Antimicrobial Resistance Profiling of Pathogens from Cooked Donkey Meat Products in Beijing Area in One Health Context †
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. Isolation and Identification
2.3. PCR Amplification and Identification
2.4. Antimicrobial Susceptibility Testing
3. Results
3.1. Bacteriologic Description
3.2. Antimicrobial Susceptibility Patterns
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Abalkhail, A. Frequency and Antimicrobial Resistance Patterns of Foodborne Pathogens in Ready-to-Eat Foods: An Evolving Public Health Challenge. Appl. Sci. 2023, 13, 12846. [Google Scholar] [CrossRef]
- Ali, S.; Alsayeqh, A.F. Review of Major Meat-Borne Zoonotic Bacterial Pathogens. Front. Public Health 2022, 10, 1045599. [Google Scholar] [CrossRef] [PubMed]
- Conceição, S.; Queiroga, M.C.; Laranjo, M. Antimicrobial Resistance in Bacteria from Meat and Meat Products: A One Health Perspective. Microorganisms 2023, 11, 2581. [Google Scholar] [CrossRef] [PubMed]
- Nastasijevic, I.; Proscia, F.; Jurica, K.; Veskovic-Moracanin, S. Tracking Antimicrobial Resistance Along the Meat Chain: One Health Context. Food Rev. Int. 2024, 40, 2775–2809. [Google Scholar] [CrossRef]
- Rajaei, M.; Moosavy, M.H.; Gharajalar, S.N.; Khatibi, S.A. Antibiotic Resistance in the Pathogenic Foodborne Bacteria Isolated from Raw Kebab and Hamburger: Phenotypic and Genotypic Study. BMC Microbiol. 2021, 21, 272. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Liu, X.; Chen, Q.; Liu, H.; Dai, Y.; Zhou, Y.J.; Wen, J.; Tang, Z.Z.; Chen, Y. Surveillance for Foodborne Disease Outbreaks in China, 2003 to 2008. Food.Cont. 2018, 84, 382–388. [Google Scholar] [CrossRef]
- Cao, H.; Bougouffa, S.; Park, T.J.; Lau, A.; Tong, M.K.; Chow, K.H.; Ho, P.L. Sharing of Antimicrobial Resistance Genes between Humans and Food Animals. MSystems 2022, 7, e00775-22. [Google Scholar] [CrossRef]
- Mark, D.G.; Hung, Y.Y.; Salim, Z.; Tarlton, N.J.; Torres, E.; Frazee, B.W. Third-Generation Cephalosporin Resistance and Associated Discordant Antibiotic Treatment in Emergency Department Febrile Urinary Tract Infections. Ann. Emerg. Med. 2021, 78, 357–369. [Google Scholar] [CrossRef]
- Girlich, D.; Bonnin, R.A.; Dortet, L.; Naas, T. Genetics of Acquired Antibiotic Resistance Genes in Proteus spp. Front. Microbiol. 2020, 11, 256. [Google Scholar] [CrossRef]
- Singh, B.R. Thermotolerance and multidrug resistance in bacteria isolated from equids and their environment. Vet. Rec. 2009, 164, 746–750. [Google Scholar] [CrossRef]
- Liu, W.; Yin, K.; Shi, L.; Han, X.; Bai, J.; Ji, L.; Han, S. Analysis of the Results of Foodborne Disease Outbreaks in Haidian District, Beijing, from 2010 to 2019. Strait J. Prev. Med. 2020, 28, 91–93. (In Chinese) [Google Scholar]
- Jiang, X.; Yu, T.; Liu, L.; Li, Y.; Zhang, K.; Wang, H.; Shi, L. Examination of Quaternary Ammonium Compound Resistance in Proteus mirabilis Isolated from Cooked Meat Products in China. Front. Microbiol. 2017, 8, 2417. [Google Scholar] [CrossRef] [PubMed]
- Ma, W.; Han, Y.; Zhou, L.; Peng, W.; Mao, L.; Yang, X.; Wang, Q.; Zhang, T.; Wang, H.; Lei, C. Contamination of Proteus mirabilis Harbouring Various Clinically Important Antimicrobial Resistance Genes in Retail Meat and Aquatic Products from Food Markets in China. Front. Microbiol. 2022, 13, 1086800. [Google Scholar] [CrossRef] [PubMed]
