Investigation of Pomegranate (Punica granatum L.) Flowers’ Antioxidant Properties and Antibacterial Activities against Different Staphylococcus Species Associated with Bovine Mastitis
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Collection and Preparation of Plant Material
2.2. Preparation of Plant Extracts
2.3. Thin Layer Chromatography
2.4. Preparation of Bacteria Material
2.5. Determination of In Vitro Antibacterial Activity and Minimum Inhibitory Concentration (MIC)
2.6. Determination of Non-Enzymatic Antioxidant Activity
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Salvadori, M.R.; Valadares, G.F.; Leite, D.S.; Blanco, J.; Yano, T. Virulence factors of Escherichia coli isolated from calves with diarrhea in Brazil. Brazil J. Microbiol. 2003, 34, 230–235. [Google Scholar] [CrossRef] [Green Version]
- Duse, A.; Waller, K.P.; Emanuelson, U.; Unnerstad, H.E.; Persson, Y.; Bengtsson, B. Risk factors for antimicrobial resistance in fecal Escherichia coli from preweaned dairy calves. J. Dairy Sci. 2015, 98, 500–516. [Google Scholar] [CrossRef] [Green Version]
- Toyang, N.J.; Wanyama, J.; Nuwanyakpa, M.; Django, S. Ethnoveterinary Medicine: A Practical Approach to the Treatment of Cattle Diseases in Sub-Saharan 2 ed Africa Roosendaal; Agromisa Foundation and CTA: Wageningen, The Netherlands, 2007. [Google Scholar]
- Sampimon, O.C.; Lam, T.J.G.M.; Mevius, D.J.; Schukken, Y.H.; Zadoks, R.N. Antimicrobial susceptibility of coagulase-negative staphylococci isolated from bovine milk samples. Vet. Microbiol. 2011, 150, 173–179. [Google Scholar] [CrossRef] [PubMed]
- Samoilova, Z.; Smirnova, G.; Muzyka, N.; Oktyabrskya, O. Medicinal plant extracts variously modulate susceptibility of Escherichia coli to different antibiotics. Microbiol. Res. 2014, 169, 307–313. [Google Scholar] [CrossRef]
- Abebe, R.; Hatiya, H.; Abera, M.; Megersa, B.; Asmare, K. Bovine mastitis: Prevalence, risk factors and isolation of Staphylococcus aureus in dairy herds at Hawassa milk shed, South Ethiopia. BMC Vet. Res. 2016, 12, 270. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Olde Riekerink, R.G.; Barkema, H.W.; Scholl, D.T.; Poole, D.E.; Kelton, D.F. Management practices associated with the bulk-milk prevalence of Staphylococcus aureus in Canadian dairy farms. Prev. Vet. Med. 2010, 97, 20–28. [Google Scholar] [CrossRef]
- Cortimiglia, C.; Luini, M.; Bianchini, V.; Marzagalli, L.; Vezzoli, F.; Avisani, D.; Bertoletti, M.; Ianzano, A.; Franco, A.; Battisti, A. Prevalence of Staphylococcus aureus and of methicillin-resistant S. aureus clonal complexes in bulk tank milk from dairy cattle herds in Lombardy Region (Northern Italy). Epidemiol. Infect. 2016, 144, 3046–3051. [Google Scholar] [CrossRef] [Green Version]
- Kaczorowski, Ł.; Powierska-Czarny, J.; Wolko, Ł.; Piotrowska-Cyplik, A.; Cyplik, P.; Czarny, J. The influence of Bacteria causing subclinical mastitis on the structure of the cow’s milk microbiome. Molecules 2022, 27, 1829. [Google Scholar] [CrossRef]
- Djurıcıc, D.; Samardzıja, M.; Grızelj, J.; Dobranıc, T. Effet du traitementintramammaire des mammites subcliniques pendant la lactation en élevages bovins laitiers aunord-ouest de la Croatie. Ann. Méd. Vét. 2014, 158, 121–125. (In French) [Google Scholar]
