Feeding Black Pepper (Piper nigrum) or Exogenous Xylanase Improves the Blood Lipid Profile of Broiler Chickens Fed Wheat-Based Diets
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Diets and BP Sample
2.2. Birds, Management and Sample Collection
2.3. Laboratory Analyses
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Whiting, I.M.; Pirgozliev, V.; Kljak, K.; Orczewska-Dudek, S.; Mansbridge, S.C.; Rose, S.P.; Atanasov, A.G. Feeding dihydroquercetin in wheat-based diets to laying hens: Impact on egg production and quality of fresh and stored eggs. Br. Poult. Sci. 2022, 63, 735–741. [Google Scholar] [CrossRef] [PubMed]
- Pirgozliev, V.; Mansbridge, S.C.; Rose, S.P.; Mackenzie, A.M.; Beccaccia, A.; Karadas, F.; Ivanova, S.G.; Staykova, G.P.; Oluwatosin, O.O.; Bravo, D. Dietary essential oils improve feed efficiency and hepatic antioxidant content of broiler chickens. Animal 2019, 13, 502–508. [Google Scholar] [CrossRef] [PubMed]
- Karadas, F.; Pirgozliev, V.; Pappas, A.C.; Acamovic, T.; Bedford, M.R. Effects of different dietary phytase activities on the concentration of antioxidants in the liver of growing broilers. J. Anim. Physiol. Anim. Nutr. 2010, 94, 519–526. [Google Scholar] [CrossRef] [PubMed]
- Botterweck, A.; Verhagen, H.; Goldbohm, R.; Kleinjans, J.; Brandt, P.V.D.; Brandt, P.V.D. Intake of butylated hydroxyanisole and butylated hydroxytoluene and stomach cancer risk: Results from analyses in the Netherlands Cohort Study. Food Chem. Toxicol. 2000, 38, 599–605. [Google Scholar] [CrossRef] [PubMed]
- Saad, B.; Sing, Y.Y.; Nawi, M.A.; Hashim, N.; Mohamedali, A.; Saleh, M.I.; Sulaiman, S.F.; Talib, K.; Ahmad, K.; Ali, A.S.M. Determination of synthetic phenolic antioxidants in food items using reversed-phase HPLC. Food Chem. 2007, 105, 389–394. [Google Scholar] [CrossRef]
- Randhawa, S.; Bahna, S.L. Hypersensitivity reactions to food additives. Curr. Opin. Allergy Clin. Immunol. 2009, 9, 278–283. [Google Scholar] [CrossRef] [PubMed]
- Lourenço, S.C.; Moldão-Martins, M.; Alves, V.D. Antioxidants of natural plant origins: From sources to food industry applications. Molecules 2019, 24, 4132. [Google Scholar] [CrossRef] [PubMed]
- Surai, P.F.; Kochish, I.I. Nutritional modulation of the antioxidant capacities in poultry: The case of selenium. Poult. Sci. 2019, 98, 4231–4239. [Google Scholar] [CrossRef]
- Yang, Y.; Kanev, D.; Nedeva, R.; Jozwik, A.; Rollinger, J.M.; Grzybek, W.; Pyzel, B.; Yeung, A.W.K.; Uhrin, P.; Breuss, J.M.; et al. Black pepper dietary supplementation increases high-density lipoprotein (HDL) levels in pigs. Curr. Res. Biotechnol. 2019, 1, 28–33. [Google Scholar] [CrossRef]
- Siddiqui, S.; Khushtar, M.; Zafar, A.; Hasan, S.M.; Arshad, M.; Ahmad, M.A.; Kashif, M.; Mujahid, M. Mechanism-based physiological effects of piperine: A Review. Curr. Pharmacol. Rep. 2023, 9, 117–127. [Google Scholar] [CrossRef]
- Meriga, B.; Parim, B.; Chunduri, V.R.; Naik, R.R.; Nemani, H.; Suresh, P.; Ganapathy, S.; Vvu, S.B. Antiobesity potential of Piperonal: Promising modulation of body composition, lipid profiles and obesogenic marker expression in HFD-induced obese rats. Nutr. Metab. 2017, 14, 72. [Google Scholar] [CrossRef] [PubMed]
