cell Carcinoma. J. Comp. Pathol. 2020, 174, 113–119. [Google Scholar] [CrossRef] [PubMed]
- Sanz Ressel, B.L.; Massone, A.R.; Barbeito, C.G. Dysregulated Expression of Phosphorylated Epidermal Growth Factor Receptor and Phosphatase and Tensin Homologue in Canine Cutaneous Papillomas and Squamous Cell Carcinomas. J. Comp. Pathol. 2020, 174, 26–33. [Google Scholar] [CrossRef] [PubMed]
- Alves, C.D.B.T.; Weber, M.N.; Guimarães, L.L.B.; Cibulski, S.P.; Da Silva, F.R.C.; Daudt, C.; Budaszewski, R.F.; Silva, M.S.; Mayer, F.Q.; Bianchi, R.M.; et al. Canine Papillomavirus Type 16 Associated to Squamous Cell Carcinoma in a Dog: Virological and Pathological Findings. Braz. J. Microbiol. 2020, 51, 2087–2094. [Google Scholar] [CrossRef]
- Bongiovanni, L.; Colombi, I.; Fortunato, C.; Salda, L.D. Survivin Expression in Canine Epidermis and in Canine and Human Cutaneous Squamous Cell Carcinomas. Vet. Dermatol. 2009, 20, 369–376. [Google Scholar] [CrossRef]
- Brown, V.L.; Harwood, C.A.; Crook, T.; Cronin, J.G.; Kelsell, D.P.; Proby, C.M. p16INK4a and p14ARF Tumor Suppressor Genes Are Commonly Inactivated in Cutaneous Squamous Cell Carcinoma. J. Investig. Dermatol. 2004, 122, 1284–1292. [Google Scholar] [CrossRef]
- Inman, G.J.; Wang, J.; Nagano, A.; Alexandrov, L.B.; Purdie, K.J.; Taylor, R.G.; Sherwood, V.; Thomson, J.; Hogan, S.; Spender, L.C.; et al. The Genomic Landscape of Cutaneous SCC Reveals Drivers and a Novel Azathioprine Associated Mutational Signature. Nat. Commun. 2018, 9, 3667. [Google Scholar] [CrossRef]
- Couchman, J.R. Syndecan-1 (CD138), Carcinomas and EMT. Int. J. Mol. Sci. 2021, 22, 4227. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, S.A.; Gadalla, R.; El-Ghonaimy, E.A.; Samir, O.; Mohamed, H.T.; Hassan, H.; Greve, B.; El-Shinawi, M.; Mohamed, M.M.; Götte, M. Syndecan-1 Is a Novel Molecular Marker for Triple Negative Inflammatory Breast Cancer and Modulates the Cancer Stem Cell Phenotype via the IL-6/STAT3, Notch and EGFR Signaling Pathways. Mol. Cancer 2017, 16, 57. [Google Scholar] [CrossRef]
- Karászi, K.; Vigh, R.; Máthé, M.; Fullár, A.; Oláh, L.; Füle, T.; Papp, Z.; Kovalszky, I. Aberrant Expression of Syndecan-1 in Cervical Cancers. Pathol. Oncol. Res. 2020, 26, 2255–2264. [Google Scholar] [CrossRef] [PubMed]
- Files, R.; Cardoso, C.; Prada, J.; Silva, F.; Pires, I. Syndecan-1 as a therapeutic target in squamous cell carcinoma: Current insights and future directions. J. Appl. Pharm. Sci. 2024. [Google Scholar] [CrossRef]
- Altemeier, W.A.; Schlesinger, S.Y.; Buell, C.A.; Brauer, R.; Rapraeger, A.C.; Parks, W.C.; Chen, P. Transmembrane and Extracellular Domains of Syndecan-1 Have Distinct Functions in Regulating Lung Epithelial Migration and Adhesion. J. Biol. Chem. 2012, 287, 34927–34935. [Google Scholar] [CrossRef]
- Yang, Z.; Chen, S.; Ying, H.; Yao, W. Targeting Syndecan-1: New Opportunities in Cancer Therapy. Am. J. Physiol.-Cell Physiol. 2022, 323, C29–C45. [Google Scholar] [CrossRef]
- Czarnowski, D. Syndecans in Cancer: A Review of Function, Expression, Prognostic Value, and Therapeutic Significance. Cancer Treat. Res. Commun. 2021, 27, 100312. [Google Scholar] [CrossRef]
