Short Term Treatment Monitoring of Renal and Inflammatory Biomarkers with Naturally Occurring Leishmaniosis: A Cohort Study of 30 Dogs
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Dogs and Study Design
2.2. Treatment Protocol and Follow-Up
2.3. Sample Collection and Diagnostic Tests
2.4. Sample Size
2.5. Statistical Methods
3. Results
3.1. Clinical, Serological, and Molecular Data as Well as Individual Data at the Time of Diagnosis and Post-Treatment
3.2. Relationship Between Molecular, Inflammatory, and Renal Markers at the Time Diagnosis and Post-Treatment
3.3. Evaluation of Molecular, Inflammatory and Renal Markers Based on Disease Severity
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Baneth, G.; Koutinas, A.F.; Solano-Gallego, L.; Bourdeau, P.; Ferrer, L. Canine leishmaniosis—new concepts and insights on an expanding zoonosis: Part one. Trends Parasitol. 2008, 24, 324–330. [Google Scholar] [CrossRef] [PubMed]
- Solano-Gallego, L.; Morell, P.; Arboix, M.; Alberola, J.; Ferrer, L. Prevalence of Leishmania infantum infection in dogs living in an area of canine leishmaniasis endemicity using PCR on several tissues and serology. J. Clin. Microbiol. 2001, 39, 560–563. [Google Scholar] [CrossRef] [PubMed]
- Solano-Gallego, L.; Miró, G.; Koutinas, A.; Cardoso, L.; Pennisi, M.G.; Ferrer, L.; Bourdeau, P.; Oliva, G.; Baneth, G. LeishVet Guidelines for the practical management of canine leishmaniosis. Parasit. Vectors 2011, 4, 86. [Google Scholar] [CrossRef]
- Roura, X.; Fondati, A.; Lubas, G.; Gradoni, L.; Maroli, M.; Oliva, G.; Paltrinieri, S.; Zatelli, A.; Zini, E. Prognosis and monitoring of leishmaniasis in dogs: A working group report. Vet. J. 2013, 198, 43–47. [Google Scholar] [CrossRef]
- Roura, X.; Cortadellas, O.; Day, M.J.; Benali, S.L.; D’Anna, N.; Fondati, A.; Gradoni, L.; Lubas, G.; Maroli, M.; Paltrinieri, S.; et al. Canine leishmaniosis and kidney disease: Q&A for an overall management in clinical practice. J. Small Anim. Pract. 2021, 62, E1–E19. [Google Scholar] [CrossRef]
- Martinez-Subiela, S.; Tecles, F.; Eckersall, P.D.; Ceron, J.J.; Tedes, F.; Cer6n, J.J. Serum concentrations of acute phase proteins in dogs with leishmaniasis. Vet. Rec. 2002, 150, 241–244. [Google Scholar] [CrossRef]
- Zatelli, A.; Borgarelli, M.; Santilli, R.; Bonfanti, U.; Nigrisoli, E.; Zanatta, R.; Tarducci, A.; Guarraci, A. Glomerular lesions in dogs infected with Leishmania organisms. Am. J. Vet. Res. 2003, 64, 558–561. [Google Scholar] [CrossRef] [PubMed]
- Noli, C.; Auxilia, S.T. Treatment of canine old world visceral leishmaniasis: A systematic review. Vet. Dermatol. 2005, 16, 213–232. [Google Scholar] [CrossRef]
- Ikeda-Garcia, F.A.; Lopes, R.S.; Ciarlini, P.C.; Marques, F.J.; Lima, V.M.F.; Perri, S.H.V.; Feitosa, M.M. Evaluation of renal and hepatic functions in dogs naturally infected by visceral leishmaniasis submitted to treatment with meglumine antimoniate. Res. Vet. Sci. 2007, 83, 105–108. [Google Scholar] [CrossRef]
- Ribeiro, R.R.; Moura, E.P.; Pimentel, V.M.; Sampaio, W.M.; Silva, S.M.; Schettini, D.A.; Alves, C.F.; Melo, F.A.; Tafuri, W.L.; Demicheli, C.; et al. Reduced tissue parasitic load and infectivity to sand flies in dogs naturally infected by Leishmania (Leishmania) chagasi following treatment with a liposome formulation of meglumine antimoniate. Antimicrob. Agents Chemother. 2008, 52, 2564–2572. [Google Scholar] [CrossRef]
- Maia, C.; Campino, L. Biomarkers associated with Leishmania infantum exposure, infection, and disease in dogs. Front. Cell. Infect. Microbiol. 2018, 8, 302. [Google Scholar] [CrossRef] [PubMed]
- Cerón, J.J.; Martinez-Subiela, S.; Ohno, K.; Caldin, M. A seven-point plan for acute phase protein interpretation in companion animals. Vet. J. 2008, 177, 6–7. [Google Scholar] [CrossRef] [PubMed]
- Eckersall, P.D.; Bell, R. Acute phase proteins: Biomarkers of infection and inflammation in veterinary medicine. Vet. J. 2010, 185, 23–27. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Subiela, S.; Strauss-Ayali, D.; Cerón, J.J.; Baneth, G. Acute phase protein response in experimental canine leishmaniosis. Vet. Parasitol. 2011, 180, 197–202. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Subiela, S.; Bernal, L.J.; Cerón, J.J. Serum concentrations of acute-phase proteins in dogs with leishmaniosis during short-term treatment. Am. J. Vet. Res. 2003, 64, 1021–1026. [Google Scholar] [CrossRef]