- Facciolà, A.; Gioffrè, M.E.; Chiera, D.; Ferlazzo, M.; Virga, A.; Laganà, P. Evaluation of Antibiotic Resistance in Proteus spp: A Growing Trend that Worries Public Health. Results of 10 Years of Analysis. New Microbiol. 2022, 45, 269–277. [Google Scholar] [PubMed]
- Stock, I. Natural Antibiotic Susceptibility of Proteus spp., with Special Reference to P. mirabilis and P. penneri Strains. J. Chemother. 2003, 15, 12–26. [Google Scholar] [CrossRef]
- Crippa, C.; Pasquali, F.; Rodrigues, C.; De, C.A.; Lucchi, A.; Gambi, L.; Manfreda, G.; Brisse, S.; Palma, F. Genomic Features of Klebsiella Isolates from Artisanal Ready-to-eat Food Production Facilities. Sci. Rep. 2023, 13, 10957. [Google Scholar] [CrossRef]
- Hartantyo, S.H.P.; Chau, M.L.; Koh, T.H.; Yap, M.; Yi, T.; Cao, D.Y.H.; GutiÉrrez, R.A.; Ng, L.C. Foodborne Klebsiella pneumoniae: Virulence Potential, Antibiotic Resistance, and Risks to Food Safety. J. Food Prot. 2020, 83, 1096–1103. [Google Scholar] [CrossRef]
- Haryani, Y.; Noorzaleha, A.S.; Fatimah, A.B.; Noorjahan, B.A.; Patrick, G.B.; Shamsinar, A.T.; Laila, R.A.S.; Son, R. Incidence of Klebsiella pneumonia in street foods sold in Malaysia and their characterization by antibiotic resistance, plasmid profiling, and RAPD–PCR analysis. Food Cont. 2007, 18, 847–853. [Google Scholar] [CrossRef]
- Guo, Y.; Zhou, H.; Qin, L.; Pang, Z.; Qin, T.; Ren, H.; Pan, Z.; Zhou, J. Frequency, Antimicrobial Resistance and Genetic Diversity of Klebsiella pneumoniae in Food Samples. PLoS ONE 2016, 11, e0153561. [Google Scholar] [CrossRef]
- Liu, Y.; Pei, T.; Du, J.; Huang, H.; Deng, M.; Zhu, H. Comparative Genomic Analysis of the Genus Novosphingobium and the Description of Two Novel Species Novosphingobium aerophilum sp. nov. and Novosphingobium jiangmenense sp. nov. Syst. Appl. Microbiol. 2021, 44, 126202. [Google Scholar] [CrossRef]
- Goswami, K.; Deka, B.H.P.; Saikia, R. Purification and Characterization of Cellulase Produced by Novosphingobium sp. Cm1 and its Waste Hydrolysis Efficiency and Bio-stoning Potential. J. Appl. Microbiol. 2022, 132, 3618–3628. [Google Scholar] [CrossRef] [PubMed]
- Papademas, P.; Kamilari, E.; Aspri, M.; Anagnostopoulos, D.A.; Mousikos, P.; Kamilaris, A.; Tsaltas, D. Investigation of Donkey Milk Bacterial Diversity by 16S rDNA High-throughput Sequencing on a Cyprus Donkey Farm. J. Dairy Sci. 2021, 104, 167–178. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Liu, Y.; Lin, Y.; Wang, L.; Yao, S.; Cao, Y.; Zhai, L.; Tang, X.; Zhang, L.; Zhang, T.; et al. Novosphingobium clariflavum sp. nov., Isolated from a Household Product Plant. Int. J. Syst. Evol. Microbiol. 2017, 67, 3150–3155. [Google Scholar] [CrossRef] [PubMed]
- Rangjaroen, C.; Sungthong, R.; Rerkasem, B.; Teaumroong, N.; Noisangiam, R.; Lumyong, S. Untapped Endophytic Colonization and Plant Growth-Promoting Potential of the Genus Novosphingobium to Optimize Rice Cultivation. Microbes Environ. 2017, 32, 84–87. [Google Scholar] [CrossRef]
- Zhou, B.; Shi, L.; Jin, M.; Cheng, M.; Yu, D.; Zhao, L.; Zhang, J.; Chang, Y.; Zhang, T.; Liu, H. Caulobacter and Novosphingobium in Tumor Tissues are Associated with Colorectal Cancer Outcomes. Front. Oncol. 2023, 12, 1078296. [Google Scholar] [CrossRef]
- Narciso-da-Rocha, C.; Vaz-Moreira, I.; Manaia, C.M. Genotypic Diversity and Antibiotic Resistance in Sphingomonadaceae Isolated from Hospital Tap Water. Sci. Total Environ. 2014, 466–467, 127–135. [Google Scholar] [CrossRef]