- Szatmári, T.; Ötvös, R.; Hjerpe, A.; Dobra, K. Syndecan-1 in Cancer: Implications for Cell Signaling, Differentiation, and Prognostication. Dis. Markers 2015, 2015, 1–13. [Google Scholar] [CrossRef]
- Tanaka, Y.; Tateishi, R.; Koike, K. Proteoglycans Are Attractive Biomarkers and Therapeutic Targets in Hepatocellular Carcinoma. Int. J. Mol. Sci. 2018, 19, 3070. [Google Scholar] [CrossRef] [PubMed]
- Barbouri, D.; Afratis, N.; Gialeli, C.; Vynios, D.H.; Theocharis, A.D.; Karamanos, N.K. Syndecans as Modulators and Potential Pharmacological Targets in Cancer Progression. Front. Oncol. 2014, 4, 4. [Google Scholar] [CrossRef] [PubMed]
- Brüser, L.; Bogdan, S. Adherens Junctions on the Move—Membrane Trafficking of E-Cadherin. Cold Spring Harb. Perspect. Biol. 2017, 9, a029140. [Google Scholar] [CrossRef] [PubMed]
- Coopman, P.; Djiane, A. Adherens Junction and E-Cadherin Complex Regulation by Epithelial Polarity. Cell. Mol. Life Sci. 2016, 73, 3535–3553. [Google Scholar] [CrossRef] [PubMed]
- Lo Muzio, L.; Pannone, G.; Santarelli, A.; Bambini, F.; Mascitti, M.; Rubini, C.; Testa, N.F.; Dioguardi, M.; Leuci, S.; Bascones, A.; et al. Is Expression of P120ctn in Oral Squamous Cell Carcinomas a Prognostic Factor? Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2013, 115, 789–798. [Google Scholar] [CrossRef] [PubMed]
- Braga, V. Spatial Integration of E-Cadherin Adhesion, Signalling and the Epithelial Cytoskeleton. Curr. Opin. Cell Biol. 2016, 42, 138–145. [Google Scholar] [CrossRef] [PubMed]
- Niño, C.A.; Sala, S.; Polo, S. When Ubiquitin Meets E-Cadherin: Plasticity of the Epithelial Cellular Barrier. Semin. Cell Dev. Biol. 2019, 93, 136–144. [Google Scholar] [CrossRef] [PubMed]
- Santarosa, M.; Maestro, R. The Autophagic Route of E-Cadherin and Cell Adhesion Molecules in Cancer Progression. Cancers 2021, 13, 6328. [Google Scholar] [CrossRef]
- Baranwal, S.; Alahari, S.K. Molecular Mechanisms Controlling E-Cadherin Expression in Breast Cancer. Biochem. Biophys. Res. Commun. 2009, 384, 6–11. [Google Scholar] [CrossRef] [PubMed]
- Loh, C.-Y.; Chai, J.; Tang, T.; Wong, W.; Sethi, G.; Shanmugam, M.; Chong, P.; Looi, C. The E-Cadherin and N-Cadherin Switch in Epithelial-to-Mesenchymal Transition: Signaling, Therapeutic Implications, and Challenges. Cells 2019, 8, 1118. [Google Scholar] [CrossRef]
- Celià-Terrassa, T.; Kang, Y. How Important Is EMT for Cancer Metastasis? PLOS Biol. 2024, 22, e3002487. [Google Scholar] [CrossRef]
- Jeon, H.-M.; Lee, J. MET: Roles in Epithelial-Mesenchymal Transition and Cancer Stemness. Ann. Transl. Med. 2017, 5, 5. [Google Scholar] [CrossRef] [PubMed]
- Jolly, M.K.; Ware, K.E.; Gilja, S.; Somarelli, J.A.; Levine, H. EMT and MET: Necessary or Permissive for Metastasis? Mol. Oncol. 2017, 11, 755–769. [Google Scholar] [CrossRef]
- Bayer-Garner, I.B.; Smoller, B.R. The Expression of Syndecan-1 Is Preferentially Reduced Compared with That of E-cadherin in Acantholytic Squamous Cell Carcinoma. J. Cutan. Pathol. 2001, 28, 83–89. [Google Scholar] [CrossRef]
- Gkogkou, P.; Peponi, E.; Ntaskagiannis, D.; Murray, S.; Demou, A.; Sainis, I.; Ioakeim, E.; Briasoulis, E.; Tsekeris, P. E-Cadherin and Syndecan-1 Expression in Patients with Advanced Non-Small Cell Lung Cancer Treated with Chemoradiotherapy. In Vivo 2020, 34, 453–459. [Google Scholar] [CrossRef]