- Bassols, A.; Turk, R.; Roncada, P. A proteomics perspective: From animal welfare to food safety. Curr. Protein Pept. Sci. 2014, 15, 156–168. [Google Scholar] [CrossRef]
- Turk, R.; Podpečan, O.; Mrkun, M.; Flegar-Meštrić, Z.; Perkov, S.; Zrimšek, P. The effect of seasonal thermal stress on lipid mobilisation; antioxidant status and reproductive performance in dairy cows. Reprod. Domest. Anim. 2015, 50, 595–603. [Google Scholar] [CrossRef]
- Valpotić, I. Imunost i stres: Koncepcija o međudjelovanju. Hrvat. Vet. Vjesn. 2002, 25, 49–65. (In Croatian) [Google Scholar]
- Kumar, A.; Dwivedi, H.P.; Swarup, D. Oxidative Stress in Periparturient Metabolic Disorders. In Production Diseases of Dairy Animals; SSPH: Bern, Switzerland, 2011; pp. 19–27. [Google Scholar]
- Turk, R.; Podpečan, O.; Mrkun, J.; Kosec, M.; Flegar-Meštrić, Z.; Perkov, S.; Starič, J.; Robić, M.; Belić, M.; Zrimšek, P. Lipid mobilisation and oxidative stress as metabolic adaptation processes in dairy heifers during transition period. Anim. Reprod. Sci. 2013, 141, 109–115. [Google Scholar] [CrossRef]
- Turk, R.; Folnožić, I.; Đuričić, D.; Vince, S.; Flegar- Meštrić, Z.; Dobranić, T.; Valpotić, H.; Samardžija, M. Relationship between paraoxonase-1 activity and lipid mobilisation in transition dairy cows. Vet. Arh. 2016, 86, 601–612. [Google Scholar]
- Folnožić, I.; Turk, R.; Đuričić, D.; Vince, S.; Pleadin, J.; Flegar-Meštrić, Z.; Valpotić, H.; Dobranić, T.; Gračner, D.; Samardžija, M. Infuence of body condition on serum metabolic indicators of lipid mobilisation and oxidative stress in dairy cows during the transition period. Reprod. Domest. Anim. 2015, 50, 910–917. [Google Scholar] [CrossRef]
- Morrissey, J.P.; Osbourn, A.E. Fungal resistance to plant antibiotics as a mechanism of pathogenesis. Microbiol. Mol. Biol. Rev. 1999, 63, 708–724. [Google Scholar] [CrossRef] [Green Version]
- Kikusato, M. Phytobiotics to improve health and production of broiler chickens: Functions beyond the antioxidant activity. Anim. Biosci. 2021, 34, 345–353. [Google Scholar] [CrossRef] [PubMed]
- Viveros, A.; Chamorro, S.; Pizarro, M.; Arija, I.; Centeno, C.; Brenes, A. Effects of dietary polyphenol-rich grape products on intestinal microflora and gut morphology in broiler chicks. Poult. Sci. 2011, 90, 566–578. [Google Scholar] [CrossRef] [PubMed]
- Saeed, M.; Baloch, A.R.; Wang, M.; Soomro, R.N.; Baloch, A.M.; Bux, B.A.; Arian, M.A.; Faraz, S.S.; Zakriya, H.M. Use of Cichorium intybus leaf extract as a growth promoter; hepatoprotectant and immune modulent in broilers. J. Anim. Prod. Adv. 2015, 5, 585–591. [Google Scholar] [CrossRef]
- Yadav, A.S.; Kolluri, G.; Gopi, M.; Karthik, K.; Malik, Y.S.; Dhama, K. Exploring alternatives to antibiotics as health promoting agents in poultry—A review. J. Exp. Biol. Agri Sci. 2016, 4, 368–383. [Google Scholar] [CrossRef]
- Kumar, A.; Rahal, A.; Chakraborty, S.; Tiwari, R.; Latheef, S.K.; Dhama, K. Ocimum sanctum (Tulsi): A miracle herb and boon to medical science—A Review. Int. J. Agron. Plant Prod. 2013, 4, 1580–1589. [Google Scholar]
- Tiwari, R.; Verma, A.K.; Chakraborty, S.; Dhama, K.; Singh, S.V. Neem (Azadirachta indica) and its potential for safeguarding health of animals and humans: A review. J. Biol. Sci. 2014, 14, 110–123. [Google Scholar] [CrossRef] [Green Version]
