Balance Assessment on a Modified Posturomed Platform in Healthy Dogs
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Dogs
2.2. Canine Posturomed Balance Platform Prototype
2.3. Static and Dynamic Balance Analysis
2.4. Data Analysis
2.5. Statistical Analysis
3. Results
3.1. Dogs
3.2. Acclimatization and Trial Duration
3.3. Center of Pressure (COP) Parameters
3.3.1. Static Condition
3.3.2. Dynamic Condition
3.3.3. Comparison between Static and Dynamic Conditions
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Horak, F.B. Clinical assessment of balance disorders. Gait Posture 1997, 6, 76–84. [Google Scholar] [CrossRef]
- Huxham, F.E.; Goldie, P.A.; Patla, A.E. Theoretical considerations in balance assessment. Aust. J. Physiother. 2001, 47, 89–100. [Google Scholar] [CrossRef]
- Mergner, T.; Rosemeier, T. Interaction of vestibular, somatosensory and visual signals for postural control and motion perception under terrestrial and microgravity conditions—A conceptual model. Brain Res. Rev. 1998, 28, 118–135. [Google Scholar] [CrossRef]
- Maurer, C.; Peterka, R.J. A new interpretation of spontaneous sway measures based on a simple model of human postural control. J. Neurophysiol. 2005, 93, 189–200. [Google Scholar] [CrossRef]
- Pavol, M.J. Detecting and understanding differences in postural sway. Focus on “A new interpretation of spontaneous sway measures based on a simple model of human postural control”. J. Neurophysiol. 2005, 93, 20–21. [Google Scholar] [CrossRef]
- Bakker, J.; Donath, L.; Rein, R. Balance training monitoring and individual response during unstable vs. stable balance Exergaming in elderly adults: Findings from a randomized controlled trial. Exp. Gerontol. 2020, 139, 111037. [Google Scholar] [CrossRef]
- DiStefano, L.J.; Clark, M.A.; Padua, D.A. Evidence supporting balance training in healthy individuals: A systemic review. J. Strength. Cond. Res. 2009, 23, 2718–2731. [Google Scholar] [CrossRef]
- Granacher, U.; Muehlbaue, T.; Zahner, L.; Gollhofer, A.; Kressig, R.W. Comparison of traditional and recent approaches in the promotion of balance and strength in older adults. Sports Med. 2011, 41, 377–400. [Google Scholar] [CrossRef]
- Mancini, M.; Horak, F.B. The relevance of clinical balance assessment tools to differentiate balance deficits. Eur. J. Phys. Rehabil. Med. 2010, 46, 239. [Google Scholar] [PubMed]
- Tinetti, M.E. Performance-oriented assessment of mobility problems in elderly patients. J. Am. Geriatr. Soc. 1986, 34, 119–126. [Google Scholar] [CrossRef] [PubMed]
- Berg, K. Measuring Balance in the Elderly: Development and Validation of an Instrument. Ph.D. Thesis, McGill University, Montreal, QC, Canada, 1992. [Google Scholar]
- Mathias, S.; Nayak, U.; Isaacs, B. Balance in elderly patients: The “get-up and go” test. Arch. Phys. Med. Rehabil. 1986, 67, 387–389. [Google Scholar] [PubMed]
- Blum, L.; Korner-Bitensky, N. Usefulness of the Berg Balance Scale in stroke rehabilitation: A systematic review. J. Phys. Ther. 2008, 88, 559–566. [Google Scholar] [CrossRef] [PubMed]
- McGuine, T.; Greene, J.; Best, T.; Leverson, G. Balance As a Predictor of Ankle Injuries in High School Basketball Players. Clin. J. Sport. Med. 2000, 10, 239–244. [Google Scholar] [CrossRef] [PubMed]
- Bockstahler, B.; Wittek, K.; Levine, D.; Maierl, J.; Millis, D.L. Essential Facts of Physical Medicine, Rehabilitation and Sports Medicine in Companion Animals; VBS GmbH Germany: Munich, Germany, 2019. [Google Scholar]