- Huang, M.-F. Syndecan-1 and E-Cadherin Expression in Differentiated Type of Early Gastric Cancer. World J. Gastroenterol. 2005, 11, 2975. [Google Scholar] [CrossRef]
- Tabtieang, S.P.; Paphussaro, W.; Rungsipipat, A.; Kunnasut, N.; Ploypetch, S.; Phattarataratip, E.; Suriyaphol, G. Comparative E-Cadherin and Syndecan-1 Protein Expression in Human and Canine Oral Squamous Cell Carcinoma. Acta Vet. Hung. 2024, 71, 202–209. [Google Scholar] [CrossRef]
- Goldschmidt, M.H.; Kiupel, M.; Foundation, D.-T.; Klopfleisch, R.; Munday, J.S.; Sruggs, J.L. Surgical Pathology of Tumors of Domestic Animals Volume 1: Epithelial Tumors of the Skin; International histological classification of tumors of domestic animals; Davis Thompson Foundation: Gurnee, IL, USA, 2018; ISBN 978-1-73374-910-7. [Google Scholar]
- Diede, C.; Walker, T.; Carr, D.R.; Shahwan, K.T. Grading Differentiation in Cutaneous Squamous Cell Carcinoma: A Review of the Literature. Arch. Dermatol. Res. 2024, 316, 434. [Google Scholar] [CrossRef]
- Luís, J.; Files, R.; Cardoso, C.; Pimenta, J.; Maia, G.; Silva, F.; Queiroga, F.; Prada, J.; Pires, I. Immunohistochemical Expression Levels of Epidermal Growth Factor Receptor, Cyclooxygenase-2, and Ki-67 in Canine Cutaneous Squamous Cell Carcinomas. Curr. Issues Mol. Biol. 2024, 46, 4951–4967. [Google Scholar] [CrossRef]
- Pires, I.; Alves, A.; Queiroga, F.L.; Silva, F.; Lopes, C. Regression of Canine Cutaneous Histiocytoma: Reduced Proliferation or Increased Apoptosis? Anticancer Res. 2013, 33, 1397–1400. [Google Scholar]
- Ahmed Haji Omar, A.; Haglund, C.; Virolainen, S.; Häyry, V.; Atula, T.; Kontio, R.; Rihtniemi, J.; Pihakari, A.; Salo, T.; Hagström, J.; et al. Epithelial and Stromal Syndecan-1 and -2 Are Distinctly Expressed in Oral- and Cutaneous Squamous Cell Carcinomas. J. Oral Pathol. Med. 2013, 42, 389–395. [Google Scholar] [CrossRef]
- Diab, M.; Nguyen, F.; Berthaud, M.; Maurel, C.; Gaschet, J.; Verger, E.; Ibisch, C.; Rousseau, C.; Chérel, M.; Abadie, J.; et al. Production and Characterization of Monoclonal Antibodies Specific for Canine CD138 (Syndecan-1) for Nuclear Medicine Preclinical Trials on Spontaneous Tumours. Vet. Comp. Oncol. 2017, 15, 932–951. [Google Scholar] [CrossRef] [PubMed]
- Máthé, M.; Suba, Z.; Németh, Z.; Tátrai, P.; Füle, T.; Borgulya, G.; Barabás, J.; Kovalszky, I. Stromal Syndecan-1 Expression Is an Adverse Prognostic Factor in Oral Carcinomas. Oral Oncol. 2006, 42, 493–500. [Google Scholar] [CrossRef] [PubMed]
- Devaraja, K.; Pillai, S.; Valiathan, M.; Geetha, V.; Pujary, K. E-Cadherin Expression Pattern in Head and Neck Squamous Cell Carcinoma and Its Association with Clinico-Pathological Predictors. Egypt. J. Otolaryngol. 2023, 39, 138. [Google Scholar] [CrossRef]
- Li, K.; Li, L.; Wu, X.; Yu, J.; Ma, H.; Zhang, R.; Li, Y.; Wang, W. Loss of SDC1 Expression Is Associated with Poor Prognosis of Colorectal Cancer Patients in Northern China. Dis. Markers 2019, 2019, 1–7. [Google Scholar] [CrossRef]