- Abd El-Hack, M.; Alagawany, M.; Farag, M.R.; Tiwari, R.; Karthik, K.; Dhama, K. Nutritional; healthical and therapeutic efficacy of black cumin (Nigella sativa) in animals; poultry and humans. Int. J. Pharmacol. 2016, 12, 232–248. [Google Scholar] [CrossRef] [Green Version]
- Dhama, K.; Karthik, K.; Khandia, R.; Munjal, A.; Tiwari, R.; Rana, R.; Khurana, S.K.; Sana, U.; Khan, R.U.; Alagawany, M.; et al. Medicinal and therapeutic potential of herbs and plant metabolites/extracts countering viral pathogens- Current knowledge and future prospects. Curr. Drug. Metab. 2018, 19, 236–263. [Google Scholar] [CrossRef]
- Tiwari, R.; Latheef, S.K.; Ahmed, I.; Iqbal, H.M.N.; Bule, M.H.; Dhama, K.; Samad, H.A.; Karthik, K.; Alagawany, M.; El-Hack, M.E.A.; et al. Herbal immunomodulators; a remedial panacea for the designing and developing effective drugs and medicines: Current scenario and future prospects. Curr. Drug. Metab. 2018, 19, 264–301. [Google Scholar] [CrossRef]
- Yatoo, M.I.; Saxena, A.; Gopalakrishnan, A.; Alagawany, M.; Dhama, K. Promising antidiabetic drugs; medicinal plants and herbs: An update. Int. J. Pharmacol. 2017, 13, 732–745. [Google Scholar] [CrossRef] [Green Version]
- Aytaç, Z.; Kaptaner, İ.B. Bitki Sistematiği (Plant Systematics); Simpson’dan Çeviri; Nobel Yayıncılık: Ankara, Turkey, 2012. (In Turkish) [Google Scholar]
- Davis, P.H.; Mill, R.R.; Tan, K. Flora of Turkey and The East Aegean Islands 10; Edinburgh University Press: Edinburgh, UK, 1988. [Google Scholar]
- Seçmen, Ö.; Gemici, Y.; Görk, G.; Bekat, L.; Leblebici, E. Tohumlu Bitkiler Sistematiği; Ege Üniversitesi Fen Fakültesi Kitaplar Serisi: İzmir, Turkey, 1998; 396p. (In Turkish) [Google Scholar]
- Ajaikumar, K.B.; Asheef, M.; Babu, B.H.; Padikkala, J. The inhibition of gastric mucosal injury by Punica granatum L. (Pomegranate) methanolic extract. J. Ethnopharmacol. 2005, 96, 171–176. [Google Scholar] [CrossRef]
- Opara, L.U.; Al-Ani, M.R.; Al-Shuaibi, Y.S. Physico-chemical properties; vitamin C content; and antimicrobial properties of pomegranate fruit (Punica granatum L.). Food Bioprocess Technol. 2009, 2, 315–321. [Google Scholar] [CrossRef]
- Lansky, E.; Shubert, S.; Neeman, I. Pharmacological and therapeutic properties of pomegranate. Isr. CIHEAM-Options Mediterr. 2004, 42, 231–235. [Google Scholar]
- Bele, A.A.; Jadhav, V.M.; Nikam, S.R.; Kadam, V.J. Antibacterial potential of herbal formulation. Res. J. Microbiol. 2009, 4, 164–167. [Google Scholar] [CrossRef] [Green Version]
- Choi, J.G.; Kang, O.H.; Lee, Y.S.; Chae, H.S.; Oh, Y.C.; Brice, O.O.; Kim, M.S.; Sohn, D.H.; Kim, H.S.; Park, H.; et al. In vitro and in vivo antibacterial activity of Punica granatum peel ethanol extract against Salmonella. Evid.-Based Complement. Altern. Med. 2011, 2011, 690518. [Google Scholar] [CrossRef] [Green Version]
- Growther, L.; Sukirtha, K.; Savitha, N.; Niren, A.S. Antibacterial activity of Punica granatum peel extracts against shiga toxin producing E. coli. Int. J. Sci. Biotech. Pharma Res. 2012, 1, 164–172. [Google Scholar]
- Al-Zoreky, N.S. Antimicrobial activity of pomegranate (Punica granatum L.) fruit peels. Int. J. Food Microbiol. 2009, 134, 244–248. [Google Scholar] [CrossRef]
- Abdollahzadeh, S.; Mashouf, R.; Mortazavi, H.; Moghaddam, M.; Roozbahani, N.; Vahedi, M. Antibacterial and antifungal activities of Punica granatum peel extracts against oral pathogens. J. Dent. 2011, 8, 1–6. [Google Scholar]