- Akbarian, A.; Golian, A.; Kermanshahi, H.; Gilani, A.; Moradi, S. Influence of turmeric rhizome and black pepper on blood constituents and performance of broiler chickens. Afr. J. Biotechnol. 2012, 11, 8606–8611. [Google Scholar]
- Singh, J.; Sharma, M.; Mehta, N.; Singh, N.D.; Kaur, P.; Sethi, A.P.S.; Sikka, S.S. Influence of supplementation of black pepper powder through feed in broiler chickens on their growth performance, blood profile, meat sensory qualities and duodenum morphology. Indian J. Anim. Sci. 2018, 88, 215–221. [Google Scholar] [CrossRef]
- Hosseini, M.N. Comparison of using different level of black pepper with probiotic on performance and serum composition on broilers chickens. J. Basic Appl. Sci. Res. 2011, 1, 2425–2428. [Google Scholar]
- Olayemi, W.A.; Williams, G.A.; Olatidoye, O.P.; Omofunmilola, E.O. Influence of dietary inclusion of phytobiotics on growth performance, carcass and organ weight of broiler chickens. J. Agric. Food. Sci. 2020, 18, 26–38. [Google Scholar] [CrossRef]
- Ndelekwute, E.K.; Afolabi, K.D.; Uzegbu, H.O.; Unah, U.L.; Amaefule, K.U. Effect of dietary Black pepper (Piper nigrum) on the performance of broiler. Bangladesh J. Anim. Sci. 2015, 44, 120–127. [Google Scholar] [CrossRef]
- Puvača, N.; Kostadinović, L.; Ljubojević, D.; Lukač, D.; Lević, J.; Popović, S.; Novakov, N.; Vidović, B.; Đuragić, O. Effect of garlic, black pepper and hot red pepper on productive performances and blood lipid profile of broiler chickens. Eur. Poult. Sci. 2015, 79, 1–13. [Google Scholar]
- Bedford, M.R. The evolution and application of enzymes in the animal feed industry: The role of data interpretation. Br. Poult. Sci. 2018, 59, 486–493. [Google Scholar] [CrossRef]
- Šimić, A.; González-Ortiz, G.; Mansbridge, S.C.; Rose, S.P.; Bedford, M.R.; Yovchev, D.; Pirgozliev, V.R. Broiler chicken response to xylanase and fermentable xylo-oligosaccharide supplementation. Poult. Sci. 2023, 102, 103000. [Google Scholar] [CrossRef]
- Saleh, A.A.; Kirrella, A.A.; Abdo, S.E.; Mousa, M.M.; Badwi, N.A.; Ebeid, T.A.; Nada, A.L.; Mohamed, M.A. Effects of dietary xylanase and arabinofuranosidase combination on the growth performance, lipid peroxidation, blood constituents, and immune response of broilers fed low-energy diets. Animals 2019, 9, 467. [Google Scholar] [CrossRef]
- Ahmad, Z.; Butt, M.S.; Hussain, R.; Ahmed, A.; Riaz, M. Effect of oral application of xylanase on some hematological and serum biochemical parameters in broilers. Pak. Vet. J. 2013, 33, 388–390. [Google Scholar]
- Pirgozliev, V.; Karadas, F.; Rose, S.P.; Fernándes Beccaccia, A.; Mirza, M.W.; Amerah, A.M. Dietary xylanase increases hepatic vitamin E concentration of chickens fed wheat based diet. J. Anim. Feed Sci. 2015, 24, 80–84. [Google Scholar] [CrossRef]
- Pirgozliev, V.; Mansbridge, S.; Whiting, I.; Abdulla, J.; Rose, S.; Kljak, K.; Johnson, A.; Drijfhout, F.; Atanasov, A. The benefits of exogenous xylanase in wheat–soy based broiler chicken diets, consisting of different soluble non-starch polysaccharides content. Poultry 2023, 2, 123–133. [Google Scholar] [CrossRef]