- Kakudji, B.K.; Mwila, P.K.; Burger, J.R.; Du Plessis, J.M. Epidemiological, Clinical and Diagnostic Profile of Breast Cancer Patients Treated at Potchefstroom Regional Hospital, South Africa, 2012–2018: An Open-Cohort Study. Pan Afr. Med. J. 2020, 36, 9. [Google Scholar] [CrossRef]
- Maehama, T.; Nishio, M.; Otani, J.; Mak, T.W.; Suzuki, A. The Role of Hippo-YAP Signaling in Squamous Cell Carcinomas. Cancer Sci. 2021, 112, 51–60. [Google Scholar] [CrossRef] [PubMed]
- Shimokawa, M.; Haraguchi, M.; Kobayashi, W.; Higashi, Y.; Matsushita, S.; Kawai, K.; Kanekura, T.; Ozawa, M. The Transcription Factor Snail Expressed in Cutaneous Squamous Cell Carcinoma Induces Epithelial–Mesenchymal Transition and down-Regulates COX-2. Biochem. Biophys. Res. Commun. 2013, 430, 1078–1082. [Google Scholar] [CrossRef]
- Marques, G.R.; Rocha, L.F.; Vargas, T.H.M.; Pulz, L.H.; Huete, G.C.; Cadrobbi, K.G.; Pires, C.G.; Sanches, D.S.; Mota, E.F.F.; Strefezzi, R.F. Relationship of Galectin-3 Expression in Canine Cutaneous Squamous Cell Carcinomas with Histopathological Grading and Proliferation Indices. J. Comp. Pathol. 2020, 178, 16–21. [Google Scholar] [CrossRef] [PubMed]
- Meuten, D.J. (Ed.) Tumors in Domestic Animals, 5th ed.; Wiley/Blackwell: Ames, IA, USA, 2017; ISBN 978-0-8138-2179-5. [Google Scholar]
- Ruple, A.; MacLean, E.; Snyder-Mackler, N.; Creevy, K.E.; Promislow, D. Dog Models of Aging. Annu. Rev. Anim. Biosci. 2022, 10, 419–439. [Google Scholar] [CrossRef] [PubMed]
- Bromfield, J.I.; Zaugg, J.; Straw, R.C.; Cathie, J.; Krueger, A.; Sinha, D.; Chandra, J.; Hugenholtz, P.; Frazer, I.H. Characterization of the Skin Microbiome in Normal and Cutaneous Squamous Cell Carcinoma Affected Cats and Dogs. mSphere 2024, 9, e00555-23. [Google Scholar] [CrossRef]
- Gardner, H.L.; Fenger, J.M.; London, C.A. Dogs as a Model for Cancer. Annu. Rev. Anim. Biosci. 2016, 4, 199–222. [Google Scholar] [CrossRef]
- Schiffman, J.D.; Breen, M. Comparative Oncology: What Dogs and Other Species Can Teach Us about Humans with Cancer. Philos. Trans. R. Soc. B Biol. Sci. 2015, 370, 20140231. [Google Scholar] [CrossRef] [PubMed]
- Mukaratirwa, S.; Chipunza, J.; Chitanga, S.; Chimonyo, M.; Bhebhe, E. Canine Cutaneous Neoplasms: Prevalence and Influence of Age, Sex and Site on the Presence and Potential Malignancy of Cutaneous Neoplasms in Dogs from Zimbabwe. J. S. Afr. Vet. Assoc. 2005, 76, 59–62. [Google Scholar] [CrossRef]
- Bellizzi, A.M. An Algorithmic Immunohistochemical Approach to Define Tumor Type and Assign Site of Origin. Adv. Anat. Pathol. 2020, 27, 114–163. [Google Scholar] [CrossRef]
- Mestrinho, L.A. Current Status and Future Perspectives in Canine Oral Squamous Cell Carcinoma. Vet. Pathol. 2018, 55, 200–201. [Google Scholar] [CrossRef]
- Pham, S.H.; Pratt, K.; Okolicsanyi, R.K.; Oikari, L.E.; Yu, C.; Peall, I.W.; Arif, K.T.; Chalmers, T.-A.; Gyimesi, M.; Griffiths, L.R.; et al. Syndecan-1 and -4 Influence Wnt Signaling and Cell Migration in Human Breast Cancers. Biochimie 2022, 198, 60–75. [Google Scholar] [CrossRef]
- Teng, Y.H.-F.; Aquino, R.S.; Park, P.W. Molecular Functions of Syndecan-1 in Disease. Matrix Biol. 2012, 31, 3–16. [Google Scholar] [CrossRef]
- Wei, H.; Guo, E.; Dong, B.; Chen, L. Prognostic and Clinical Significance of Syndecan-1 in Colorectal Cancer: A Meta-Analysis. BMC Gastroenterol. 2015, 15, 152. [Google Scholar] [CrossRef] [PubMed]