- Nuamsetti, T.; Dechayuenyong, P.; Tantipaibulvut, S. Antibacterial activity of pomegranate fruit peels and arils. Sci. Asia 2012, 38, 319–322. [Google Scholar] [CrossRef] [Green Version]
- Shabtay, A.; Eitam, H.; Tadmor, Y.; Orlov, A.; Meir, A.; Weinberg, P.; Weinberg, Z.G.; Chen, Y.; Brosh, A.; Izhaki, I.; et al. Nutritive and Antioxidative Potential of Fresh and Stored Pomegranate Industrial Byproduct as a Novel Beef Cattle Feed. J. Agric. Food Chem. 2008, 56, 10063–10070. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.F.; Guo, C.J.; Yang, J.J.; Wei, J.Y.; Xu, J.; Cheng, S. Evaluation of antioxidant properties of pomegranate peel extract in comparison with pomegranate pulp extract. Food Chem. 2006, 96, 254–260. [Google Scholar] [CrossRef]
- Burapadaja, S.; Bunchoo, A. Antimicrobial Activity of Tannins from Terminalia citrina. Planta Med. 1995, 61, 365–366. [Google Scholar] [CrossRef]
- Dahham, S.S.; Ali, M.N.; Tabassum, H.; Mazharuddin, K. Studies on Antibacterial and Antifungal Activity of Pomegranate (Punica granatum L.). Am. -Eurasian J. Agric. Environ. Sci. 2010, 9, 273–281. [Google Scholar]
- Raheema, R.H. Effect of pomegranate peel extract on some biochemical and histopathological parameters in experimental induced mice with Staphylococcus aureus. J. Anim. Health Prod. 2016, 4, 42–49. [Google Scholar] [CrossRef]
- Saeed, M.; Naveed, M.; BiBi, J.; Kamboh, A.A.; Arain, M.A.; Shah, Q.A.; Alagawany, M.; El-Hack, M.E.A.; Abdel-Latif, M.A.; Yatoo, M.I.; et al. The promising pharmacological effects and therapeutic/medicinal applications of Punica granatum L. (Pomegranate) as a functional food in humans and animals. Recent. Pat. Inflamm. Allergy Drug. Discov. 2018, 12, 24–38. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Fu, Q.; Zhang, Y. Composition of anthocyanins in pomegranate flowers and their antioxidant activity. Food Chem. 2011, 127, 1444–1449. [Google Scholar] [CrossRef]
- Huang, T.H.W.; Peng, G.; Kota, B.P.; Li, G.Q.; Yamahara, J.; Roufogalis, B.D. Anti-diabetic action of Punica granatum flower extract: Activation of PPAR-gamma and identification of an active component. Toxicol. Appl. Pharmacol. 2005, 207, 160–169. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.F.; Wang, W.; Wang, L.; Liu, R.N.; Ding, Y.; Du, L.J. Constituents of the flowers of Punica granatum. Fitoterapia 2006, 77, 534–537. [Google Scholar] [CrossRef] [PubMed]
- Oswa, T.; Ide, A.; Su, J.D.; Namiki, M. Inhibiting of lipid peroxidation by ellagic acid. J. Agric. Food Chem. 1987, 35, 808–812. [Google Scholar] [CrossRef]
- Zingales, I. Systematic identification of sychotropic drugs by thin-layer chromatography: Part I. J. Chromatogr. A 1967, 31, 405–419. [Google Scholar] [CrossRef]
- Zingales, I. Systematic identification of psychotropic drugs by thin layer chromatography: Part II. J. Chromatogr. A 1968, 34, 44–51. [Google Scholar] [CrossRef]
- Bauer, A.W.; Kirby, W.M.; Sherris, J.C.; Turck, M. Antibiotic susceptibility testing by a standardized single disk method. Am. J. Clin. Pathol. 1966, 45, 493–496. [Google Scholar] [CrossRef]