- Meluzzi, A.; Primiceri, G.; Giordani, R.; Fabris, G. Determination of blood constituents reference values in broilers. Poult. Sci. 1992, 71, 337–345. [Google Scholar] [CrossRef] [PubMed]
- Sobhi, B.M.; Morsi, A.S.; Ahmed, Z.S.O.; Gamal, A.M.; Fahmy, K.N.E.D. The potential enhancing effect of both phytase and β-xylanase enzymes on performance, bone mineralization and nutrient absorption in broiler chicken. J. Adv. Vet. Res. 2023, 13, 806–814. [Google Scholar]
- Abdulla, J.M.; Rose, S.P.; Mackenzie, A.M.; Ivanova, S.G.; Staykova, G.P.; Pirgozliev, V.R. Nutritional value of raw and micronised field beans (Vicia faba L. var. minor) with and without enzyme supplementation containing tannase for growing chickens. Arch. Anim. Nutr. 2016, 70, 350–363. [Google Scholar] [CrossRef] [PubMed]
- Chauhan, R.A.J.A.N.I.; Dwivedi, J.A.Y.A.; Siddiqui, A.A. Chemical Standardization and quantification of Piperin from methanolic extract of Piper nigrum by HPLC method on the basis of isolated markers. Int. J. Chem. Sci. 2008, 6, 1726–1733. [Google Scholar]
- Englyst, H.N.; Quigley, M.E.; Hudson, G.J. Determination of dietary fibre as nonstarch polysaccharides with gas-liquid chromatographic, high-performance liquid chromatographic or spectrophotometric measurement of constituent sugars. Analyst 1994, 119, 1497–1509. [Google Scholar] [CrossRef]
- Englyst, K.N.; Hudson, G.J.; Englyst, H.N. Starch Analysis in Food. In Encyclopaedia of Analytical Chemistry; Meyers, R.A., Ed.; John Wiley and Sons: Chichester, UK, 2000; pp. 4246–4262. [Google Scholar]
- Whiting, I.; Pirgozliev, V.; Rose, S.P.; Karadas, F.; Mirza, M.W.; Sharpe, A. The temperature of storage of a batch of wheat distillers dried grains with solubles samples on their nutritive value for broilers. Br. Poult. Sci. 2018, 59, 76–80. [Google Scholar] [CrossRef]
- Van Soest, P.V.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Van Keulen, J.Y.B.A.; Young, B.A. Evaluation of acid-insoluble ash as a natural marker in ruminant digestibility studies. J. Anim. Sci. 1977, 44, 282–287. [Google Scholar] [CrossRef]
- Karadas, F.; Pirgozliev, V.; Rose, S.P.; Dimitrov, D.; Oduguwa, O.; Bravo, D. Dietary essential oils improve the hepatic antioxidative status of broiler chickens. Br. Poult. Sci. 2014, 55, 329–334. [Google Scholar] [CrossRef]
- Gunjević, V.; Zurak, D.; Grbeša, D.; Kiš, G.; Međimurec, T.; Pirgozliev, V.; Kljak, K. Bioaccessibility of tocols in commercial maize hybrids determined by an in vitro digestion model for poultry. Molecules 2023, 28, 5015. [Google Scholar] [CrossRef] [PubMed]
- Jóźwik, A.; Strzałkowska, N.; Bagnicka, E.; Grzybek, W.; Krzyżewski, J.; Poławska, E.; Kołataj, A.; Horbańczuk, J.O. Relationship between milk yield, stage of lactation, and some blood serum metabolic parameters of dairy cows. Czech J. Anim. Sci. 2012, 57, 353–360. [Google Scholar] [CrossRef]
- Oso, A.O.; Williams, G.A.; Oluwatosin, O.O.; Bamgbose, A.M.; Adebayo, A.O.; Olowofeso, O.; Pirgozliev, V.; Adegbenjo, A.A.; Osho, S.O.; Alabi, J.O.; et al. Effect of dietary supplementation with arginine on haematological indices, serum chemistry, carcass yield, gut microflora, and lymphoid organs of growing turkeys. Livest. Sci. 2017, 198, 58–64. [Google Scholar] [CrossRef]