- Solmaz, O. The Role of Syndecan-1 during Endometrial Carcinoma Progression. J. Cancer Res. Ther. 2019, 15, 1265. [Google Scholar] [CrossRef]
- Hinkes, M.T.; Goldberger, O.A.; Neumann, P.E.; Kokenyesi, R.; Bernfield, M. Organization and Promoter Activity of the Mouse Syndecan-1 Gene. J. Biol. Chem. 1993, 268, 11440–11448. [Google Scholar] [CrossRef] [PubMed]
- Larraín, J.; Cizmeci-Smith, G.; Troncoso, V.; Stahl, R.C.; Carey, D.J.; Brandan, E. Syndecan-1 Expression Is Down-Regulated during Myoblast Terminal Differentiation. J. Biol. Chem. 1997, 272, 18418–18424. [Google Scholar] [CrossRef]
- Pisamai, S.; Rungsipipat, A.; Kalpravidh, C.; Suriyaphol, G. Gene Expression Profiles of Cell Adhesion Molecules, Matrix Metalloproteinases and Their Tissue Inhibitors in Canine Oral Tumors. Res. Vet. Sci. 2017, 113, 94–100. [Google Scholar] [CrossRef]
- Shetty, P.; Gonsalves, N.; Desai, D.; Pandit, S.; Aradhya, C.; Shahid, M.; Shubhalakshmi; Shetty, S. Expression of Syndecan-1 in Different Grades of Oral Squamous Cell Carcinoma: An Immunohistochemical Study. J. Cancer Res. Ther. 2022, 18, 191. [Google Scholar] [CrossRef]
- Anttonen, A.; Kajanti, M.; Heikkilä, P.; Jalkanen, M.; Joensuu, H. Syndecan-1 Expression Has Prognostic Significance in Head and Neck Carcinoma. Br. J. Cancer 1999, 79, 558–564. [Google Scholar] [CrossRef]
- Kurokawa, H.; Zhang, M.; Matsumoto, S.; Yamashita, Y.; Tanaka, T.; Takamori, K.; Igawa, K.; Yoshida, M.; Fukuyama, H.; Takahashi, T.; et al. Reduced Syndecan-1 Expression Is Correlated with the Histological Grade of Malignancy at the Deep Invasive Front in Oral Squamous Cell Carcinoma. J. Oral Pathol. Med. 2006, 35, 301–306. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.H.; Choi, E.J.; Kim, M.S.; Park, J.W.; Lee, Y.S.; Kim, S.Y.; Kang, C.S. Prognostic Significance of Syndecan-1 Expression in Squamous Cell Carcinoma of the Tonsil. Int. J. Clin. Oncol. 2014, 19, 247–253. [Google Scholar] [CrossRef] [PubMed]
- Gökden, N.; Greene, G.F.; Bayer-Garner, I.B.; Spencer, H.J.; Sanderson, R.D.; Gökden, M. Expression of CD138 (Syndecan-1) in Renal Cell Carcinoma Is Reduced with Increasing Nuclear Grade. Appl. Immunohistochem. Mol. Morphol. 2006, 14, 173–177. [Google Scholar] [CrossRef]
- Nunez, A.L.; Siegal, G.P.; Reddy, V.V.B.; Wei, S. CD138 (Syndecan-1) Expression in Bone-Forming Tumors. Am. J. Clin. Pathol. 2012, 137, 423–428. [Google Scholar] [CrossRef]
- Stepp, M.A.; Pal-Ghosh, S.; Tadvalkar, G.; Rajjoub, L.; Jurjus, R.A.; Gerdes, M.; Ryscavage, A.; Cataisson, C.; Shukla, A.; Yuspa, S.H. Loss of Syndecan-1 Is Associated with Malignant Conversion in Skin Carcinogenesis. Mol. Carcinog. 2010, 49, 363–373. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.-F.; Yao, J.; Gao, S.-G.; Yang, Y.-T.; Peng, X.-Q.; Feng, X.-S. Midkine and Syndecan-1 Levels Correlate with the Progression of Malignant Gastric Cardiac Adenocarcinoma. Mol. Med. Rep. 2014, 10, 1409–1415. [Google Scholar] [CrossRef] [PubMed]
- Mukunyadzi, P.; Sanderson, R.D.; Fan, C.-Y.; Smoller, B.R. The Level of Syndecan-1 Expression Is a Distinguishing Feature in Behavior between Keratoacanthoma and Invasive Cutaneous Squamous Cell Carcinoma. Mod. Pathol. 2002, 15, 45–49. [Google Scholar] [CrossRef]