- Martinez-Subiela, S.; Cerón, J.J.; Strauss-Ayali, D.; Garcia-Martinez, J.D.; Tecles, F.; Tvarijonaviciute, A.; Caldin, M.; Baneth, G. Serum ferritin and paraoxonase-1 in canine leishmaniosis. Comp. Immunol. Microbiol. Infect. Dis. 2014, 37, 23–29. [Google Scholar] [CrossRef]
- Rossi, G.; Ibba, F.; Meazzi, S.; Giordano, A.; Paltrinieri, S. Paraoxonase activity as a tool for clinical monitoring of dogs treated for canine leishmaniasis. Vet. J. 2014, 199, 143–149. [Google Scholar] [CrossRef]
- Daza González, M.A.; Fragío Arnold, C.; Fermín Rodríguez, M.; Checa, R.; Montoya, A.; Portero Fuentes, M.; Rupérez Noguer, C.; Martínez Subiela, S.; Cerón, J.J.; Miró, G. Effect of two treatments on changes in serum acute phase protein concentrations in dogs with clinical leishmaniosis. Vet. J. 2019, 245, 22–28. [Google Scholar] [CrossRef]
- Mateo, M.; Maynard, L.; Vischer, C.; Bianciardi, P.; Miró, G. Comparative study on the short term efficacy and adverse effects of miltefosine and meglumine antimoniate in dogs with natural leishmaniosis. Parasitol. Res. 2009, 105, 155–162. [Google Scholar] [CrossRef]
- Pardo-Marín, L.; Martínez-Subiela, S.; Pastor, J.; Tvarijonaviciute, A.; Garcia-Martinez, J.D.; Segarra, S.; Cerón, J.J. Evaluation of various biomarkers for kidney monitoring during canine leishmaniosis treatment. BMC Vet. Res. 2017, 13, 31. [Google Scholar] [CrossRef]
- de Lima Ruy Dias, A.F.; da Cruz Boa Sorte Ayres, E.; Maruyama, F.H.; Monteiro, B.R.G.; de Freitas, M.S.; do Bom Parto Ferreira de Almeida, A.; Mendonça, A.J.; Sousa, V.R.F. Monitoring of serum and urinary biomarkers during treatment of canine visceral leishmaniasis. Vet. World 2020, 13, 1620. [Google Scholar] [CrossRef] [PubMed]
- Manna, L.; Vitale, F.; Reale, S.; Caracappa, S.; Pavone, L.M.; Morte, R.D.; Cringoli, G.; Staiano, N.; Gravino, A.E. Comparison of different tissue sampling for PCR-based diagnosis and follow-up of canine visceral leishmaniosis. Vet. Parasitol. 2004, 125, 251–262. [Google Scholar] [CrossRef] [PubMed]
- Solano-Gallego, L.; Rodriguez-Cortes, A.; Trotta, M.; Zampieron, C.; Razia, L.; Furlanello, T.; Caldin, M.; Roura, X.; Alberola, J. Detection of Leishmania infantum DNA by Fret-based real-time PCR in urine from dogs with natural clinical leishmaniosis. Vet. Parasitol. 2007, 147, 315–319. [Google Scholar] [CrossRef] [PubMed]
- Martinez, V.; Quilez, J.; Sanchez, A.; Roura, X.; Francino, O.; Altet, L. Canine leishmaniasis: The key for qPCR result interpretation. Parasit. Vectors 2011, 4, 57. [Google Scholar] [CrossRef]
- Silvestrini, P.; Zoia, A.; Planellas, M.; Roura, X.; Pastor, J.; Cerón, J.J.; Caldin, M. Iron status and C-reactive protein in canine leishmaniasis. J. Small Anim. Pract. 2014, 55, 95–101. [Google Scholar] [CrossRef]
- Solano-Gallego, L.; Cardoso, L.; Pennisi, M.G.; Petersen, C.; Bourdeau, P.; Oliva, G.; Miró, G.; Ferrer, L.; Baneth, G. Diagnostic challenges in the Era of canine Leishmania infantum vaccines. Trends Parasitol. 2017, 33, 706–717. [Google Scholar] [CrossRef]
- LeisVet Canine Factsheets 2024 for the Practical Management of Canine Leishmaniosis—LeishVet [Internet]. Available online: https://www.leishvet.org/wp-content/uploads/2024/04/FS-ALIVE24-canine.pdf (accessed on 10 June 2024).
- Evans, T.G.; Vasconcelos, I.A.B.; Lima, J.W.; Teixeira, J.M.; McAullife, I.T.; Lopes, U.G.; Pearson, R.D.; Wilson, A.; Vasconcelos, A.W. Canine visceral leishmaniasis in Northeast Brazil: Assessment of serodiagnostic methods. Am. J. Trop. Med. Hyg. 1990, 42, 118–123. [Google Scholar] [CrossRef] [PubMed]
- Galletti, E.; Bonilauri, P.; Bardasi, L.; Fontana, M.C.; Ramini, M.; Renzi, M.; Dosa, G.; Merialdi, G. Development of a minor groove binding probe based real-time PCR for the diagnosis and quantification of Leishmania infantum in dog specimens. Res. Vet. Sci. 2011, 91, 243–245. [Google Scholar] [CrossRef]
- IRIS Kidney—Guidelines—IRIS Staging of CKD. Available online: http://www.iris-kidney.com/guidelines/staging.html (accessed on 3 February 2022).