- Cai, Y.; Luo, Q.; Sun, M.; Corke, H. Antioxidant activity and phenolic compounds of 112 traditional Chinese medicinal plants associated with anticancer. Life Sci. 2004, 74, 2157–2184. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. Lebensm.-Wiss. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Vasconcelos, L.C.; Sampaio, F.C.; Sampaio, M.C.; Pereira, M.S.; Higino, J.S.; Peixoto, M.H. Minimum inhibitory concentration of adherence of Punica granatum Linn (pomegranate) gel against S. mutans, S. mitis and C. albicans. Braz. Dent. J. 2006, 17, 223–227. [Google Scholar] [CrossRef] [Green Version]
- Nobrega, F.L.; Costa, A.R.; Kluskens, L.D.; Azeredo, J. Revisiting phage therapy: New applications for old resources. Trends Microbiol. 2015, 23, 185–191. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, I.; Beg, A.Z. Antimicrobial and phytochemical studies on 45 Indian medicinal plants against multi-drug resistant human pathogens. J. Ethnopharmacol. 2001, 74, 113–123. [Google Scholar] [CrossRef] [PubMed]
- Vahabi, S.; Najafi, E.; Alizadeh, S. In vitro antimicrobial effects of some herbal essences against oral pathogens. J. Med. Plant. Res. 2011, 5, 4870–4878. [Google Scholar]
- Taheri, J.B.; Azimi, S.; Rafieian, N.; Zanjani, H.A. Herbs in dentistry. Int. Dent. J. 2011, 61, 287–296. [Google Scholar] [CrossRef] [PubMed]
- Dalirsani, Z.; Adibpour, M.; Aghazadeh, M.; Amirchaghmaghi, M.; Falaki, F.; Mozafari, P.; Hamzei, F. In vitro comparison of inhibitoryactivity of 10 plant extracts against Candida albicans. Austr. J. Basic. Appl. Sci. 2011, 5, 930–935. [Google Scholar]
- Nagappan, N.; John, J. Antimicrobial efficacy of herbal and chlorhexidine mouth rinse: A systematic review. J. Dent. Med. Sci. 2012, 2, 5–10. [Google Scholar] [CrossRef]
- Okmen, G.; Turkcan, O. The antibacterial activity of Elaeagnus angustifolia L. against mastitis pathogens and antioxidant capacity of the leaf methanolic extracts. J. Anim. Vet. Adv. 2013, 12, 491–496. [Google Scholar] [CrossRef]
- Okmen, G.; Cantekin, Z.; Alam, M.I.; Turkcan, O.; Ergun, Y. Antibacterial and antioxidant activities of Liquidambar orientalis Mill. various extracts against bacterial pathogens causing mastitis. TURJAF 2017, 5, 883–887. [Google Scholar] [CrossRef] [Green Version]
- Okmen, G.; Vurkun, M.; Arslan, A.; Ceylan, O. The antibacterial activities of Piper nigrum L. against mastitis pathogens and its antioxidant activities. Indian J. Pharm. Educ. Res. 2017, 51, 170–175. [Google Scholar] [CrossRef]
- Okmen, G.; Balpınar, N. Antibacterial and antioxidant activities of Ocimum basilicum L. against mastitis pathogens. Cumhur. Sci. J. 2018, 39, 573–580. [Google Scholar] [CrossRef] [Green Version]
- Iwu, M.; Duncan, A.R.; Okunji, C.O. New Antimicrobials of Plant Origin. In Perspectives on New Crops and New Uses; ASHS Press: Alexandria, VA, USA, 1999; pp. 457–462. [Google Scholar]
- Entessar, H.A.; Al-Mosawe, I.; Al-Saadi, I. The extraction and purification of gallic acid from the pomegranate rind. Al-Mustansiriyah J. Sci. 2012, 23, 53–60. [Google Scholar]
- Khaleel, A.I.; Sijam, K.; Rashid, T.S. Determination of antibacterial compounds of Punica granatum peel extract by TLC direct bio-autography and GCMS analysis. Biochem. Cell. Arch. 2018, 18, 379–384. [Google Scholar]
- Alper, N.; Onsekizoglu, P.; Acar, J. Effects of various clarification treatments on phenolic compounds and organic acid compositions of pomegranate (Punica granatum L.) juice. J. Food Process. Pres. 2011, 35, 313–319. [Google Scholar] [CrossRef]