- Loussouarn, D.; Campion, L.; Sagan, C.; Frenel, J.-S.; Dravet, F.; Classe, J.-M.; Pioud-Martigny, R.; Berton-Rigaud, D.; Bourbouloux, E.; Mosnier, J.-F.; et al. Prognostic Impact of Syndecan-1 Expression in Invasive Ductal Breast Carcinomas. Br. J. Cancer 2008, 98, 1993–1998. [Google Scholar] [CrossRef]
- Guilford, P. E-Cadherin Downregulation in Cancer: Fuel on the Fire? Mol. Med. Today 1999, 5, 172–177. [Google Scholar] [CrossRef]
- Matos, A.J.F.; Lopes, C.; Carvalheira, J.; Santos, M.; Rutteman, G.R.; Gärtner, F. E-Cadherin Expression in Canine Malignant Mammary Tumours: Relationship to Other Clinico-Pathological Variables. J. Comp. Pathol. 2006, 134, 182–189. [Google Scholar] [CrossRef]
- Mestrinho, L.A.; Pissarra, H.; Faísca, P.B.; Bragança, M.; Peleteiro, M.C.; Niza, M.M.R.E. P63 and E-Cadherin Expression in Canine Oral Squamous Cell Carcinoma. Vet. Pathol. 2015, 52, 614–620. [Google Scholar] [CrossRef]
- Gupta, A.; Al-Dissi, A. Correlation between E-Cadherin Expression and Tumor Grade, Proliferation, Microvascular Density, and Apoptosis in Canine Cutaneous Squamous Cell Carcinoma. Can. J. Vet. Res. 2023, 87, 23–28. [Google Scholar] [PubMed]
- Brunetti, B.; Sarli, G.; Preziosi, R.; Leprotti, S.; Benazzi, C. E-cadherin Expression in Canine Mammary Carcinomas with Regional Lymph Node Metastases. J. Vet. Med. Ser. A 2003, 50, 496–500. [Google Scholar] [CrossRef]
- Sarli, G.; Preziosi, R.; Tolla, L.D.; Brunetti, B.; Benazzi, C. E-Cadherin Immunoreactivity in Canine Mammary Tumors. J. Vet. Diagn. Investig. 2004, 16, 542–547. [Google Scholar] [CrossRef]
- Angadi, P.V.; Patil, P.V.; Angadi, V.; Mane, D.; Shekar, S.; Hallikerimath, S.; Kale, A.D.; Kardesai, S.G. Immunoexpression of Epithelial Mesenchymal Transition Proteins E-Cadherin, β-Catenin, and N-Cadherin in Oral Squamous Cell Carcinoma. Int. J. Surg. Pathol. 2016, 24, 696–703. [Google Scholar] [CrossRef]
- Sharma, J.; Bhargava, M.; Aggarwal, S.; Aggarwal, A.; Varshney, A.; Chopra, D. Immunohistochemical Evaluation of E-Cadherin in Oral Epithelial Dysplasia and Squamous Cell Carcinoma. Indian J. Pathol. Microbiol. 2022, 65, 755–760. [Google Scholar] [CrossRef] [PubMed]
- Dumitru, C.S.; Ceausu, A.R.; Comsa, S.; Raica, M. Loss of E-Cadherin Expression Correlates with Ki-67 in Head and Neck Squamous Cell Carcinoma. In Vivo 2022, 36, 1150–1154. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Cao, K.; He, Q.; Yin, Z.; Zhou, J. miR-199a-5p Induces Cell Invasion by Suppressing E-Cadherin Expression in Cutaneous Squamous Cell Carcinoma. Oncol. Lett. 2016, 12, 97–101. [Google Scholar] [CrossRef]
- Van Roy, F. Beyond E-Cadherin: Roles of Other Cadherin Superfamily Members in Cancer. Nat. Rev. Cancer 2014, 14, 121–134. [Google Scholar] [CrossRef]
- Kiemeney, L.A.; Van Houwelingen, K.P.; Bogaerts, M.; Witjes, J.A.; Swinkels, D.W.; Heijer, M.D.; Franke, B.; Schalken, J.A.; Verhaegh, G.W. Polymorphisms in the E-Cadherin (CDH1) Gene Promoter and the Risk of Bladder Cancer. Eur. J. Cancer 2006, 42, 3219–3227. [Google Scholar] [CrossRef] [PubMed]
