Growth Performance, Rumen Fermentation, and Meat Quality of Finishing Lambs Supplemented with Calcium Propionate or Sodium Propionate
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals and Diets
2.2. Growth Performance, Dietary Energetics, and Apparent Dry Matter Digestibility
2.3. In Vivo Ruminal Fermentation
2.4. Carcass Traits and Meat Quality
2.5. In Vitro Gas Production
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Carrillo-Muro, O.; Rivera-Villegas, A.; Hernandez-Briano, P.; Lopez-Carlos, M.A.; Castro-Perez, B.I. Effect of dietary calcium propionate inclusion period on the growth performance, carcass characteristics, and meat quality of feedlot ram lambs. Agriculture 2023, 13, 1577. [Google Scholar] [CrossRef]
- Muñoz-Osorio, G.A.; Aguilar-Caballero, A.J.; Wurzinger, M.; Sarmiento-Franco, L.A.; Gutiérrez-Reynoso, G.A. The effect of two housing systems on productive performance of hair-type crossbreed lambs in sub-humid tropics of Mexico. J. Appl. Anim. Res. 2017, 45, 384–388. [Google Scholar] [CrossRef]
- Carrillo-Muro, O.; Rivera-Villegas, A.; Hernández-Briano, P.; López-Carlos, M.A.; Aguilera-Soto, J.I.; Estrada-Angulo, A.; Medina-Flores, C.A. Effect of calcium propionate level on the growth performance, carcass characteristics, and meat quality of feedlot ram lambs. Small Rumin. Res. 2022, 207, 106618. [Google Scholar] [CrossRef]
- Orzuna-Orzuna, J.F.; Lara-Bueno, A. Growth performance and ruminal fermentation of lambs supplemented with calcium propionate: A meta-analysis. Small Rumin. Res. 2023, 226, 107032. [Google Scholar] [CrossRef]
- Suh, D.H.; Moss, C.B. Decompositions of corn price effects: Implications for feed grain demand and livestock supply. Agric. Econ. 2017, 48, 491–500. [Google Scholar] [CrossRef]
- Seddik, H.; Xu, L.; Wang, Y.; Mao, S.Y. A rapid shift to high-grain diet results in dynamic changes in rumen epimural microbiome in sheep. Animal 2019, 13, 1614–1622. [Google Scholar] [CrossRef]
- Abo El-Nor, S.; AbuGhazaleh, A.A.; Potu, R.B.; Hastings, D.; Khattab, M.S.A. Effects of differing levels of glycerol on rumen fermentation and bacteria. Anim. Feed. Sci. Technol. 2010, 162, 99–105. [Google Scholar] [CrossRef]
- Ferraro, S.M.; Mendoza, G.D.; Miranda, L.A.; Gutiérrez, C.G. In vitro gas production and ruminal fermentation of glycerol, propylene glycol and molasses. Anim. Feed. Sci. Technol. 2009, 154, 112–118. [Google Scholar] [CrossRef]
- Mendoza-Martínez, G.D.; Pinos-Rodríguez, J.M.; Lee-Rangel, H.A.; Hernández-García, P.A.; Rojo-Rubio, R.; Relling, A. Effects of dietary calcium propionate on growth performance and carcass characteristics of finishing lambs. Anim. Prod. Sci. 2016, 56, 1194–1198. [Google Scholar] [CrossRef]
- Berthelot, V.; Bas, P.; Schmidely, P.; Duvaux-Ponter, C. Effect of dietary propionate on intake patterns and fatty acid composition of adipose tissues in lambs. Small Rumin. Res. 2001, 40, 29–39. [Google Scholar] [CrossRef]
- Liu, Q.; Wang, C.; Guo, G.; Yang, W.Z.; Dong, K.H.; Huang, Y.X.; Yang, X.M.; He, D.C. Effects of calcium propionate on rumen fermentation, urinary excretion of purine derivatives and feed digestibility in steers. J. Agric. Sci. 2009, 147, 201–209. [Google Scholar] [CrossRef]
- Lee-Rangel, H.A.; Mendoza, G.D.; González, S.S. Effect of calcium propionate and sorghum le l on lamb performance. Anim. Feed. Sci. Technol. 2012, 177, 237–241. [Google Scholar] [CrossRef]