- Meera Devi Sri, P.; Ramasamy, D.; Arul, V.C.; Ilavarasan, R. A Comparative study on pytoconstitutents of Punica granatum flowers of Normal and Ornamental variety using TLC/HPTLC methods. J. Sci. Innov. Res. 2016, 5, 87–91. [Google Scholar]
- Jurenka, J.S. Therapeutic applications of pomegranate (Punica granatum L.): A review. Altern. Med. Rev. 2008, 13, 128–144. [Google Scholar] [PubMed]
- Duman, A.D.; Ozgen, M.; Dayisoylu, K.S.; Erbil, N.; Durgac, C. Antimicrobial activity of six pomegranate (Punica granatum L.) varieties and their relation to some of their pomological and phytonutrient characteristics. Molecules 2009, 14, 1808–1817. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mahboubi, A.; Asgarpanah, J.; Sadaghiyani, P.N.; Faizi, M. Total phenolic and flavonoid content and antibacterial activity of Punica granatum L. var. pleniflora flowers (Golnar) against bacterial strains causing foodborne diseases. BMC Complement. Altern. Med. 2015, 15, 366. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chinsembu, K.C. Plants as antimalarial agents in Sub-Saharan Africa. Acta Trop. 2015, 152, 32–48. [Google Scholar] [CrossRef]
- Vahid-Dastjerdi, E.; Sarmast, Z.; Abdolazimi, Z.; Mahboubi, A.; Amdjadi, P.; Kamalinejad, M. Effect of Rhus coriaria L. water extract on five common oral bacteria and bacterial biofilm formation on orthodontic wire. Iran. J. Microbiol. 2014, 6, 269. [Google Scholar]
- Hajifattahi, F.; Moravej-Salehi, E.; Taheri, M.; Mahboubi, A.; Kamalinejad, M. Antibacterial Effect of Hydroalcoholic Extract of Punica granatum Linn. petal on common oral microorganisms. Int. J. Biomater. 2016, 2016, 8098943. [Google Scholar] [CrossRef] [Green Version]
- Hemani, K.; Ghhena, S. Evaluatıon of antımıcrobıal property of extract of Punıca granatum (L.) on oral pathogens. Int. J. Life Sci. Pharm. Res. 2018, 8, 35–40. [Google Scholar]
- Tunç, K.; Konca, T.; Hoş, A. Punica granatum Linn. (Nar) bitkisinin antibakteriyel etkisinin araştırılması. SAU J. Sci. 2013, 17, 167–172. (In Turkish) [Google Scholar] [CrossRef]
- Gopinath, S.M.; Suneetha, T.B.; Singh, S. Evaluation of effect of methanolic and aqueous extracts of Punica granatum L. against bacterial pathogens causing bovine mastitis. Glob. J. Res. Med. Plants Indig. Med. 2012, 1, 496–502. [Google Scholar]
- Gopinath, S.M.; Suneetha, T.B.; Mruganka, V.D.; Ananda, S. Chemical profiling and antibacterial activity of Punica granatum L. against pathogens causing bovine mastitis. J. Chem. Pharm. Res. 2011, 3, 514–518. [Google Scholar]
- Al-Zahrani, S.H.M. The antimicrobial activity of pomegranate fruit peel extracts against the pathogenic bacteria Staphylococcus aureus. Egypt. J. Exp. Biol. 2011, 7, 211–217. [Google Scholar]
- Khan, J.A.; Hanee, S. Antibacterial Properties of Punica granatum. Peels. Int. J. Appl. Biol. Pharm. 2011, 2, 23–27. [Google Scholar]
- Ada, İ.; Candemir, F. Determination of antibacterial Effect of Punica granatum peel extract. A J. Health Sci. 2019, 1, 79–86. [Google Scholar]
- Ncube, B.; Finnie, J.F.; Van Staden, J. Quality from the field: The impact of environmental factors as qualitydeterminants in medicinal plants. S. Afr. J. Bot. 2012, 82, 11–20. [Google Scholar] [CrossRef] [Green Version]