- Boström, A.F.; Hyytiäinen, H.K.; Koho, P.; Cizinauskas, S.; Hielm-Björkman, A.K. Development of the Finnish neurological function testing battery for dogs and its intra-and inter-rater reliability. Acta Vet. Scand. 2018, 60, 56. [Google Scholar] [CrossRef]
- Farr, B.D.; Ramos, M.T.; Otto, C.M. The penn vet working dog center fit to work program: A formalized method for assessing and developing foundational canine physical fitness. Front. Vet. Sci. 2020, 7, 470. [Google Scholar] [CrossRef]
- Farr, B.; Gabrysiak, J.; Traylor, R.; Zayas, S.; Ramos, M.; Mallikarjun, A.; Otto, C. Functional measurement of canine muscular fitness: Refinement and reliability of the Penn Vet Working Dog Center Sprint Test. Front. Vet. Sci. 2023, 10, 1217201. [Google Scholar] [CrossRef]
- Baltzer, W.I.; Owen, R.; Bridges, J. Survey of handlers of 158 police dogs in New Zealand: Functional assessment and canine orthopedic index. Front. Vet. Sci. 2019, 6, 85. [Google Scholar] [CrossRef]
- Horak, F.B.; Wrisley, D.M.; Frank, J. The balance evaluation systems test (BESTest) to differentiate balance deficits. Phys. Ther. 2009, 89, 484–498. [Google Scholar] [CrossRef]
- Lord, S.R.; Clark, R.D. Simple physiological and clinical tests for the accurate prediction of falling in older people. Gerontol. 1996, 42, 199–203. [Google Scholar] [CrossRef]
- Nardone, A.; Grasso, M.; Schieppati, M. Balance control in peripheral neuropathy: Are patients equally unstable under static and dynamic conditions? Gait Posture 2006, 23, 364–373. [Google Scholar] [CrossRef]
- Visser, J.E.; Carpenter, M.G.; van der Kooij, H.; Bloem, B.R. The clinical utility of posturography. Clin. Neurophysiol. 2008, 119, 2424–2436. [Google Scholar] [CrossRef] [PubMed]
- Park, D.-S.; Lee, G. Validity and reliability of balance assessment software using the Nintendo Wii balance board: Usability and validation. J. Neuroeng. Rehabil. 2014, 11, 99. [Google Scholar] [CrossRef]
- Llorens, R.; Latorre, J.; Noé, E.; Keshner, E.A. Posturography using the Wii Balance Board™: A feasibility study with healthy adults and adults post-stroke. Gait Posture 2016, 43, 228–232. [Google Scholar] [CrossRef]
- Schmidt, D.; Germano, A.M.C.; Milani, T.L.; McCrory, J.L. Aspects of Dynamic Balance Responses: Inter- and Intra-Day Reliability. PLoS ONE 2015, 10, e0136551. [Google Scholar] [CrossRef]
- Kalron, A.; Achiron, A. Postural control, falls and fear of falling in people with multiple sclerosis without mobility aids. J. Neurol. Sci. 2013, 335, 186–190. [Google Scholar] [CrossRef]
- Zemková, E.; Kováciková, Z.; Jelen, M.; Svoboda, Z.; Janura, M. Methodological issues of dynamic posturography specific to the velocity and the displacement of the platform perturbation. Proc. From Res. Pract. Sport 2015, 1–10. [Google Scholar]
- Zemková, E.; Kováčiková, Z.; Jeleň, M.; Neumannová, K.; Janura, M. Postural and trunk responses to unexpected perturbations depend on the velocity and direction of platform motion. Physiol. Res. 2016, 65, 769–776. [Google Scholar] [CrossRef]
- Müller, O.; Günther, M.; Krauß, I.; Horstmann, T. Physical Characterization of the Therapeutic Device Posturomed as a Measuring Device—Presentation of a Procedure to Characterize Balancing Ability. Biomed. Eng. 2004, 49, 56–60. [Google Scholar] [CrossRef]
- Clark, R.A.; Bryant, A.L.; Pua, Y.; McCrory, P.; Bennell, K.; Hunt, M. Validity and reliability of the Nintendo Wii Balance Board for assessment of standing balance. Gait Posture 2010, 31, 307–310. [Google Scholar] [CrossRef]