- Beiranvand, H.; Ghorbani, G.R.; Khorvash, M.; Nabipour, A.; Dehghan-Banadaky, M.; Homayouni, A.; Kargar, S. Interactions of alfalfa hay and sodium propionate on dairy calf performance and rumen development. J. Dairy Sci. 2014, 97, 2270–2280. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Nan, X.; Wang, H.; Guo, Y.; Xiong, B. Research on the Applications of calcium propionate in dairy cows: A Review. Animals 2020, 10, 1336. [Google Scholar] [CrossRef] [PubMed]
- Wukadinovich, M.; Rossow, H.A. Production responses of holstein dairy cows to a sodium propionate supplementfed postpartum to prevent hyperketonemia. Dairy 2023, 4, 527–540. [Google Scholar] [CrossRef]
- Majdoub, L.; Vermorel, M.; Ortigues-Marty, I. Intraruminal propionate supplementation modifies hindlimb energy metabolism without changing the splanchnic release of glucose in growing lambs. Br. J. Nutr. 2003, 89, 39–50. [Google Scholar] [CrossRef]
- Berthelot, V.; Bas, P.; Schmidely, P.; Duvaux-Ponter, C.; Sauvant, D. Effect of dietary propionate on fatty acid composition of lamb adipose tissues. In Sheep and Goat Nutrition: Intake, Digestion, Quality of Products and Rangelands; Ledin, I., Moran d-Fehr, P., Eds.; Cahiers Options Méditerranéennes: Zaragoza, Spain, 2000; pp. 133–135. [Google Scholar]
- National Research Council. Nutrient Requirements of Small Ruminants: Sheep, Goats, Cervids, and New World Camelids; National Academy Press: Washington, DC, USA, 2007. [Google Scholar]
- AOAC. Official Methods of Analysis of AOAC International; Latimer, G.W., Jr., Ed.; Oxford University Press: Oxford, UK, 2023. [Google Scholar]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Cannas, A.; Tedeschi, L.O.; Fox, D.G.; Pell, A.N.; Van Soest, P.J. A mechanistic model for predicting the nutrient requirements and feed biological values for sheep. J. Anim. Sci. 2004, 82, 149–169. [Google Scholar] [CrossRef]
- Dorantes-Iturbide, G.; Orzuna-Orzuna, J.F.; Lara-Bueno, A.; Miranda-Romero, L.A.; Mendoza-Martínez, G.D.; Hernández-García, P.A. Effects of a polyherbal dietary additive on performance, dietary energetics, carcass traits, and blood metabolites of finishing lambs. Metabolites 2022, 12, 413. [Google Scholar] [CrossRef]
- Estrada-Angulo, A.; Arteaga-Wences, Y.J.; Escobedo-Gallegos, L.D.G.; Ramos-Méndez, J.L.; Quezada-Rubio, J.A.; Vizcarra-Chávez, C.A.; Valdés-Garcia, Y.S.; Barreras, A.; Zinn, R.A.; Placencia, A. Effect of combining the ionophore monensin with natural antimicrobials supplemented in the last phase of finishing of lambs: Growth performance, dietary energetics, and carcass characteristics. Animals 2023, 13, 2547. [Google Scholar] [CrossRef]
- National Research Council. Nutrient Requirements of Sheep, 6th ed.; National Academies Press: Washington, DC, USA, 1985. [Google Scholar]
- Avalos-Castro, R.; Segura-Correa, J.; Palacios-Espinosa, A.; Romero-Santillan, F. Growth curves through non-linear models in creole lambs from the Mixteca region of Oaxaca, México. Trop. Subtrop. Agroecosystems 2022, 25. [Google Scholar] [CrossRef]
- Zinn, R.A.; Barreras, A.; Owens, F.N.; Plascencia, A. Performance by feedlot steers and heifers: Daily gain, mature body weight, dry matter intake, and dietary energetics. J. Anim. Sci. 2008, 86, 2680–2689. [Google Scholar] [CrossRef] [PubMed]
- Van Keulen, J.; Young, B.A. Evaluation of acid-insoluble ash as a natural marker in ruminant digestibility studies. J. Anim. Sci. 1977, 44, 282–287. [Google Scholar] [CrossRef]