- Milenković, A.N.; Stanojević, L.P. Black pepper: Chemical composition and biological activities. Adv. Technol. 2021, 10, 40–50. [Google Scholar] [CrossRef]
- Azhar, M.R.; Rose, S.P.; Mackenzie, A.M.; Mansbridge, S.C.; Bedford, M.R.; Lovegrove, A.; Pirgozliev, V.R. Wheat sample affects growth performance and the apparent metabolisable energy value for broiler chickens. Br. Poult. Sci. 2019, 60, 457–466. [Google Scholar] [CrossRef] [PubMed]
- Hertog, M.G.L.; Feskens, E.J.M.; Holiman, P.C.H.; Katan, M.B.; Kromhout, D. Dietary antioxidant flavonoids and risk of coronary heart disease: The Zutphen elderly study. Lancet 1993, 342, 1007. [Google Scholar] [CrossRef]
- Wilson, L.M.; Tharmarajah, S.; Jia, Y.; Semba, R.D.; Schaumberg, D.A.; Robinson, K.A. The effect of lutein/zeaxanthin intake on human macular pigment optical density: A systematic review and meta-analysis. Adv. Nutr. 2021, 12, 2244–2254. [Google Scholar] [CrossRef]
- Pirgozliev, V.; Mansbridge, S.C.; Rose, S.P.; Lillehoj, H.S.; Bravo, D. Immune modulation, growth performance, and nutrient retention in broiler chickens fed a blend of phytogenic feed additives. Poult. Sci. 2019, 98, 3443–3449. [Google Scholar] [CrossRef]
- Yeung, A.W.K.; Choudhary, N.; Tewari, D.; El Demerdash, A.; Horbanczuk, O.K.; Das, N.; Pirgozliev, V.; Lucarini, M.; Durazzo, A.; Souto, E.B.; et al. Quercetin: Total-scale literature landscape analysis of a valuable nutraceutical with numerous potential applications in the promotion of human and animal health—A review. Anim. Sci. Pap. Rep. 2021, 39, 199–212. [Google Scholar]
- Pirgozliev, V.; Mirza, M.W.; Rose, S.P. Does the effect of pelleting depend on the wheat sample when fed to chickens? Animal 2016, 10, 571–577. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Pirgozliev, V.R.; Rose, S.P.; Woods, S.; Yang, H.M.; Wang, Z.Y.; Bedford, M.R. Effect of age on the relationship between metabolizable energy and digestible energy for broiler chickens. Poult. Sci. 2020, 99, 320–330. [Google Scholar] [CrossRef] [PubMed]
- Gillette, K.; Thomas, D.K.; Bellingham, W.P. A parametric study of flavoured food avoidance in chicks. Chem. Senses 1983, 8, 41–57. [Google Scholar] [CrossRef]
- Ferket, P.R.; Gernat, A.G. Factors that affect feed intake of meat birds: A review. Int. J. Poult. Sci. 2006, 5, 905–911. [Google Scholar]
- Ziegenhagen, R.; Heimberg, K.; Lampen, A.; Hirsch-Ernst, K.I. Safety aspects of the use of isolated Piperine ingested as a bolus. Foods 2021, 10, 2121. [Google Scholar] [CrossRef]
- Bastaki, M.; Aubanel, M.; Bauter, M.; Cachet, T.; Demyttenaere, J.; Diop, M.M.; Harman, C.L.; Hayashi, S.M.; Krammer, G.; Li, X.; et al. Absence of adverse effects following administration of piperine in the diet of Sprague-Dawley rats for 90 days. Food Chem. Toxicol. 2018, 120, 213–221. [Google Scholar] [CrossRef]
- Bai, Y.F.; Xu, H. Protective action of piperine against experimental gastric ulcer. Acta Pharmacol. Sin. 2000, 21, 357–359. [Google Scholar] [PubMed]
- Whiting, I.M.; Pirgozliev, V.; Bedford, M.R. The effect of different wheat varieties and exogenous xylanase on bird performance and utilization of energy and nutrients. Poult. Sci. 2023, 102, 102817. [Google Scholar] [CrossRef]