- Iarussi, F.; Paradies, P.; Foglia Manzillo, V.; Gizzarelli, M.; Caratozzolo, M.F.; Navarro, C.; Greco, B.; Rubino, G.T.R.; Oliva, G.; Sasanelli, M. Comparison of two dosing regimens of miltefosine, both in combination with allopurinol, on clinical and parasitological findings of dogs with leishmaniosis: A pilot study. Front. Vet. Sci. 2020, 7, 1068. [Google Scholar] [CrossRef]
- Iatta, R.; Carbonara, M.; Morea, A.; Trerotoli, P.; Benelli, G.; Nachum-Biala, Y.; Mendoza-Roldan, J.A.; Cavalera, M.A.; Baneth, G.; Bandi, C.; et al. Assessment of the diagnostic performance of serological tests in areas where Leishmania infantum and Leishmania tarentolae occur in sympatry. Parasit. Vectors 2023, 16, 352. [Google Scholar] [CrossRef]
- Paparcone, R.; Fiorentino, E.; Cappiello, S.; Gizzarelli, M.; Gradoni, L.; Oliva, G.; Manzillo, V.F. Sternal aspiration of bone marrow in dogs: A practical approach for canine leishmaniasis diagnosis and monitoring. J. Vet. Med. 2013, 2013, 217314. [Google Scholar] [CrossRef] [PubMed]
- Forootan, A.; Sjöback, R.; Björkman, J.; Sjögreen, B.; Linz, L.; Kubista, M. Methods to determinelimit of detection and limit of quantification in quantitative real-time PCR (qPCR). Biomol. Detect. Quantif. 2017, 12, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Carne, T.; Scheele, G. Amino acid sequences of transport peptides associated with canine exocrine pancreatic proteins. J. Biol. Chem. 1982, 257, 4133–4140. [Google Scholar] [CrossRef]
- Hudson, E.B.; Strombeck, D.R. Effects of functional nephrectomy on the disappearance rates of canine serum amylase and lipase. Am. J. Vet. Res. 1978, 39, 1316–1321. [Google Scholar] [PubMed]
- Jacobs, R.M. Renal Disposition of amylase, lipase, and lysozyme in the dog. Vet. Pathol. 1988, 25, 443–449. [Google Scholar] [CrossRef]
- Green, R.A. Pathophysiology of antithrombin III deficiency. Vet. Clin. N. Am. Small Anim. Pract. 1988, 18, 95–104. [Google Scholar] [CrossRef]
- Honse, C.O.; Figueiredo, F.B.; de Alencar, N.X.; de Fátima Madeira, M.; Gremião, I.D.F.; Schubach, T.M.P. Disseminated intravascular coagulation in a dog naturally infected by Leishmania (Leishmania) chagasi from Rio de Janeiro—Brazil. BMC Vet. Res. 2013, 9, 43. [Google Scholar] [CrossRef]
- Corpas-López, V.; Merino-Espinosa, G.; Acedo-Sánchez, C.; Díaz-Sáez, V.; Morillas-Márquez, F.; Martín-Sánchez, J. Hair parasite load as a new biomarker for monitoring treatment response in canine leishmaniasis. Vet. Parasitol. 2016, 223, 20–25. [Google Scholar] [CrossRef]
- Lombardo, G.; Pennisi, M.G.; Lupo, T.; Migliazzo, A.; Caprì, A.; Solano-Gallego, L. Detection of Leishmania infantum DNA by real-time PCR in canine oral and conjunctival swabs and comparison with other diagnostic techniques. Vet. Parasitol. 2012, 184, 10–17. [Google Scholar] [CrossRef]
- Belinchón-Lorenzo, S.; Iniesta, V.; Parejo, J.C.; Fernández-Cotrina, J.; Muñoz-Madrid, R.; Soto, M.; Alonso, C.; Gómez Nieto, L.C. Detection of Leishmania infantum kinetoplast minicircle DNA by real time PCR in hair of dogs with leishmaniosis. Vet. Parasitol. 2013, 192, 43–50. [Google Scholar] [CrossRef]
- Merino-Espinosa, G.; Corpas-López, V.; Díaz-Sáez, V.; Morillas-Márquez, F.; Tercedor-Sánchez, J.; Azaña-Defez, J.M.; López-Hidalgo, J.; Aneiros-Fernández, J.; Martín-Sánchez, J. Cutaneous leishmaniasis by Leishmania infantum: Behind granulomatous lesions of unknown aetiology. J. Eur. Acad. Dermat. Venereol. 2018, 32, 117–124. [Google Scholar] [CrossRef] [PubMed]