- Figueiredo, J.; Melo, S.; Gamet, K.; Godwin, T.; Seixas, S.; Sanches, J.M.; Guilford, P.; Seruca, R. E-Cadherin Signal Sequence Disruption: A Novel Mechanism Underlying Hereditary Cancer. Mol. Cancer 2018, 17, 112. [Google Scholar] [CrossRef]
- Machado, J.; Oliveira, C.; Carvalho, R.; Soares, P.; Berx, G.; Caldas, C.; Seruca, R.; Carneiro, F. E-Cadherin Gene (CDH1) Promoter Methylation as the Second Hit in Sporadic Diffuse Gastric Carcinoma. Oncogene 2001, 20, 1525–1528. [Google Scholar] [CrossRef] [PubMed]
- Na, T.-Y.; Schecterson, L.; Mendonsa, A.M.; Gumbiner, B.M. The Functional Activity of E-Cadherin Controls Tumor Cell Metastasis at Multiple Steps. Proc. Natl. Acad. Sci. USA 2020, 117, 5931–5937. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Xiong, H.; Ellis, A.E.; Northrup, N.C.; Dobbin, K.K.; Shin, D.M.; Zhao, S. Canine Spontaneous Head and Neck Squamous Cell Carcinomas Represent Their Human Counterparts at the Molecular Level. PLOS Genet. 2015, 11, e1005277. [Google Scholar] [CrossRef]
- Boss, M.-K.; Harrison, L.G.; Gold, A.; Karam, S.D.; Regan, D.P. Canine Oral Squamous Cell Carcinoma as a Spontaneous, Translational Model for Radiation and Immunology Research. Front. Oncol. 2023, 12, 1033704. [Google Scholar] [CrossRef]
- Gardner, D. Spontaneous Squamous Cell Carcinomas of the Oral Region in Domestic Animals: A Review and Consideration of Their Relevance to Human Research. Oral Dis. 1996, 2, 148–154. [Google Scholar] [CrossRef]
- Zhu, Y.; Yu, F.; Tan, Y.; Yuan, H.; Hu, F. Strategies of Targeting Pathological Stroma for Enhanced Antitumor Therapies. Pharmacol. Res. 2019, 148, 104401. [Google Scholar] [CrossRef]
- Hadler-Olsen, E.; Winberg, J.-O.; Uhlin-Hansen, L. Matrix Metalloproteinases in Cancer: Their Value as Diagnostic and Prognostic Markers and Therapeutic Targets. Tumor Biol. 2013, 34, 2041–2051. [Google Scholar] [CrossRef] [PubMed]
- Szatmári, T.; Dobra, K. The Role of Syndecan-1 in Cellular Signaling and Its Effects on Heparan Sulfate Biosynthesis in Mesenchymal Tumors. Front. Oncol. 2013, 3, 310. [Google Scholar] [CrossRef] [PubMed]
- Xue, W.; Yang, L.; Chen, C.; Ashrafizadeh, M.; Tian, Y.; Sun, R. Wnt/β-Catenin-Driven EMT Regulation in Human Cancers. Cell. Mol. Life Sci. 2024, 81, 79. [Google Scholar] [CrossRef]
- Wong, S.H.M.; Fang, C.M.; Chuah, L.-H.; Leong, C.O.; Ngai, S.C. E-Cadherin: Its Dysregulation in Carcinogenesis and Clinical Implications. Crit. Rev. Oncol. Hematol. 2018, 121, 11–22. [Google Scholar] [CrossRef] [PubMed]
- Liao, S.; Liu, C.; Zhu, G.; Wang, K.; Yang, Y.; Wang, C. Relationship between SDC1 and Cadherin Signalling Activation in Cancer. Pathol.-Res. Pract. 2020, 216, 152756. [Google Scholar] [CrossRef] [PubMed]
Histological Grade | Histological Features |
---|---|
Grade I (Well differentiated) | High cytoplasm/nucleus ratio (nuclear pleomorphism-1) Vitreous atypia Prominent keratinization (1) |
Grade II (Moderately differentiated) | Some keratinization (2) No spindled or anaplastic cells (nuclear pleomorphism-1 or -2) |
Grade III (Poorly differentiated) | Sparse to absent keratinization (3) Spindled or anaplastic cells (nuclear pleomorphism-3) Difficult to identify as SCC |
Histological Parameter | Tumor Cells Syndecan-1 Immunoexpression | Stroma Syndecan-1 Immunoexpression | ||||