- Whiting, I.M.; Pirgozliev, V.; Rose, S.P.; Wilson, J.; Amerah, A.M.; Ivanova, S.G.; Staykova, G.P.; Oluwatosin, O.O.; Oso, A.O. Nutrient availability of different batches of wheat distillers dried grains with solubles with and without exogenous enzymes for broiler chickens. Poult. Sci. 2017, 96, 574–580. [Google Scholar] [CrossRef]
- Bedford, M.R.; Classen, H.L. Reduction of intestinal viscosity through manipulation of dietary rye and pentosanase concen-tration is effected through changes in the carbohydrate-composition of the intestinal aqueous phase and results in improved growth-rate and food conversion efficiency of broiler chicks. J. Nutr. 1992, 122, 560–569. [Google Scholar] [PubMed]
- Whiting, I.M.; Rose, S.P.; Mackenzie, A.M.; Amerah, A.M.; Pirgozliev, V.R. Effect of wheat distillers dried grains with solubles and exogenous xylanase on laying hen performance and egg quality. Poult. Sci. 2019, 98, 3756–3762. [Google Scholar] [CrossRef] [PubMed]
- Duve, L.R.; Steenfeldt, S.; Thodberg, K.; Nielsen, B.L. Splitting the scotoperiod: Effects on feeding behaviour, intestinal fill and digestive transit time in broiler chickens. Br. Poult. Sci. 2011, 52, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Pirgozliev, V.; Bravo, D.; Rose, S.P. Rearing conditions influence nutrient availability of plant extracts supplemented diets when fed to broiler chickens. J. Anim. Physiol. Anim. Nutr. 2014, 98, 667–671. [Google Scholar] [CrossRef] [PubMed]
- Karadas, F.; Pirgozliev, V.; Acamovic, T.; Bedford, M.R. The effects of dietary phytase activity on the concentration of Co-enzyme Q10 in the liver of young turkeys and broilers. Br. Poult. Abs. 2005, 1, 1–74. [Google Scholar] [CrossRef]
- Pirgozliev, V.; Karadas, F.; Pappas, A.; Acamovic, T.; Bedford, M.R. The effect on performance, energy metabolism and hepatic carotenoid content when phytase supplemented diets were fed to broiler chickens. Res. Vet. Sci. 2010, 89, 203–205. [Google Scholar] [CrossRef] [PubMed]
- Bedford, M.R. Effect of non-starch polysaccharidases on avian gastrointestinal function. In Avian Gut Function in Health and Disease; Perry, G.C., Ed.; Carfax Publishing Company: Oxfordshire, UK, 2006; pp. 159–170. [Google Scholar]
- Kardassis, D.; Mosialou, I.; Kanaki, M.; Tiniakou, I.; Thymiakou, E. Metabolism of HDL and its regulation. Curr. Med. Chem. 2014, 21, 2864–2880. [Google Scholar] [CrossRef]
- Rye, K.A.; Barter, P.J. Regulation of high-density lipoprotein metabolism. Circ. Res. 2014, 114, 143–156. [Google Scholar] [CrossRef]
- Piekarski, A.; Greene, E.; Anthony, N.B.; Bottje, W.; Dridi, S. Crosstalk between autophagy and obesity: Potential use of avian model. Adv. Food Technol. Nutr. Sci. Open J. 2015, 1, 32–37. [Google Scholar] [CrossRef]
- Sosnówka-Czajka, E.; Skomorucha, I. Sudden death syndrome in broiler chickens: A review on the etiology and prevention of the syndrome. Ann. Anim. Sci. 2022, 22, 865–871. [Google Scholar] [CrossRef]
- Hermier, D. Lipoprotein metabolism and fattening in poultry. J. Nutr. 1997, 127, 805S–808S. [Google Scholar] [CrossRef]