- Lambert, R.J.; Skandamis, P.N.; Coote, P.J.; Nychas, G.J. A study of the minimum inhibitory concentration and mode of action of oregano essential oil, thymol and carvacrol. J. Appl. Microbiol. 2001, 91, 453–462. [Google Scholar] [CrossRef] [Green Version]
- Raccach, M. The antimicrobial activity of phenolic antioxidants in foods: A review. J. Food Saf. 1984, 6, 141–170. [Google Scholar] [CrossRef]
- Taniguchi, M.; Yano, Y.; Tada, E.; Ikenishi, K.; Ol, S.; Haraguchi, H.; Hashimoto, K.; Kubo, I. Mode of action of polygodial, an antifungal sesquiterpene dialdehyde. Agric. Biol. Chem. 1988, 52, 1409–1414. [Google Scholar] [CrossRef] [Green Version]
- Nychas, G.J.E. Natural Antimicrobials from Plants. In New Methods of Foods Preservation; Gould, G.W., Ed.; Blackie Academic Chapman & Hall: Glasgow, UK, 1995; pp. 58–89. [Google Scholar] [CrossRef]
- Naz, S.; Siddiqi, R.; Ahmad, S.; Rasool, S.A.; Sayeed, S.A. Antibacterial activity directed isolation of compounds from Punica granatum. J. Food Sci. 2007, 72, 9. [Google Scholar] [CrossRef] [PubMed]
- Galvão, L.C.D.C.; Furletti, V.F.; Bersan, S.M.F.; da Cunha, M.G.; Ruiz, A.L.T.G.; Carvalho, J.E.D.; Sartoratto, A.; Rehder, V.L.G.; Figueira, G.M.; Duarte, M.C.T.; et al. Antimicrobial activity of essential oils against Streptococcus mutans and their antiproliferative effects. eCAM 2012, 2012, 751435. [Google Scholar] [CrossRef]
- Gil, M.I.; Tomas-Barberan, F.A.; Hess-Pierce, B.; Holcroft, D.M.; Kader, A.A. Antioxidant activity of pomegranate juice and its relationship with phenolic composition and processing. J. Agric. Food Chem. 2000, 48, 4581–4589. [Google Scholar] [CrossRef]
- Cucarella, C.; Tormo, M.Á.; Úbeda, C.; Trotonda, M.P.; Monzón, M.; Peris, C.; Amorena, B.; Lasa, Í.; Penadés, J.R. Role of biofilm-associated protein bap in the pathogenesis of bovine Staphylococcus aureus. Infect. Immun. 2004, 72, 2177–2185. [Google Scholar] [CrossRef] [Green Version]
- Pedersen, R.R.; Krömker, V.; Bjarnsholt, T.; Dahl-Pedersen, K.; Buhl, R.; Jørgensen, E. Biofilm Research in Bovine Mastitis. Front. Vet. Sci. 2021, 8, 656810. [Google Scholar] [CrossRef]
- Aviram, M.; Dornfield, L.; Rosenblatt, M.; Volkova, N.; Kaplan, M.; Coleman, R. Pomegranate juice consumption reduces oxidative stress, atherogenic modifications to LDL, and platelet aggregation: Studies in humans and in atherosclerotic apolipoprotein E-deficient mice. Am. J. Clin. Nutr. 2000, 71, 1062–1076. [Google Scholar] [CrossRef] [Green Version]
- Kulkarni, A.P.; Aradhya, S.M.; Divakar, S. Isolation and identification of a radical scavenging antioxidant-punicalagin from pith and carpellary membrane of pomegranate fruit. Food Chem. 2004, 87, 551–557. [Google Scholar] [CrossRef]
- Cerdá, B.; Espín, J.C.; Parra, S.; Martínez, P.; Tomás-Barberán, F.A. The potent in vitro antioxidant ellagitannins from pomegranate juice are metabolised into bioavailable but poor antioxidant hydroxy-6H-dibenzopyran-6-one derivatives by the colonic microflora of healthy humans. Eur. J Nutr. 2004, 43, 205–220. [Google Scholar] [CrossRef] [PubMed]
- Seeram, N.P.; Adams, L.S.; Henning, S.M.; Niu, Y.; Zhang, Y.; Nair, M.G.; Heber, D. In vitro antiproliferative, apoptotic and antioxidant activities of punicalagin, ellagic acid and a total pomegranate tannin extract are enhanced in combination with other polyphenols as found in pomegranate juice. J Nutr Biochem. 2005, 16, 360–367. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benzie, I.F.F.; Wachtel-Galor, S. Herbal Medicine: Biomolecular and Clinical Aspects; CRC Press: Boca Raton, FL, USA, 2011. [Google Scholar]