---|---|---|---|---|---|---|
0 | 1 | 2 | 3 | Negative | Positive | |
Degree of keratinization | ||||||
1 | 4 (33.3%) | 3 (25.0%) | 4 (33.3%) | 1 (8.3%) | 8 (66.7%) | 4 (33.3%) |
2 | 7 (33.3%) | 6 (28.6%) | 7 (33.3%) | 1 (4.8%) | 5 (25%) | 15 (75%) |
3 | 6 (42.8%) | 2 (14.3%) | 5 (35.7%) | 1 (7.1%) | 3 (21.3%) | 11 (78.6%) |
p = 0.98 | p = 0.026 | |||||
Nuclear pleomorphism | ||||||
1 | 1 (11.1%) | 4 (44.5%) | 3 (33.3%) | 1 (11.1%) | 6 (66.7%) | 3 (33.3%) |
2 | 8 (40.0%) | 5 (25.0%) | 6 (30%) | 1 (5%) | 5 (26.3%) | 14 (73.7%) |
3 | 8 (40.0%) | 2 (11.1%) | 7 (38.9%) | 1 (5.6%) | 5 (27.8%) | 13 (72.2%) |
p = 0.48 | p = 0.07 | |||||
Mitotic count | ||||||
1 | 4 (23.5%) | 6 (35.3%) | 6 (35.3%) | 1 (5.9%) | 8 (47.0%) | 9 (52.9%) |
2 | 6 (35.3%) | 0 | 9 (52.9%) | 2 (11.8%) | 7 (43.7%) | 9 (56.2%) |
3 | 7 (53.8%) | 5 (38.8%) | 1 (7.7%) | 0 | 1 (7.7%) | 12 (92.3%) |
p = 0.028 | p = 0.058 | |||||
Emboli | ||||||
Present | 7 (46.7%) | 2 (13.3%) | 6 (40.0%) | 0 | 3 (20%) | 12 (80%) |
Absent | 10 (31.3%) | 9 (28.1%) | 10 (31.2%) | 3 (9.4%) | 13 (41.9%) | 18 (38.3%) |
p = 0.55 | p = 0.48 | |||||
Histological Grade | ||||||
I | 3 (17.6%) | 4 (23.5%) | 4 (23.5%) | 1 (5.9%) | 8 (66.7%) | 4 (33.3%) |
II | 4 (28.6%) | 5 (35.7%) | 4 (28.6%) | 1 (7.1%) | 3 (23.1%) | 10 (76.9%) |
III | 10 (47.6%) | 2 (9.5%) | 8 (38.1%) | 1 (4.8%) | 5 (23.8%) | 16 (76.2%) |
p = 0.552 | p = 0.026 |
Histological Parameter | E-Cadherin Immunoexpression | ||
---|---|---|---|
1 | 2 | 3 | |
Degree of keratinization | |||
1 | 3 (25%) | 2 (16.7%) | 7 (58.3%) |
2 | 6 (28.6%) | 11 (52.4%) | 4 (19.1%) |
3 | 2 (14.3%) | 10 (71.4%) | 2 (14.3%) |
p = 0.035 | |||
Nuclear pleomorphism | |||
1 | 1 (11.1%) | 2 (11.1%) | 6 (66.7%) |
2 | 6 (30%) | 12 (60%) | 2 (10%) |
3 | 4 (22.2%) | 9 (50%) | 5 (27.8%) |
p = 0.0422 | |||
Mitotic count | |||
1 | 4 (23.5%) | 6 (35.3%) | 7 (41.2%) |
2 | 3 (17.6%) | 9 (52.9%) | 5 (29.4%) |
3 | 4 (30.7%) | 8 (61.5%) | 1 (7.7%) |
p = 0.32 | |||
Emboli | |||
Present | 3 (20%) | 9 (60%) | 3 (20%) |
Absent | 8 (25%) | 14 (29.8%) | 10 (21.3%) |
p = 0.48 | |||
Histological Grade | |||
I | 3 (25%) | 1 (8.3%) | 8 (66.7%) |
II | 4 (28.6%) | 9 (64.3%) | 1 (7.1%) |
III | 4 (19%) | 13 (61.9%) | 4 (19.0) |
p = 0.005 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Files, R.; Cardoso, C.; Prada, J.; Silva, F.; Pires, I. Syndecan-1 and E-Cadherin Expression in Canine Cutaneous Squamous Cell Carcinoma. Vet. Sci. 2024, 11, 652. https://doi.org/10.3390/vetsci11120652
Files R, Cardoso C, Prada J, Silva F, Pires I. Syndecan-1 and E-Cadherin Expression in Canine Cutaneous Squamous Cell Carcinoma. Veterinary Sciences. 2024; 11(12):652. https://doi.org/10.3390/vetsci11120652
Chicago/Turabian StyleFiles, Rita, Cláudia Cardoso, Justina Prada, Filipe Silva, and Isabel Pires. 2024. "Syndecan-1 and E-Cadherin Expression in Canine Cutaneous Squamous Cell Carcinoma" Veterinary Sciences 11, no. 12: 652. https://doi.org/10.3390/vetsci11120652
APA StyleFiles, R., Cardoso, C., Prada, J., Silva, F., & Pires, I. (2024). Syndecan-1 and E-Cadherin Expression in Canine Cutaneous Squamous Cell Carcinoma. Veterinary Sciences, 11(12), 652. https://doi.org/10.3390/vetsci11120652