- Dong, X.; Tong, J. Different susceptibility to fatty liver-haemorrhagic syndrome in young and older layers and the interaction on blood LDL-C levels between oestradiols and high energy-low protein diets. Br. Poult. Sci. 2019, 60, 265–271. [Google Scholar] [CrossRef]
- Lin, C.W.; Huang, T.W.; Peng, Y.J.; Lin, Y.Y.; Mersmann, H.J.; Ding, S.T. A novel chicken model of fatty liver disease induced by high cholesterol and low choline diets. Poult. Sci. 2021, 100, 100869. [Google Scholar] [CrossRef]
- Percie du Sert, N.; Hurst, V.; Ahluwalia, A.; Alam, S.; Avey, M.T.; Baker, M.; Browne, W.J.; Clark, A.; Cuthill, I.C.; Dirnagl, U.; et al. The ARRIVE guidelines 2.0: Updated guidelines for reporting animal research. PLoS Biol. 2020, 18, e3000411. [Google Scholar]
Ingredients (g/kg) | Basal Feed |
---|---|
Wheat | 651.0 |
Soybean meal (48% CP) | 219.7 |
Soybean meal (full fat) | 50.0 |
Vegetable oil | 20.0 |
Dicalcium phosphate | 14.5 |
Limestone | 12.5 |
NaCl | 1.7 |
Lysine | 2.7 |
Methionine | 3.9 |
Vitamin/mineral premix 1 | 4.0 |
Acid-insoluble ash | 20.0 |
100 | |
Calculated analysis (as fed): | |
Crude protein g/kg | 206 |
ME MJ/kg | 12.67 |
Crude fat g/kg | 44.4 |
Ca g/kg | 9.7 |
Available P g/kg | 4.6 |
Lysine g/kg | 12.4 |
Methionine + cysteine g/kg | 9.9 |
Determined Values | Basal Feed | Black Pepper |
---|---|---|
Dry matter (g/kg) | 902 | 921 |
Crude protein (g/kg) | 218 | 130 |
Crude fat (g/kg) | 35 | 55 |
Gross energy (MJ/kg) | 15.51 | 17.15 |
Piperine (g/kg) | Nd | 42 |
Starch (g/kg) | 429 | 491 |
Soluble non-starch polysaccharides (NSPs, g/kg) | 36 | 9 |
Insoluble non-starch polysaccharides (NSPins, g/kg) | 60 | 83 |
Total non-starch polysaccharides (NSPt, g/kg) | 96 | 92 |
Neutral detergent fibres (NDF, g/kg) | 84 | Nd |
Total carotenoids (µg/g) | 0.066 | 2.777 |
Vitamin E (µg/g) | 21.2 | Nd |
Coenzyme Q10 (µg/g) | 2 | 103 |
Treatment | BW 7 d (g) | BW 21 d (g) | FI (g/b/d) | WG (g/b/d) | FCR (g:g) | AMEn (MJ/kg DM) | DMD | ND | FD | NDFD |
---|---|---|---|---|---|---|---|---|---|---|
BP | ||||||||||
No | 175 | 897 | 65.7 | 51.6 | 1.276 | 12.95 | 0.734 | 0.652 | 0.653 | 0.247 |
Yes | 179 | 702 | 58.2 | 37.4 | 1.567 | 12.76 | 0.716 | 0.612 | 0.666 | 0.190 |
XYL | ||||||||||
No | 175 | 767 | 59.3 | 42.2 | 1.438 | 12.71 | 0.719 | 0.616 | 0.645 | 0.190 |
Yes | 178 | 833 | 64.6 | 46.8 | 1.404 | 13.00 | 0.732 | 0.647 | 0.674 | 0.247 |
SEM | 1.8 | 16.6 | 1.46 | 1.17 | 0.0259 | 0.092 | 0.0045 | 0.0074 | 0.0233 | 0.0177 |
Probabilities | ||||||||||
BP | 0.115 | <0.001 | 0.006 | <0.001 | <0.001 | 0.167 | 0.012 | 0.008 | 0.701 | 0.033 |
XYL | 0.298 | 0.010 | 0.019 | 0.012 | 0.365 | 0.039 | 0.048 | 0.041 | 0.387 | 0.036 |
BP × XYL | 0.449 | 0.396 | 0.667 | 0.438 | 0.490 | 0.311 | 0.192 | 0.792 | 0.394 | 0.889 |
Treatment | BW (g) | PG | D | J | I | SI | Caeca | Pancreas | GIT | Liver |
---|---|---|---|---|---|---|---|---|---|---|
BP | ||||||||||
No | 911 | 2.97 | 1.64 | 2.61 | 2.14 | 6.39 | 0.75 | 0.44 | 10.54 | 3.57 |
Yes | 692 | 2.78 | 1.86 | 2.86 | 2.17 | 6.89 | 0.72 | 0.43 | 10.81 | 3.82 |
XYL | ||||||||||
No | 780 | 2.84 | 1.69 | 2.79 | 2.21 | 6.69 | 0.72 | 0.44 | 10.68 | 3.73 |
Yes | 823 | 2.91 | 1.81 | 2.68 | 2.11 | 6.59 | 0.75 | 0.43 | 10.68 | 3.66 |
SEM | - | 0.110 | 0.051 | 0.066 | 0.069 | 0.133 | 0.027 | 0.021 | 0.165 | 0.149 |