- Miró, G.; Petersen, C.; Cardoso, L.; Bourdeau, P.; Baneth, G.; Solano-Gallego, L.; Pennisi, M.G.; Ferrer, L.; Oliva, G. Novel areas for prevention and control of canine leishmaniosis. Trends Parasitol. 2017, 33, 718–730. [Google Scholar] [CrossRef] [PubMed]
- Morales-Yuste, M.; Martín-Sánchez, J.; Corpas-Lopez, V. Canine leishmaniasis: Update on epidemiology, diagnosis, treatment, and prevention. Vet. Sci. 2022, 9, 387. [Google Scholar] [CrossRef]
- Miró, G.; Cardoso, L.; Pennisi, M.G.; Oliva, G.; Baneth, G. Canine leishmaniosis—new concepts and insights on an expanding zoonosis: Part two. Trends Parasitol. 2008, 24, 371–377. [Google Scholar] [CrossRef]
- Mathis, A.; Deplazes, P. PCR and in vitro cultivation for detection of Leishmania spp. in diagnostic samples from humans and dogs. J. Clin. Microbiol. 1995, 33, 1145–1149. [Google Scholar] [CrossRef]
- Reale, S.; Maxia, L.; Vitale, F.; Glorioso, N.S.; Caracappa, S.; Vesco, G. Detection of Leishmania infantum in dogs by PCR with lymph node aspirates and blood. J. Clin. Microbiol. 1999, 37, 2931. [Google Scholar] [CrossRef]
- Solano-Gallego, L.; Montserrrat-Sangrà, S.; Ordeix, L.; Martínez-Orellana, P. Leishmania infantum-specific production of IFN-γ and IL-10 in stimulated blood from dogs with clinical leishmaniosis. Parasit. Vectors 2016, 9, 317. [Google Scholar] [CrossRef]
- Sanchez, M.A.; Diaz, N.L.; Zerpa, O.; Negron, E.; Convit, J.; Tapia, F.J. Organ-specific immunity in canine visceral leishmaniasis: Analysis of symptomatic and asymptomatic dogs naturally infected with Leishmania chagasi. Am. J. Trop. Med. Hyg. 2004, 70, 618–624. [Google Scholar] [CrossRef] [PubMed]
- Momo, C.; Jacintho, A.P.P.; Moreira, P.R.R.; Munari, D.P.; Machado, G.F.; Vasconcelos, R.D.O. Morphological changes in the bone marrow of the dogs with visceral leishmaniasis. Vet. Med. Int. 2014, 2014, 150582. [Google Scholar] [CrossRef]
- Quaresma, P.F.; Murta, S.M.F.; de Castro Ferreira, E.; da Rocha-Lima, A.C.V.M.; Xavier, A.A.P.; Gontijo, C.M.F. Molecular diagnosis of canine visceral leishmaniasis: Identification of Leishmania species by PCR-RFLP and quantification of parasite DNA by real-time PCR. Acta Trop. 2009, 111, 289–294. [Google Scholar] [CrossRef]
- Miró, G.; Oliva, G.; Cruz, I.; Cañavate, C.; Mortarino, M.; Vischer, C.; Bianciardi, P. Multicentric, controlled clinical study to evaluate effectiveness and safety of miltefosine and allopurinol for canine leishmaniosis. Vet. Dermatol. 2009, 20, 397–404. [Google Scholar] [CrossRef] [PubMed]
- Baneth, G.; Shaw, S.E. Chemotherapy of canine leishmaniosis. Vet. Parasitol. 2002, 106, 315–324. [Google Scholar] [CrossRef] [PubMed]
- Giunchetti, R.C.; Silveira, P.; Resende, L.A.; Leite, J.C.; Melo-Júnior, O.A.d.O.; Rodrigues-Alves, M.L.; Costa, L.M.; Lair, D.F.; Chaves, V.R.; Soares, I.d.S.; et al. Canine visceral leishmaniasis biomarkers and their employment in vaccines. Vet. Parasitol. 2019, 271, 87–97. [Google Scholar] [CrossRef] [PubMed]
- Manna, L.; Reale, S.; Picillo, E.; Vitale, F.; Gravino, A.E. Interferon-Gamma (IFN-Gamma), IL4 expression levels and Leishmania DNA load as prognostic markers for monitoring response to treatment of leishmaniotic dogs with miltefosine and allopurinol. Cytokine 2008, 44, 288–292. [Google Scholar] [CrossRef]
- Martínez-Orellana, P.; Marí-Martorell, D.; Montserrat-Sangrà, S.; Ordeix, L.; Baneth, G.; Solano-Gallego, L. Leishmania infantum-specific IFN-γ production in stimulated blood from dogs with linical Lleishmaniosis at diagnosis and during treatment. Vet. Parasitol. 2017, 248, 39–47. [Google Scholar] [CrossRef] [PubMed]