- Erwin, E.S.; Marco, G.J.; Emery, E.M. Volatile fatty acid analyses of blood and rumen fluid by gas chromatography. J. Dairy Sci. 1961, 44, 1768–1771. [Google Scholar] [CrossRef]
- McCullough, H. The determination of ammonia in whole blood by a direct colorimetric method. Clin. Chim. Acta 1967, 17, 297–304. [Google Scholar] [CrossRef]
- Madrid, J.; Martínez-Teruel, A.; Hernández, F.; Megías, M.D. A comparative study on the determination of lactic acid in silage juice by colorimetric, high-performance liquid chromatography and enzymatic methods. J. Sci. Food Agric. 1999, 79, 1722–1726. [Google Scholar] [CrossRef]
- Zheng, Q.; Lin, J.; Huang, J.; Zhang, H.; Zhang, R.; Zhang, X.; Cao, C.; Hambly, C.; Qin, G.; Yao, J.; et al. Reconstitution of UCP1 using CRISPR/Cas9 in the white adipose tissue of pigs decreases fat deposition and improves thermogenic capacity. Proc. Natl. Acad. Sci. USA 2017, 114, E9474–E9482. [Google Scholar] [CrossRef]
- Honikel, K.O. Reference methods for the assessment of physical characteristics of meat. Meat Sci. 1998, 49, 447–457. [Google Scholar] [CrossRef]
- Ripoll, G.; Albertí, P.; Joy, M. Influence of alfalfa grazing-based feeding systems on carcass fat colour and meat quality of light lambs. Meat Sci. 2012, 90, 457–464. [Google Scholar] [CrossRef]
- Tsai, T.C.; Ockerman, H.W. Water Binding Measurement of Meat. J. Food Sci. 1981, 46, 697–701. [Google Scholar] [CrossRef]
- Carrillo-Muro, O.; Rivera-Villegas, A.; Hernandez-Briano, P.; Lopez-Carlos, M.A.; Plascencia, A. Effects of duration of calcium propionate supplementation in lambs finished with supplemental zilpaterol hydrochloride: Productive performance, carcass characteristics, and meat quality. Animals 2023, 13, 3113. [Google Scholar] [CrossRef] [PubMed]
- Cañeque, V.; Pérez, C.; Velasco, S.; Díaz, M.T.; Lauzurica, S.; Álvarez, I.; Ruiz de Huidobro, F.; Onega, E.; De la Fuente, J. Carcass and meat quality of light lambs using principal component analysis. Meat Sci. 2004, 67, 595–605. [Google Scholar] [CrossRef] [PubMed]
- Cobos-Peralta, M.A.; Yokoyama, M.T. Clostridium paraputrificum var. Ruminantium: Colonization and degradation of shrimp carapaces in vitro observed by scanning electron microscopy. In Rumen Ecology Research Planning; Wallace, R., Lahlou-Kassi, A., Eds.; Procceding of Workshop. Addis Ababa, Ethiopia; International Livestock Research Institute: Nairobi, Kenya, 1995; pp. 151–161. [Google Scholar]
- Tirado-Estrada, G.; Ramos-Mijangos, L.M.; Miranda-Romero, L.A.; Tirado-González, D.N.; Salem, A.Z.; Mlambo, V.; Medina-Cuéllar, S.E.; González-Reyes, M.; Pliego, A.B. Potential impacts of dietary Lemna gibba supplements in a simulated ruminal fermentation system and environmental biogas production. J. Clean. Prod. 2018, 181, 555–561. [Google Scholar] [CrossRef]
- Menke, K.H.; Steingass, H. Estimation of the energetic feed value obtained from chemical analysis and in vitro gas production using rumen fluid. Anim. Res. Dev. 1988, 28, 7–55. [Google Scholar]
- SAS (Statistical Analysis System). SAS/STAT User’s Guide (Release 6.4); SAS Inst.: Cary, NC, USA, 2017. [Google Scholar]
- Bradford, B.J.; Allen, M.S. Phlorizin Administration Does Not Attenuate Hypophagia Induced by Intraruminal Propionate Infusion in Lactating Dairy Cattle. J. Nutr. 2007, 137, 326–330. [Google Scholar] [CrossRef]
- Oba, M.; Allen, M.S. Dose-response effects of intrauminal infusion of propionate on feeding behavior of lactating cows in early or midlactation. J. Dairy Sci. 2003, 86, 2922–2931. [Google Scholar] [CrossRef]