- Karaaslan, M.; Vardin, H.; Varlıklıöz, S.; Yılmaz, F.M. Antiproliferative and antioxidant activities of Turkish pomegranate (Punica granatum L.) accessions. Int. J. Food Sci. Technol. 2014, 49, 82–90. [Google Scholar] [CrossRef]
- Ricci, D.; Giamperi, L.; Bucchini, A.; Fraternale, D. Antioxidant activity of Punica granatum fruits. Fitoterapia 2006, 77, 310–312. [Google Scholar] [CrossRef] [PubMed]
- Moreira, G.M.B.; Matsumoto, L.S.; da Silva, M.A.; Silva, L.P.; de Gonçalvez, S.R.M.; de Mello Peixoto, E.C.T. In vitro antibacterial activities of pomegranate extract against standard microorganisms of bovine mastitis. J. Med. Plant. Res. 2015, 9, 950–953. [Google Scholar] [CrossRef] [Green Version]
- Thakur, L.; Ghodasra, U.; Patel, N.; Dabhi, M. Novel approaches for stability improvement in natural medicines. Pharmacogn. Rev. 2011, 5, 48–54. [Google Scholar] [CrossRef] [Green Version]
Bacteria | Extracts | Samples (Provinces) | ||
---|---|---|---|---|
Isparta | Denizli | Mugla | ||
MIC Values (µg/mL) | ||||
S. aureus-17 | EE | 13,000 | 13,000 | 13,000 |
ME | 6500 | 13,000 | 13,000 | |
WE | 13,000 | nt | 6500 | |
S. aureus-18 | EE | a | 13,000 | 13,000 |
ME | 13,000 | 13,000 | 6500 | |
WE | a | nt | 6500 | |
CNS-22 | EE | a | a | 13,000 |
ME | 13,000 | 13,000 | 13,000 | |
WE | a | 13,000 | 13,000 | |
CNS-29 | EE | 13,000 | 13,000 | 13,000 |
ME | 13,000 | 13,000 | 6500 | |
WE | a | a | 13,000 | |
CNS-32 | EE | a | 13,000 | 13,000 |
ME | a | 13,000 | 13,000 | |
WE | a | a | 13,000 | |
CNS-33 | EE | a | 13,000 | 6500 |
ME | 13,000 | 13,000 | 6500 | |
WE | a | a | 13,000 | |
CNS-36 | EE | a | 6500 | 13,000 |
ME | a | a | 13,000 | |
WE | a | a | 13,000 | |
CNS-37 | EE | a | 13,000 | 13,000 |
ME | a | 13,000 | a | |
WE | a | a | a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ökmen, G.; Giannetto, D.; Fazio, F.; Arslan, K. Investigation of Pomegranate (Punica granatum L.) Flowers’ Antioxidant Properties and Antibacterial Activities against Different Staphylococcus Species Associated with Bovine Mastitis. Vet. Sci. 2023, 10, 394. https://doi.org/10.3390/vetsci10060394
Ökmen G, Giannetto D, Fazio F, Arslan K. Investigation of Pomegranate (Punica granatum L.) Flowers’ Antioxidant Properties and Antibacterial Activities against Different Staphylococcus Species Associated with Bovine Mastitis. Veterinary Sciences. 2023; 10(6):394. https://doi.org/10.3390/vetsci10060394
Chicago/Turabian StyleÖkmen, Gülten, Daniela Giannetto, Francesco Fazio, and Kutbettin Arslan. 2023. "Investigation of Pomegranate (Punica granatum L.) Flowers’ Antioxidant Properties and Antibacterial Activities against Different Staphylococcus Species Associated with Bovine Mastitis" Veterinary Sciences 10, no. 6: 394. https://doi.org/10.3390/vetsci10060394
APA StyleÖkmen, G., Giannetto, D., Fazio, F., & Arslan, K. (2023). Investigation of Pomegranate (Punica granatum L.) Flowers’ Antioxidant Properties and Antibacterial Activities against Different Staphylococcus Species Associated with Bovine Mastitis. Veterinary Sciences, 10(6), 394. https://doi.org/10.3390/vetsci10060394