- Solano-Gallego, L.; Koutinas, A.; Miró, G.; Cardoso, L.; Pennisi, M.G.; Ferrer, L.; Bourdeau, P.; Oliva, G.; Baneth, G. Directions for the diagnosis, clinical staging, treatment and prevention of canine leishmaniosis. Vet. Parasitol. 2009, 165, 1–18. [Google Scholar] [CrossRef]
- Franceschi, A.; Merildi, V.; Guidi, G.; Mancianti, F. Short Communication occurrence of Leishmania DNA in urines of dogs naturally infected with leishmaniasis. Vet. Res. Commun. 2007, 31, 335–341. [Google Scholar] [CrossRef]
- Manna, L.; Reale, S.; Picillo, E.; Vitale, F.; Gravino, A.E. Urine sampling for real-time polymerase chain reaction-based diagnosis of canine leishmaniasis. J. Vet. Diagn. Investig. 2008, 20, 64–67. [Google Scholar] [CrossRef] [PubMed]
- Daza González, M.A.; Miró, G.; Fermín Rodríguez, M.; Rupérez Noguer, C.; Fragío Arnold, C. Short term impacts of meglumine antimoniate treatment on kidney function in dogs with clinical leishmaniosis. Res. Vet. Sci. 2019, 126, 131–138. [Google Scholar] [CrossRef]
- Abranches, P.; Silva-Pereira, M.C.D.; Conceicao-Silva, F.M.; Santos-Gomes, G.M.; Janz, J.G. Canine leishmaniasis: Pathological and ecological factors influencing transmission of infection. J. Parasitol. 1991, 77, 557–561. [Google Scholar] [CrossRef]
- Reis, A.B.; Martins-Filho, O.A.; Teixeira-Carvalho, A.; Carvalho, M.G.; Mayrink, W.; França-Silva, J.C.; Giunchetti, R.C.; Genaro, O.; Corrêa-Oliveira, R. Parasite density and impaired biochemical/hematological status are associated with severe clinical aspects of canine visceral leishmaniasis. Res Vet. Sci. 2006, 81, 68–75. [Google Scholar] [CrossRef] [PubMed]
- Alvar, J.; Cañavate, C.; Molina, R.; Moreno, J.; Nieto, J. Canine leishmaniasis. Adv. Parasitol. 2004, 57, 1–88. [Google Scholar] [CrossRef] [PubMed]
- Pinelli, E.; Killick-Kendrick, R.; Wagenaar, J.; Bernadina, W.; Del Real, G.; Ruitenberg, J. Cellular and humoral immune responses in dogs experimentally and naturally infected with Leishmania infantum. Infect. Immun. 1994, 62, 229–235. [Google Scholar] [CrossRef] [PubMed]
- Shiferaw, E.; Murad, F.; Tigabie, M.; Abebaw, M.; Alemu, T.; Abate, S.; Mohammed, R.; Yeshanew, A.; Tajebe, F. Hematological profiles of visceral leishmaniasis patients before and after treatment of anti-leishmanial drugs at University of Gondar Hospital; Leishmania research and treatment center Northwest, Ethiopia. BMC Infect. Dis. 2021, 21, 1005. [Google Scholar] [CrossRef]
- Varma, N.; Naseem, S. Hematologic changes in visceral leishmaniasis/Kala Azar. Indian J. Hematol. Blood Transfus. 2010, 26, 78–82. [Google Scholar] [CrossRef]
- Veiga, J.P.R.; Khanam, R.; Rosa, T.T.; Junqueira, L.F.; Brant, P.C.; Raick, A.N.; Friedman, H.; Marsden, P.D. Pentavalent antimonial nephrotoxicity in the rat. Rev. Inst. Med. Trop. Sao Paulo 1990, 32, 304–309. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Subiela, S.; Pardo-Marín, L.; Tecles, F.; Baneth, G.; Cerón, J.J. Serum C-reactive protein and ferritin concentrations in dogs undergoing leishmaniosis treatment. Res. Vet. Sci. 2016, 109, 17–20. [Google Scholar] [CrossRef] [PubMed]
- Ceron, J.J.; Pardo-Marin, L.; Caldin, M.; Furlanello, T.; Solano-Gallego, L.; Tecles, F.; Bernal, L.; Baneth, G.; Martinez-Subiela, S. Use of acute phase proteins for the clinical assessment and management of canine leishmaniosis: General recommendations. BMC Vet. Res. 2018, 14, 196. [Google Scholar] [CrossRef]
- Panaro, M.A.; Lisi, S.; Mitolo, V.; Acquafredda, A.; Fasanella, A.; Carelli, M.G.; Brandonisio, O. Evaluation of killing, superoxide anion and nitric oxide production by Leishmania infantum-infected dog monocytes. Cytobios 1998, 95, 151–160. [Google Scholar]