- Clayton, H.M.; Nauwelaerts, S. Effect of blindfolding on centre of pressure variables in healthy horses during quiet standing. Vet. J. 2014, 199, 365–369. [Google Scholar] [CrossRef]
- Blau, S.; Davis, L.; Gorney, A.; Dohse, C.; Williams, K.; Lim, J.; Pfitzner, W.; Laber, E.; Sawicki, G.; Olby, N. Quantifying center of pressure variability in chondrodystrophoid dogs. Vet. J. 2017, 226, 26–31. [Google Scholar] [CrossRef] [PubMed]
- Lewis, M.J.; Williams, K.D.; Langley, T.; Jarvis, L.M.; Sawicki, G.S.; Olby, N.J. Development of a novel gait analysis tool measuring center of pressure for evaluation of canine chronic thoracolumbar spinal cord injury. J. Neurotrauma 2019, 36, 3018–3025. [Google Scholar] [CrossRef] [PubMed]
- Manera, M.E.; Carrillo, J.M.; Batista, M.; Rubio, M.; Sopena, J.; Santana, A.; Vilar, J.M. Static Posturography: A new perspective in the assessment of lameness in a canine model. PLoS ONE 2017, 12, e0170692. [Google Scholar] [CrossRef] [PubMed]
- Carrillo, J.M.; Manera, M.E.; Rubio, M.; Sopena, J.; Santana, A.; Vilar, J.M. Posturography and dynamic pedobarography in lame dogs with elbow dysplasia and cranial cruciate ligament rupture. BMC Vet. Res. 2018, 14, 108. [Google Scholar] [CrossRef] [PubMed]
- López, S.; Vilar, J.M.; Rubio, M.; Sopena, J.J.; Damiá, E.; Chicharro, D.; Santana, A.; Carrillo, J.M. Center of pressure limb path differences for the detection of lameness in dogs: A preliminary study. BMC Vet. Res. 2019, 15, 138. [Google Scholar] [CrossRef]
- Reicher, B.; Tichy, A.; Bockstahler, B. Center of Pressure in the Paws of Clinically Sound Dogs in Comparison with Orthopedically Diseased Dogs. Animals 2020, 10, 1366. [Google Scholar] [CrossRef]
- Humphries, A.; Shaheen, A.F.; Gómez Álvarez, C.B. Biomechanical comparison of standing posture and during trot between German shepherd and Labrador retriever dogs. PLoS ONE 2020, 15, e0239832. [Google Scholar] [CrossRef]
- Virag, Y.; Gumpenberger, M.; Tichy, A.; Lutonsky, C.; Peham, C.; Bockstahler, B. Center of pressure and ground reaction forces in Labrador and Golden Retrievers with and without hip dysplasia at 4, 8, and 12 months of age. Front. Vet. Sci. 2022, 9, 1087693. [Google Scholar] [CrossRef]
- Mondino, A.; Wagner, G.; Russell, K.; Lobaton, E.; Griffith, E.; Gruen, M.; Lascelles, B.D.X.; Olby, N.J. Static posturography as a novel measure of the effects of aging on postural control in dogs. PLoS ONE 2022, 17, e0268390. [Google Scholar] [CrossRef]
- Lutonsky, C.; Peham, C.; Mucha, M.; Reicher, B.; Gaspar, R.; Tichy, A.; Bockstahler, B. External mechanical perturbations challenge postural stability in dogs. Front. Vet. Sci. 2023, 10, 1249951. [Google Scholar] [CrossRef]
- Laflamme, D. Developmental and validation of a body condition score system for dogs. Canine Pract. 1997, 22, 10–15. [Google Scholar]
- Wilson, M.L.; Roush, J.K.; Renberg, W.C. Single-day and multiday repeatability of stance analysis results for dogs with hind limb lameness. Am. J. Vet. Res. 2019, 80, 403–409. [Google Scholar] [CrossRef] [PubMed]
- Robbins, S.M.; Caplan, R.M.; Aponte, D.I.; St-Onge, N. Test-retest reliability of a balance testing protocol with external perturbations in young healthy adults. Gait Posture 2017, 58, 433–439. [Google Scholar] [CrossRef] [PubMed]
- Boeer, J.; Mueller, O.; Krauss, I.; Haupt, G.; Horstmann, T. Reliability of a measurement technique to characterise standing properties and to quantify balance capabilities of healthy subjects on an unstable oscillatory platform (Posturomed). Sport. Sportschaden 2010, 24, 40–45. [Google Scholar] [CrossRef] [PubMed]