- Anil, M.H.; Forbes, J.M. The roles of hepatic nerves in the reduction of food intake as a consequence of intraportal sodium propionate administration in sheep. Q. J. Exp. Physiol. 1988, 73, 539–546. [Google Scholar] [CrossRef]
- Cifuentes-López, O.; Lee-Rangel, H.A.; Mendoza, G.D.; Delgado-Sánchez, P.; Guerrero-González, L.; Chay-Canul, A.; Pinos-Rodríguez, J.M.; Flores-Ramírez, R.; Roque-Jiménez, J.A.; Relling, A.E. Effects of dietary calcium propionate supplementation on hypothalamic neuropeptide messenger RNA expression and growth performance in finishing Rambouillet lambs. Life 2021, 11, 566. [Google Scholar] [CrossRef]
- Zhang, F.; Wang, Y.; Wang, H.; Nan, X.; Guo, Y.; Xiong, B. Calcium propionate supplementation has minor effects on major ruminal bacterial community composition of early lactation dairy cows. Front. Microbiol. 2022, 13, 847488. [Google Scholar] [CrossRef]
- Martínez-Aispuro, J.A.; Sánchez-Torres, M.T.; Mendoza-Martínez, G.D.; Cordero-Mora, J.L.; Figueroa-Velasco, J.L.; Ayala-Monter, M.A.; Crosby-Galván, M.M. Addition of calcium propionate to finishing lamb diets. Vet. México 2018, 5, 37–46. [Google Scholar] [CrossRef]
- Corazzin, M.; Del Bianco, S.; Bovolenta, S.; Piasentier, E. Carcass characteristics and meat quality of sheep and goat. In More 809 than Beef, Pork and Chicken-The Production, Processing, and Quality Traits of Other Sources of Meat for Human Diet; Lorenzo, J.M., Munekata, P.E.S., Barba, F., Toldrá, F., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 119–165. ISBN 978-3-030-05483-0. [Google Scholar]
- Sandoval-González, L.; Miranda-Romero, L.A.; Lara-Bueno, A.; Huerta-Bravo, M.; Uribe-Gómez, M.; Martínez-Martínez, M. In vitro fermentation and the correlation of the nutritional content of leucaena associated with star grass. Rev. Mex. Cienc. Agrícolas 2016, 7, 3185–3196. [Google Scholar]
- Miranda, L.A.; Lee-Rangel, H.A.; Mendoza-Martínez, G.D.; Crosby-Galván, M.M.; Relling, A.E.; Pinos-Rodríguez, J.M.; Rojo-Rubio, R.; González-Hernández, M. Influence of calcium propionate on in vitro fermentation of sorghum-based diets. Rev. Fac. Cienc. Agrar. Univ. Nac. Cuyo 2017, 49, 185–192. [Google Scholar]
- Osorio-Teran, A.I.; Miranda-Romero, L.A.; Mendoza-Martínez, G.D.; Martínez-Gomez, D.; Hernández-García, P.A.; Martínez-García, J.A. Effect of calcium propionate and monensin on in vitro digestibility and gas production. Rev. Bras. Zootec. 2017, 46, 348–353. [Google Scholar] [CrossRef]
- Ferraro, S.M.; Mendoza, G.D.; Miranda, L.A.; Gutiérrez, C.G. In vitro ruminal fermentation of glycerol, propylene glycol and molasses combined with forages and their effect on glucose and insulin blood plasma concentrations after an oral drench in sheep. Anim. Feed. Sci. Technol. 2016, 213, 74–80. [Google Scholar] [CrossRef]
- Castañeda-Trujano, F.J.; Miranda-Romero, L.A.; Tirado-González, D.N.; Tirado-Estrada, G.; Achiquen-Millán, J.; Améndola-Massiotti, R.D.; Martínez-Hernández, P.A. Gas production and environmental impact indicators from in vitro fermentation of diets with nopal silage (Opuntia ficus-indica L.). Agro Prod. 2023, 16, 49–57. [Google Scholar] [CrossRef]
- Diario Oficial de la Federación. Norma Oficial Mexicana NOM-062-ZOO-1999. Especificaciones Técnicas Para la Producción, Cuidado y uso de los Animales de Laboratorio. México. 2001. Available online: https://www.fmvz.unam.mx/fmvz/principal/archivos/062ZOO.PDF (accessed on 12 August 2024).