- Paltrinieri, S.; Ravicini, S.; Rossi, G.; Roura, X. Serum concentrations of the derivatives of reactive oxygen metabolites (d-ROMs) in dogs with leishmaniosis. Vet. J. 2010, 186, 393–395. [Google Scholar] [CrossRef]
Variables | Diagnosis | Post-Treatment | p-Value | Effect Size |
---|---|---|---|---|
(Reference Interval) | (95% CI) | |||
BM Leishmania-q-PCR (K copies/mL) | ||||
(0–100) | 57,600,000 | 15,560 | <0.001 | 113 × 106 |
(27,560–[684 × 107]) | (0–[223 × 107]) | (431 × 105; 499 × 106) | ||
Blood Leishmania-q- PCR (K copies/mL) | ||||
(0–100) | 40,100 | 0 | <0.001 | 539,667 |
(0–16,500,000) | (0–16,200) | (76,450; 1,945,050) | ||
Urine Leishmania-q- PCR (K copies/mL) | ||||
(0–100) | 0 | 0 | 0.01 | 97,750 |
(0–4,880,000) | (0–193,000) | (6780; 2,441,470) | ||
WBC (cells/μL) | ||||
(5410–12,590) | 7535 | 9595 | 0.01 | −1.83 |
(2650–16,900) | (3000–25,230) | (−3.61; −0.36) | ||
PON-1 (IU/L) | ||||
(2.52–5.1) | 3.42 | 4.01 | 0.02 | −0.572 |
(1.9–6.21) | (2.42–7.2) | (−1.048; −0.096) | ||
Hp (mg/dL) | ||||
(2–165) | 163 | 110.5 | 0.11 | 39.967 |
(1–533) | (1–617) | (−10.27; 90.21) | ||
Ft (ng/mL) | ||||
(80–272) | 689 | 285 | <0.001 | 470 |
(183–4860) | (128–587) | (297.0; 701.5) | ||
CRP (mg/dL) | ||||
(0.001–0.4) | 1.34 | 0.19 | 0.02 | 1.2422 |
(0.01–7.56) | (0.01–13.73) | (0.209; 2.520) | ||
TIBC (μL/dL) | ||||
(336–424) | 298.4 ± 80.4 | 317.8 ± 155 | 0.03 | −19.47 |
(−37.11; −1.82) | ||||
Iron (μL/dL) | ||||
(95–213) | 112.1 ± 58.7 | 116.6 ± 61.8 | 0.07 | −4.57 |
(−28.56; 19.43) | ||||
Alb (g/dL) | ||||
(2.9–3.5) | 2.55 ± 0.6 | 2.7 ± 0.5 | 0.15 | −0.117 |
(−0278; 0.044) | ||||
Glob (g/dL) | ||||
(2.8–3.9) | 4.4 | 3.6 | <0.001 | 1.05 |
(2.4–9.4) | (2.5–5.9) | (0.649; 1.749) | ||
Fb (mg/dL) | ||||
(184–313) | 363 ± 152.4 | 323.8 ± 146.8 | 0.17 | 39.17 |
(−17.29; 95.63) | ||||
AT (%) | ||||
(103–138) | 108.4 ± 26.5 | 126.3 ± 25.7 | <0.002 | −17.93 |
(−27.86; −8.01) | ||||
Urea (mg/dL) | ||||
(20–48) | 31.5 | 28.5 | 0.38 | 3.00 |
(14–331) | (19–224) | (−3.00; 19.00) | ||
Cr (mg/dL) | ||||
(0.7–1.4) | 0.86 | 1 | 0.15 | 0.085 |
(0.34–5.77) | (0.41–4.83) | (−0.015; 0.355) | ||
SDMA (μL/dL) | ||||
(0–15) | 12.5 | 14 | 0.71 | −0.499 |
(−1.5; 2.0) | ||||
USG | ||||
(1010–1051) | 1035 | 1029 | 0.008 | 8.99 |
(1014–1063) | (1004–1053) | (3.50; 13.00) | ||
UPC | ||||
(0.1–0.5) | 0.7 | 0.4 | 0.02 | 0.90 |
(0.1–27.7) | (0.1–16.20) | (0.15; 2.49) | ||
FeNa (%) | ||||
(0.1–1.0) | 0.26 | 0.48 | 0.07 | −0.155 |
(0.002–3.43) | (0.04–4.74) | (−0.359; 0.029) | ||
uAm/Cr | ||||
(0.1–4.5) | 98.5 | 5.6 | <0.001 | 186.85 |
(0.4–3700) | (0.4–2154) | (47.65; 660.45) | ||
uG/Cr | ||||
(2.0–8.5) | 4.7 | 4.2 | 0.79 | 0.199 |
(1.7–132.5) | (0.1–188.5) | (−1.349; 1.249) | ||
uGGT/Cr | ||||
(13–22) | 49.7 | 40.05 | 0.02 | 12.45 |
(3.5–214) | (3.8–122.8) | (2.25; 25.25) | ||
uFerr/Cr | ||||
(0–25) | 27.5 | 20.5 | 0.93 | 0.499 |
(0.1–429) | (0.1–300) | (−6.499; 13:00) |
Variables | Group 1 | Group 2 | Difference at Diagnosis Between Groups | ||||
---|---|---|---|---|---|---|---|
Diagnosis | Post-tx | p-Value ES (95% CI) | Diagnosis | Post-tx | p-Value ES (95% CI) | p-Value ES (95% CI) | |
WBC | |||||||
(cells/μL) | |||||||
Median | 7850 | 9190 | 0.30 | 6900 | 10,130 | 0.02 | 0.41 |
IQR | (300–16,900) | (5990–24,900) | −1.31 | (2650–14,170) | (3000–5230) | −2.37 | 0.71 |
(−4.19; 1.16) | (−4.98; −0.51) | (−2.299; 3.039) | |||||
PON-1 | |||||||
(IU/L) | |||||||
Median | 3.7 | 3.93 | 0.80 | 3.04 | 4.39 | 0.002 | 0.02 |
IQR | (2.2–6.2) | (2.9–6.3) | −0.07 | (1.9–4.2) | (2.4–7.1) | −1.06 | 0.649 |
(−0.84; 0.56) | (−1.86; −0.45) | (0.07; 1.34) | |||||