- Morat, M.; Bakker, J.; Hammes, V.; Morat, T.; Giannouli, E.; Zijlstra, W.; Donath, L. Effects of stepping exergames under stable versus unstable conditions on balance and strength in healthy community-dwelling older adults: A three-armed randomized controlled trial. Exp. Gerontol. 2019, 127, 110719. [Google Scholar] [CrossRef]
- Eichenlaub, E.K.; Urrego, D.D.; Sapovadia, S.; Allen, J.; Mercer, V.S.; Crenshaw, J.R.; Franz, J.R. Susceptibility to walking balance perturbations in young adults is largely unaffected by anticipation. Hum. Mov. Sci. 2023, 89, 103070. [Google Scholar] [CrossRef]
- Feldman, A.G. The relationship between postural and movement stability. In Progress in Motor Control; Springer: Berlin/Heidelberg, Germany, 2016; pp. 105–120. [Google Scholar]
Condition | COP Parameter | Time Point 1 | Time Point 2 | p-Value |
---|---|---|---|---|
Static | Area (mm2) | 65.8 ± 78.94 | 64.27 ± 71.7 | 0.920 |
Length (mm) | 450.47 ± 181.54 | 418.55 ± 179.3 | 0.118 | |
Velocity (mm/s) | 89.98 ± 36.34 | 83.62 ± 35.83 | 0.119 | |
Dynamic (y-direction) | Area (mm2) | 2601.28 ± 713.01 | 2391.67 ± 699.57 | 0.180 |
Length (mm) | 1162.73 ± 191.54 | 1022.47 ± 171.28 | 0.000 | |
Velocity (mm/s) | 232.11 ± 38.05 | 204.01 ± 34.01 | 0.000 | |
Dynamic (x-direction) | Area (mm2) | 87.83 ± 46.5 | 76.49 ± 32.12 | 0.180 |
Length (mm) | 229.04 ± 132.05 | 197.52 ± 80.23 | 0.045 | |
Velocity (mm/s) | 45.8 ± 26.33 | 39.45 ± 16.05 | 0.043 |
Condition | COP Parameter | Mean ± SD Difference between TP 1 and 2 | Cohen’s d [95% CI] |
---|---|---|---|
Static | Area (mm2) | 1.52 ± 117.62 | 0.013 [−0.242–0.268] |
Length (mm) | 31.92 ± 155.83 | 0.205 [−0.052–0.464] | |
Velocity (mm/s) | 6.37 ± 31.17 | 0.204 [−0.053–0.463] | |
Dynamic (y-direction) | Area (mm2) | 209.62 ± 1197.21 | 0.175 [−0.081–0.433] |
Length (mm) | 140.25 ± 181.56 | 0.772 [0.485–1.068] | |
Velocity (mm/s) | 28.1 ± 35.91 | 0.783 [0.495–1.079] | |
Dynamic (x-direction) | Area (mm2) | 11.34 ± 64.78 | 0.175 [−0.081–0.433] |
Length (mm) | 31.52 ± 119.08 | 0.265 [0.006–0.525] | |
Velocity (mm/s) | 6.35 ± 23.78 | 0.267 [0.009–0.528] |
Conditions | COP Parameter | Ratio | p-Value |
---|---|---|---|
Dy/Dx | Area (mm2) | 30.843 | <0.0001 |
Length (mm) | 5.397 | <0.0001 | |
Velocity (mm/s) | 5.388 | <0.0001 | |
Dy/S | Area (mm2) | 50.223 | <0.0001 |
Length (mm) | 2.630 | <0.0001 | |
Velocity (mm/s) | 2.628 | <0.0001 | |
Dx/S | Area (mm2) | 1.628 | <0.0001 |
Length (mm) | 0.487 | <0.0001 | |
Velocity (mm/s) | 0.488 | <0.0001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wolszky, V.; Zablotski, Y.; Fischer, A.; Lauer, S. Balance Assessment on a Modified Posturomed Platform in Healthy Dogs. Vet. Sci. 2024, 11, 498. https://doi.org/10.3390/vetsci11100498
Wolszky V, Zablotski Y, Fischer A, Lauer S. Balance Assessment on a Modified Posturomed Platform in Healthy Dogs. Veterinary Sciences. 2024; 11(10):498. https://doi.org/10.3390/vetsci11100498
Chicago/Turabian StyleWolszky, Viola, Yury Zablotski, Andrea Fischer, and Susanne Lauer. 2024. "Balance Assessment on a Modified Posturomed Platform in Healthy Dogs" Veterinary Sciences 11, no. 10: 498. https://doi.org/10.3390/vetsci11100498
APA StyleWolszky, V., Zablotski, Y., Fischer, A., & Lauer, S. (2024). Balance Assessment on a Modified Posturomed Platform in Healthy Dogs. Veterinary Sciences, 11(10), 498. https://doi.org/10.3390/vetsci11100498