CON | Calcium Propionate | Sodium Propionate | |
---|---|---|---|
Ingredients (g/kg of diet) | |||
Ground corn | 159 | 149 | 149 |
Ground sorghum | 360 | 360 | 360 |
Corn stover | 176 | 176 | 176 |
Soybean meal | 220 | 220 | 220 |
Cane molasses | 60 | 60 | 60 |
Urea | 10 | 10 | 10 |
Buffer | 10 | 10 | 10 |
Calcium propionate 1 | 0 | 10 | 0 |
Sodium propionate 2 | 0 | 0 | 10 |
Mineral premix 3 | 5 | 5 | 5 |
Chemical composition (g/kg dry matter) | |||
Dry matter | 889.2 | 888.9 | 889.1 |
Organic matter | 829.8 | 828.4 | 829.3 |
Crude protein | 158.3 | 157.7 | 157.9 |
Neutral detergent fiber | 179.6 | 179.9 | 180.2 |
Acid detergent fiber | 103.5 | 102.8 | 102.1 |
Ether extract | 24.9 | 25.2 | 24.7 |
Ash | 58.9 | 58.5 | 59.3 |
Calculated net energy, Mcal/kg | |||
Maintenance 4 | 1.77 | 1.77 | 1.77 |
Gain 4 | 1.24 | 1.24 | 1.24 |
Treatments | |||||
---|---|---|---|---|---|
CON | CaPr10 | NaPr10 | SEM | p Value | |
Growth performance | |||||
Initial body weight, kg | 24.82 | 25.06 | 25.25 | 1.73 | 0.98 |
Final body weight (BW), kg | 35.66 | 35.46 | 35.06 | 2.00 | 0.97 |
Dry matter intake (DMI), kg/d | 1.47 | 1.36 | 1.47 | 0.07 | 0.50 |
Average daily gain (ADG), kg/d | 0.25 | 0.24 | 0.23 | 0.02 | 0.72 |
Feed conversion ratio (FCR), kg/kg | 5.87 | 5.76 | 6.66 | 0.48 | 0.36 |
Apparent DM digestibility, g/100 g | 80.18 b | 80.80 b | 83.77 a | 1.07 | 0.05 |
Observed dietary net energy, Mcal/kg of DM | |||||
Maintenance (ObsNEm) | 1.64 | 1.72 | 1.55 | 0.06 | 0.41 |
Gain (ObsNEg) | 1.02 | 1.09 | 0.95 | 0.06 | 0.41 |
Observed to expected diet net energy, Mcal/kg of DM | |||||
Maintenance (OExNEm) | 0.99 | 1.06 | 0.95 | 0.04 | 0.41 |
Gain (OExNEg) | 1.04 | 1.18 | 0.93 | 0.10 | 0.41 |
Treatments | |||||
---|---|---|---|---|---|
CON | CaPr10 | NaPr10 | SEM | p Value | |
Ruminal pH | 6.99 | 6.99 | 7.00 | 0.06 | 0.99 |
Ammonia nitrogen (NH3-N), mg/dL | 6.68 | 6.69 | 7.61 | 0.80 | 0.59 |
Ruminal lactate, mg/mL | 0.61 b | 0.99 ab | 1.59 a | 0.19 | 0.02 |
Total volatile fatty acids (VFA), mmol/L | 37.99 | 39.69 | 33.88 | 3.99 | 0.59 |
Acetate, mol/100 mol | 62.42 | 65.10 | 65.27 | 1.40 | 0.29 |
Propionate, mol/100 mol | 28.59 | 23.82 | 23.91 | 2.17 | 0.23 |
Butyrate, mol/100 mol | 8.97 | 11.07 | 10.81 | 1.12 | 0.37 |
Treatments | |||||
---|---|---|---|---|---|
CON | CaPr10 | NaPr10 | SEM | p Value | |
Hot carcass weight (HCW), kg | 16.74 | 17.22 | 16.18 | 0.67 | 0.56 |
Hot carcass yield (HCY), % | 48.65 | 51.02 | 51.07 | 0.91 | 0.14 |
Backfat thickness (BFT), cm | 0.89 | 0.80 | 0.91 | 0.07 | 0.56 |
Meat pH | 6.51 | 6.45 | 6.58 | 0.06 | 0.42 |