- Park, M.; Wang, J.; Park, J.; Forghani, F.; Moon, J.; Oh, D. Analysis of Microbiological Contamination in Mixed Pressed Ham and Cooked Sausage in Korea. J. Food Prot. 2014, 77, 412–418. [Google Scholar] [CrossRef]
Bacteria | Count | Ratio (%) |
---|---|---|
Proteus mirabilis | 13 | 32.5 |
Novosphingobium | 6 | 15.0 |
Klebsiella pneumoniae | 5 | 12.5 |
Escherichia coli | 3 | 7.5 |
Proteus vulgaris | 2 | 5.0 |
Streptococcus lutetiensis | 2 | 5.0 |
Enterobacter hormaechei | 2 | 5.0 |
Novosphingobium | 1 | 2.5 |
Proteus vulgaris | 1 | 2.5 |
Lysobacter | 1 | 2.5 |
Enterococcus gallinarum | 1 | 2.5 |
Macrococcus caseolyticus | 1 | 2.5 |
Citrobacter freundii | 1 | 2.5 |
Klebsiella oxytoca | 1 | 2.5 |
Antibiotic Category | Antibiotics | Proteus mirabilis | Klebsiella pneumoniae | ||||
---|---|---|---|---|---|---|---|
R (%) | S (%) | Sample Size | R (%) | S (%) | Sample Size | ||
β-lactam antibiotics | PEM | 100.0 (13) | 0.0 (0) | 13 | 100.0 (5) | 0.0 (0) | 5 |
AMP | 61.5 (8) | 30.8 (4) | 13 | 80.0 (4) | 0.0 (0) | 5 | |
CRO | 8.3 (1) | 66.7 (8) | 12 | - | - | - | |
CZ | - | - | - | 0.0 (0) | 75.0 (3) | 4 | |
Tetracycline antibiotics | TCN | 100.0 (12) | 0.0 (0) | 12 | - | - | - |
Aminoglycosides | AMI | - | - | - | 0.0 (0) | 100.0 (4) | 4 |
GEN | 7.7 (1) | 84.6 (11) | 13 | 0.0 (0) | 100.0 (5) | 5 | |
Chloramphenicols | CHL | 46.2 (6) | 38.5 (5) | 13 | 0.0 (0) | 100.0 (5) | 5 |
Sulfonamides | SXT | 38.6 (5) | 46.2 (6) | 13 | 0.0 (0) | 80.0 (4) | 5 |
Fluoroquinolones | CIP | 7.7 (1) | 84.6 (11) | 13 | 0.0 (0) | 100.0 (5) | 5 |
NOR | - | - | - | 0.0 (0) | 100.0 (4) | 4 | |
Macrolide antibiotics | ERY | 84.6 (11) | 15.4 (2) | 13 | 100.0 (5) | 0.0 (0) | 5 |
Lincosamides | LCM | 100.0 (12) | 0.0 (0) | 12 | - | - | - |
Antibiotic Category | Antibiotics | Novosphingobium | ||
---|---|---|---|---|
R (%) | S (%) | Sample Size | ||
β-lactam antibiotics | PEM | 100.0 (6) | 0.0 (0) | 6 |
AMP | 100.0 (6) | 0.0 (0) | 6 | |
CZ | 0.0 (0) | 83.3 (5) | 6 | |
Aminoglycosides | AMK | 0.0 (0) | 100.0 (6) | 6 |
GEN | 0.0 (0) | 100.0 (6) | 6 | |
Chloramphenicols | CHL | 0.0 (0) | 100.0 (6) | 6 |
Sulfonamides | SXT | 50.0 (3) | 50.0 (3) | 6 |
Fluoroquinolones | CIP | 0.0 (0) | 100.0 (6) | 6 |
NOR | 0.0 (0) | 100.0 (6) | 6 | |
Macrolide antibiotics | ERY | 100.0 (6) | 0.0 (0) | 6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Duan, H.; Yang, L.; Chen, H.; Wu, R.; Li, Y.; Zhu, Y.; Li, J. Antimicrobial Resistance Profiling of Pathogens from Cooked Donkey Meat Products in Beijing Area in One Health Context. Vet. Sci. 2024, 11, 645. https://doi.org/10.3390/vetsci11120645
Liu Y, Duan H, Yang L, Chen H, Wu R, Li Y, Zhu Y, Li J. Antimicrobial Resistance Profiling of Pathogens from Cooked Donkey Meat Products in Beijing Area in One Health Context. Veterinary Sciences. 2024; 11(12):645. https://doi.org/10.3390/vetsci11120645
Chicago/Turabian StyleLiu, Yiting, Hongyun Duan, Luo Yang, Hong Chen, Rongzheng Wu, Yi Li, Yiping Zhu, and Jing Li. 2024. "Antimicrobial Resistance Profiling of Pathogens from Cooked Donkey Meat Products in Beijing Area in One Health Context" Veterinary Sciences 11, no. 12: 645. https://doi.org/10.3390/vetsci11120645
APA StyleLiu, Y., Duan, H., Yang, L., Chen, H., Wu, R., Li, Y., Zhu, Y., & Li, J. (2024). Antimicrobial Resistance Profiling of Pathogens from Cooked Donkey Meat Products in Beijing Area in One Health Context. Veterinary Sciences, 11(12), 645. https://doi.org/10.3390/vetsci11120645