BP XYL | ||||||||||
No No | 882 | 3.03 | 1.61 | 2.75 | 2.31 a | 6.67 a | 0.72 | 0.47 | 10.88 ab | 3.74 |
No Yes | 940 | 2.91 | 1.68 | 2.47 | 1.97 b | 6.11 b | 0.77 | 0.41 | 10.20 a | 3.39 |
Yes No | 679 | 2.64 | 1.78 | 2.83 | 2.10 ab | 6.71 a | 0.71 | 0.41 | 10.47 ab | 3.71 |
Yes Yes | 706 | 2.91 | 1.93 | 2.90 | 2.24 ab | 7.07 a | 0.72 | 0.45 | 11.15 b | 3.92 |
- | 0.155 | 0.072 | 0.066 | 0.098 | 0.189 | 0.039 | 0.030 | 0.234 | 0.210 | |
Probabilities | ||||||||||
BP | - | 0.357 | 0.008 | 0.014 | 0.741 | 0.016 | 0.431 | 0.690 | 0.269 | 0.246 |
XYL | - | 0.838 | 0.138 | 0.267 | 0.311 | 0.611 | 0.402 | 0.750 | 0.997 | 0.738 |
BP × XYL | - | 0.341 | 0.596 | 0.071 | 0.023 | 0.024 | 0.617 | 0.149 | 0.009 | 0.204 |
Treatment | Carotenoids (µg/g) | Vitamin E (µg/g) | Coenzyme Q10 (µg/g) |
---|---|---|---|
BP | |||
No | 1.44 | 69 | 418 |
Yes | 1.49 | 81 | 402 |
XYL | |||
No | 1.33 | 75 | 375 |
Yes | 1.60 | 76 | 444 |
SEM | 0.073 | 4.5 | 20.8 |
Probabilities | |||
BP | 0.668 | 0.060 | 0.603 |
XYL | 0.015 | 0.836 | 0.030 |
BP × XYL | 0.525 | 0.067 | 0.646 |
Treatment | TC (mmol/L) | HDL (mmol/L) | LDL (mmol/L) | TRIGL (mmol/L) | TP (g/L) | Ca (mmol/L) | P (mmol/L) |
---|---|---|---|---|---|---|---|
BP | |||||||
No | 4.1 | 2.9 | 0.55 | 1.39 | 22.6 | 3.3 | 2.10 |
Yes | 4.4 | 3.1 | 0.61 | 1.37 | 24.0 | 3.0 | 1.88 |
XYL | |||||||
No | 4.3 | 3.0 | 0.66 | 1.37 | 23.3 | 3.2 | 2.14 |
Yes | 4.1 | 3.0 | 0.51 | 1.39 | 23.3 | 3.1 | 1.84 |
SEM | 0.133 | 0.07 | 0.037 | 0.141 | 0.67 | 0.07 | 0.1145 |
Probabilities | |||||||
BP | 0.177 | 0.017 | 0.278 | 0.916 | 0.174 | 0.022 | 0.176 |
XYL | 0.401 | 0.918 | 0.010 | 0.916 | 0.953 | 0.947 | 0.073 |
BP × XYL | 0.500 | 0.857 | 0.103 | 0.566 | 0.343 | 0.979 | 0.429 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pirgozliev, V.R.; Mansbridge, S.C.; Whiting, I.M.; Kljak, K.; Jozwik, A.; Rollinger, J.M.; Atanasov, A.G.; Rose, S.P. Feeding Black Pepper (Piper nigrum) or Exogenous Xylanase Improves the Blood Lipid Profile of Broiler Chickens Fed Wheat-Based Diets. Vet. Sci. 2023, 10, 587. https://doi.org/10.3390/vetsci10090587
Pirgozliev VR, Mansbridge SC, Whiting IM, Kljak K, Jozwik A, Rollinger JM, Atanasov AG, Rose SP. Feeding Black Pepper (Piper nigrum) or Exogenous Xylanase Improves the Blood Lipid Profile of Broiler Chickens Fed Wheat-Based Diets. Veterinary Sciences. 2023; 10(9):587. https://doi.org/10.3390/vetsci10090587
Chicago/Turabian StylePirgozliev, Vasil Radoslavov, Stephen Charles Mansbridge, Isobel Margaret Whiting, Kristina Kljak, Artur Jozwik, Judith Maria Rollinger, Atanas Georgiev Atanasov, and Stephen Paul Rose. 2023. "Feeding Black Pepper (Piper nigrum) or Exogenous Xylanase Improves the Blood Lipid Profile of Broiler Chickens Fed Wheat-Based Diets" Veterinary Sciences 10, no. 9: 587. https://doi.org/10.3390/vetsci10090587
APA StylePirgozliev, V. R., Mansbridge, S. C., Whiting, I. M., Kljak, K., Jozwik, A., Rollinger, J. M., Atanasov, A. G., & Rose, S. P. (2023). Feeding Black Pepper (Piper nigrum) or Exogenous Xylanase Improves the Blood Lipid Profile of Broiler Chickens Fed Wheat-Based Diets. Veterinary Sciences, 10(9), 587. https://doi.org/10.3390/vetsci10090587