Hp | |||||||
(mg/dL) | |||||||
Median | 172 | 115 | 0.92 | 138 | 91 | 0.08 | 0.90 |
IQR | (1–533) | (1–617) | −3.5 | (1–341) | (1–269) | 66.0 | 6.99 |
(−72.0; 89.5) | (−11.9; 156.5) | (−91.9; 128.9) | |||||
Ft | |||||||
(ng/mL) | |||||||
Median | 651 | 240 | <0.001 | 813 | 303 | <0.001 | 0.31 |
IQR | (183–2916) | (159–523) | 401.5 | (266–4860) | (128–579) | 536.5 | −170.9 |
(176; 708) | (256.5; 1054.5 | (−555.9; 182.0) | |||||
CRP | |||||||
(mg/dL) | |||||||
Median | 0.24 | 0.01 | 0.28 | 3.78 | 0.22 | 0.044 | 0.006 |
IQR | (0.01–2.7) | (0.01–2.6) | 0.38 | (0.01–7.6) | (0.01–13.7) | 2.75 | −2.53 |
(−0.56; 1.15) | (0.095; 4.77 | (−4.79; −0.76) | |||||
TIBC | |||||||
(μL/dL) | |||||||
Mean | 342.5 | 344.5 | 0.55 | 254.7 | 291.1 | 0.01 | 0.003 |
SD | ±58.3 | ±51.9 | −5.78 | ±76.7 | ±76.8 | −34.5 | 83.99 |
(−25.0; 26.0) | (−62.0; 12.5) | (25.00; 148.00) | |||||
Iron | |||||||
(μL/dL) | |||||||
Mean | 132.1 | 133.9 | 0.80 | 92.1 | 99.3 | 0.41 | 0.05 |
SD | ±60.6 | ±64.5 | −2.75 | ±51.1 | ±55.7 | −15.22 | 37.99 |
(−40.5; 33.5) | (−45.5; 19.9) | (−1.99; 72.99) | |||||
Alb | |||||||
(g/dL) | |||||||
Mean | 2.83 | 2.89 | 0.43 | 2.26 | 2.43 | 0.18 | 0.01 |
SD | ±0.5 | ±0.5 | −0.15 | ±0.6 | ±0.5 | −0.19 | 0.59 |
(−0.39; 0.29) | (−0.49; 0.05) | (0.10; 1.00) | |||||
Glob | |||||||
(g/dL) | |||||||
Mean | 4.1 | 3.5 | 0.002 | 5.3 | 4.3 | 0.002 | 0.31 |
SD | ±1.56 | ±0.66 | 0.70 | ±1.92 | ±0.76 | 1.40 | −0.60 |
(0.35; 1.75) | (0.60; 2.20) | (−2.29; 0.50) | |||||
Fb | |||||||
(mg/dL) | |||||||
Mean | 299.9 | 289 | 0.64 | 426.1 | 358.7 | 0.18 | 0.04 |
SD | ±100.5 | ±112.7 | 14 | ±171.7 | ±171.3 | 73.5 | −110 |
(−46; 73) | (−46.0; 184.9) | (−240.9; −1.00) | |||||
AT | |||||||
(%) | |||||||
Mean | 122.5 | 137.7 | 0.007 | 94.2 | 114.9 | 0.03 | 0.003 |
SD | ±19.2 | ±24.3 | −13.9 | ±25.6 | ±22.4 | −23 | 34.0 |
(−26.0; −4.5) | (−40; −3) | (15.99; 47.99) |
Variables | Group 1 | Group 2 | Difference at Diagnosis Between Groups | ||||
---|---|---|---|---|---|---|---|
Diagnosis | Post-tx | p-Value ES (95% CI) | Diagnosis | Post-tx | p-Value ES (95% CI) | p-Value ES (95% CI) | |
Leishmania-q-PCR K copies/mL | |||||||
BM | |||||||
Median | 3,920,000 | 0 | <0.001 | 84,800,000 | 55,600 | <0.001 | 0.65 |
IQR | (27,560–[684 × 107]) | (0–[223 × 107]) | 757 × 105 | (34,000–[226 × 107]) | (0–[200 × 106]) | 373 × 106 | −9,640,000 |
(104 × 105; 279.3 × 106) | (148 × 105; 867 × 106) | (−651 × 106; 392 × 105) | |||||
Blood | |||||||
Median | 0 | 0 | 0.02 | 111,000 | 0 | 0.003 | 0.03 |
IQR | (0–[159 × 104]) | (0–[162 × 103]) | 68,276.4 | (0–[165 × 105]) | (0–24,900) | 651,990 | −85,000 |
(24,950; 1,110,500) | (98,000; 8,250,278) | (−100 × 104; −398 × 103) | |||||
Urine | |||||||
Median | 0 | 0 | 1 | 2940 | 0 | 0.009 | <0.001 |
IQR | 0 | (0–272) | −272 | (0–[488 × 104]) | (0–[193 × 103]) | 128,000 | −2940 |
(9180; 245 × 104) | (−128 × 104; −563 × 104) |
Variables | Group 1 | Group 2 | Difference at Diagnosis Between Groups | ||||
---|---|---|---|---|---|---|---|
Diagnosis | Post-tx | p-Value ES (95% CI) | Diagnosis | Post-tx | p-Value ES (95% CI) | p-Value ES (95% CI) | |
Urea | |||||||
(mg/dL) | |||||||
Median | 26 | 27 | 0.91 | 45 | 40 | 0.29 | 0.02 |
IQR | (14–39) | (19–41) | 0.49 | (15–331) | (21–224) | 16.6 | −20.99 |
(−3.9; 5.0) | (−7.5;51.9) | (−83.99; −3.00) | |||||
Cr | |||||||
(mg/dL) | |||||||
Median | 0.83 | 0.94 | 0.93 | 1.540 | 1 | 0.09 | 0.13 |
IQR | (0.5–1.3) | (0.4–1.1) | −0.005 | (0.3–5.8) | (0.6–4.8) | 0.37 | −0.59 |
(−0.09; 0.11) | (−0.01; 0.79) | (−1200; 0.079) | |||||
SDMA | |||||||
(μl/dL) | |||||||
Median | 12 | 11 | 0.421 | 151 | 7 | 0.81 | 0.02 |