Lightness (L*) | 24.23 | 23.89 | 24.99 | 1.25 | 0.82 |
Redness (a*) | 13.19 | 12.71 | 11.97 | 0.51 | 0.27 |
Yellowness (b*) | 6.44 | 6.23 | 6.36 | 0.31 | 0.91 |
Chroma | 14.68 | 14.16 | 13.16 | 0.52 | 0.37 |
Hue | 26.03 | 26.11 | 28.06 | 1.39 | 0.52 |
Water-holding capacity (WHC), % | 41.00 | 39.85 | 39.83 | 0.60 | 0.35 |
Cook loss (CL), % | 25.43 | 24.61 | 27.77 | 0.96 | 0.96 |
Treatments | |||||
---|---|---|---|---|---|
CON | CaPr10 | NaPr10 | SEM | p Value | |
Maximum gas volume produced (Vmax), mL/g DM | 186.86 | 186.73 | 190.86 | 3.05 | 0.13 |
Gas production rate (S), mL/h | 0.070 a | 0.063 b | 0.060 c | 0.002 | 0.02 |
Lag phase (L), h | 1.60 a | 1.20 b | 0.82 c | 0.16 | 0.05 |
In vitro dry matter digestibility (IVDMD), g/100 g | 83.83 a | 80.77 b | 78.62 c | 0.63 | 0.003 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Velázquez-Cruz, L.A.; Hernández-García, P.A.; Mendoza-Martínez, G.D.; Espinosa-Ayala, E.; Lee-Rangel, H.A.; Vázquez-Silva, G.; Razo-Ortíz, P.B.; Díaz-Galván, C.; Orzuna-Orzuna, J.F.; de la Torre-Hernández, M.E. Growth Performance, Rumen Fermentation, and Meat Quality of Finishing Lambs Supplemented with Calcium Propionate or Sodium Propionate. Vet. Sci. 2024, 11, 604. https://doi.org/10.3390/vetsci11120604
Velázquez-Cruz LA, Hernández-García PA, Mendoza-Martínez GD, Espinosa-Ayala E, Lee-Rangel HA, Vázquez-Silva G, Razo-Ortíz PB, Díaz-Galván C, Orzuna-Orzuna JF, de la Torre-Hernández ME. Growth Performance, Rumen Fermentation, and Meat Quality of Finishing Lambs Supplemented with Calcium Propionate or Sodium Propionate. Veterinary Sciences. 2024; 11(12):604. https://doi.org/10.3390/vetsci11120604
Chicago/Turabian StyleVelázquez-Cruz, Lucero Abigail, Pedro Abel Hernández-García, Germán David Mendoza-Martínez, Enrique Espinosa-Ayala, Héctor Aarón Lee-Rangel, Gabriela Vázquez-Silva, Pablo Benjamín Razo-Ortíz, Cesar Díaz-Galván, José Felipe Orzuna-Orzuna, and María Eugenia de la Torre-Hernández. 2024. "Growth Performance, Rumen Fermentation, and Meat Quality of Finishing Lambs Supplemented with Calcium Propionate or Sodium Propionate" Veterinary Sciences 11, no. 12: 604. https://doi.org/10.3390/vetsci11120604
APA StyleVelázquez-Cruz, L. A., Hernández-García, P. A., Mendoza-Martínez, G. D., Espinosa-Ayala, E., Lee-Rangel, H. A., Vázquez-Silva, G., Razo-Ortíz, P. B., Díaz-Galván, C., Orzuna-Orzuna, J. F., & de la Torre-Hernández, M. E. (2024). Growth Performance, Rumen Fermentation, and Meat Quality of Finishing Lambs Supplemented with Calcium Propionate or Sodium Propionate. Veterinary Sciences, 11(12), 604. https://doi.org/10.3390/vetsci11120604