IQR | (5–20) | (10–16) | −0.5 | (9–51) | (11–44.1) | 0.99 | −4.0 |
(−2.5; 1.5) | (−2.49; 4.25) | (−11.0; −0.99) | |||||
USG | |||||||
Median | 1040 | 1038 | 0.26 | 1029 | 1017 | 0.008 | 0.15 |
IQR | (1014–1063) | (1019–1048) | 6.0 | (1015–1063) | (1004–1053) | 11.49 | 9.0 |
(−4.9; 11.9) | (5.49; 17.0) | (−2.99; 18.99) | |||||
UPC | |||||||
Median | 0.4 | 0.3 | 0.67 | 2.5 | 0.8 | 0.01 | <0.001 |
IQR | (0.1–1.0) | (0.1–2.0) | 0.09 | (0.3–27.7) | (0.1–16.2) | 219 | −2.1 |
(−0.75; 0.49) | (0.5; 4.3) | (−7.09; −1.00) | |||||
FeNa | |||||||
(%) | |||||||
Median | 0.28 | 0.5 | 0.25 | 0.25 | 0.47 | 0.18 | 0.88 |
IQR | (0.05–1.03) | (0.04–1.2) | −0.115 | (0.02–3.4) | (0.1–4.7) | −0.235 | 0.02 |
(−0.32; 0.07) | (−0.75; 0.19) | (−0.36; 0.19) | |||||
uAm/Cr | |||||||
Median | 7.7 | 2.4 | 0.02 | 611.6 | 68.3 | 0.003 | <0.001 |
IQR | (0.6–282.7) | (0.4–164.7) | 5.0 | (0.4–3700) | (2–2154.5) | 604.77 | −603.9 |
(191.0; 937.5) | (−1482,2; −201.2) | ||||||
uG/Cr | |||||||
Median | 4.6 | 4.2 | 0.97 | 5.1 | 4 | 0.63 | 0.72 |
IQR | (2.8–11.5) | (3–48.5) | 0.05 | (1.7–132.5) | (0.1–188.5) | 0.31 | −0.19 |
(−1.65; 1.15) | (−2.69; 3.15) | (−1.49; 1.59) | |||||
uGGT/Cr | |||||||
Median | 41.2 | 38.2 | 0.29 | 72.1 | 41.9 | 0.15 | 0.11 |
IQR | (12.6–214) | (5.3–122.8) | 12.9 | (3.5–153.4) | (3.8–107.2) | 14.2 | −11.5 |
(−7.5; 32.65) | (−7.2; 34.2) | (−46.9; 15.6) | |||||
uFerr/Cr | |||||||
Median | 12 | 11 | 0.71 | 31 | 35 | 0.79 | 0.03 |
IQR | (0–321) | (0–40) | 2.33 | (2–429) | (1–300) | −2.5 | −19.9 |
(−3.49; 17.5) | (−21.0; 20.9) | (−33.9; −2.0) |
Variables | AUC (95%CI) | p-Value | k | Se, Sp |
---|---|---|---|---|
uAm/Cr | 0.87 (0.72–1.0) | <0.001 | 150.8 | 80%, 87% |
TIBC | 0.82 (0.67–0.98) | 0.001 | 307.5 | 80%, 80% |
AT | 0.82 (0.66–0.99) | 0.001 | 110 | 80%, 87% |
Urine Leishmania q-PCR | 0.80 (0.67–0.93) | <0.001 | 930 | 60%, 100% |
CRP | 0.80 (0.62–0.97) | 0.003 | 1.5 | 73%, 80% |
Alb | 0.77 (0.59–0.94) | 0.006 | 2.45 | 67%, 80% |
Urea | 0.76 (0.57–0.95) | 0.008 | 42 | 53%, 100% |
SDMA | 0.76 (0.58–0.93) | 0.008 | 13.5 | 67%, 73% |
PON-1 | 0.75 (0.57–0.93) | 0.009 | 3.48 | 67%, 80% |
uFerr/Cr | 0.74 (0.56–0.92) | 0.01 | 20 | 80%, 67% |
Blood Leishmania q-PCR | 0.73 (0.55–0.91) | 0.01 | 57,600 | 67%, 80% |
Fb | 0.72 (0.55–0.91) | 0.02 | 350 | 67%, 73% |
Glob | 0.61 (0.40–0.82) | 0.15 | 6 | 47%, 87% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pantaleo, V.; Furlanello, T.; Campigli, M.; Ventura, L.; Solano-Gallego, L. Short Term Treatment Monitoring of Renal and Inflammatory Biomarkers with Naturally Occurring Leishmaniosis: A Cohort Study of 30 Dogs. Vet. Sci. 2024, 11, 517. https://doi.org/10.3390/vetsci11110517
Pantaleo V, Furlanello T, Campigli M, Ventura L, Solano-Gallego L. Short Term Treatment Monitoring of Renal and Inflammatory Biomarkers with Naturally Occurring Leishmaniosis: A Cohort Study of 30 Dogs. Veterinary Sciences. 2024; 11(11):517. https://doi.org/10.3390/vetsci11110517
Chicago/Turabian StylePantaleo, Valeria, Tommaso Furlanello, Michela Campigli, Laura Ventura, and Laia Solano-Gallego. 2024. "Short Term Treatment Monitoring of Renal and Inflammatory Biomarkers with Naturally Occurring Leishmaniosis: A Cohort Study of 30 Dogs" Veterinary Sciences 11, no. 11: 517. https://doi.org/10.3390/vetsci11110517
APA StylePantaleo, V., Furlanello, T., Campigli, M., Ventura, L., & Solano-Gallego, L. (2024). Short Term Treatment Monitoring of Renal and Inflammatory Biomarkers with Naturally Occurring Leishmaniosis: A Cohort Study of 30 Dogs. Veterinary Sciences, 11(11), 517. https://doi.org/10.3390/vetsci11110517